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Abstract

Decades of successes in statistical genetics have revealed the molecular underpinnings of traits as they vary across individuals of a given
species. But standard methods in the field cannot be applied to divergences between reproductively isolated taxa. Genome-wide
reciprocal hemizygosity mapping (RH-seq), a mutagenesis screen in an interspecies hybrid background, holds promise as a method to
accelerate the progress of interspecies genetics research. Here, we describe an improvement to RH-seq in which mutants harbor barcodes
for cheap and straightforward sequencing after selection in a condition of interest. As a proof of concept for the new tool, we carried out
genetic dissection of the difference in thermotolerance between two reproductively isolated budding yeast species. Experimental
screening identified dozens of candidate loci at which variation between the species contributed to the thermotolerance trait. Hits were
enriched for mitosis genes and other housekeeping factors, and among them were multiple loci with robust sequence signatures of
positive selection. Together, these results shed new light on the mechanisms by which evolution solved the problems of cell survival and
division at high temperature in the yeast clade, and they illustrate the power of the barcoded RH-seq approach.
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Introduction
Understanding how and why organisms from the wild exhibit
different traits is a central goal of modern genetics. Linkage and
association mapping have driven decades of success in dissecting
trait variation across individuals of a given species (Ott et al. 2015;
Tam et al. 2019). But since these methods cannot be applied to
reproductively isolated taxa, progress in the field of interspecies
genetics has lagged behind. To meet this challenge, newer
statistical-genetic methods appropriate to comparisons between
species have been proposed in the recent literature (Weiss and
Brem 2019), which hold promise for elucidating the genetics of
ancient traits. For most such methods, limitations accruing from
throughput and/or coverage issues remain to be refined.

The budding yeast Saccharomyces cerevisiae grows better at high
temperature than any other species in its clade (Sweeney et al.
2004; Gonçalves et al. 2011; Salvadó et al. 2011; Hittinger 2013;
Weiss et al. 2018), in keeping with its likely ecological origin in
hot, East Asian locales (Peter et al. 2018). This derived and puta-
tively adaptive trait serves as a model for the genetic study of

deep evolutionary divergences. Thermosensitivity, the ancestral
phenotype in the clade, is borne out in S. paradoxus, a close sister
species to S. cerevisiae, making the former a useful point of com-
parison. Our group previously used this system as a testbed to de-
velop RH-seq (Weiss et al. 2018), a genomic version of the
reciprocal hemizygosity test (Stern 2014) that is well-suited to the
mapping of natural trait variation between sister species. This
technique starts with the generation of large numbers of random
transposon mutant clones of a viable but sterile interspecies hy-
brid. In a given clone, loss of function from a transposon insertion
in one species’ allele of a gene reveals the function of the uncov-
ered allele from the other species. These hemizygotes are com-
peted en masse in a condition of interest; the abundance of each
hemizygote in turn in the selected pool is quantified by bulk se-
quencing, and used in a test for allelic impact on the focal trait.
In previous work, we identified eight genes through this approach
at which species divergence contributed to thermotolerance
(Weiss et al. 2018).
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Against a backdrop of successful biological and evolutionary
inference from our yeast RH-seq pilot (Weiss et al. 2018; Abrams
et al. 2021), we noted that the combination of S. cerevisiae alleles
of all eight genes mapped to thermotolerance recapitulated only
<20% of the difference between the species (AlZaben et al. 2021).
Thus, many of the determinants of yeast thermotolerance likely
remain undetected. If so, boosting the replication and throughput
of genetic mapping, to enable higher statistical power, could help
fill the knowledge gap. In our initial implementation of RH-seq,
we had quantified the abundance of hemizygotes in a sample by
sequencing across the transposon junction with the genome, us-
ing one universal primer that recognized the transposon and an-
other recognizing a ligated adapter at DNA fragment ends (Weiss
et al. 2018). This protocol, though rigorous, is labor-intensive and
expensive, limiting the potential for throughput and coverage. A
higher-throughput alternative starts with the tagging of transpo-
son sequences by random short DNA barcodes (Wetmore et al.
2015). After mutagenesis of a genotype of interest by these bar-
coded transposons, and then selection of the mutants in bulk in a
challenging condition, mutant abundance can be quantified from
sequencing of DNA straight from the pool with a simple PCR. We
set out to adapt this barcoding strategy to enable highly repli-
cated RH-seq, with application to yeast thermotolerance as a test
case to achieve a deeper exploration of the complex genetics of
the trait.

Materials and methods
Construction of a randomly barcoded piggyBac
transposase pool
For barcoded RH-seq, we constructed a pool of plasmids, each
harboring the piggyBac transposase and a randomly barcoded
copy of the piggyBac transposon, via golden-gate cloning of
random 20 bp barcodes flanked by universal priming sites into
a plasmid backbone containing the piggyBac machinery, modi-
fied from pJR487 (Weiss et al. 2018) as follows (Supplementary
Figure S1).

Preparation of the backbone vector
To allow the use of BbsI as the type IIS restriction enzyme for
golden-gate cloning of barcodes into pJR487 (see below), we first re-
moved all three BbsI cut sites from pJR487 by introducing silent
mutations that disrupted the restriction enzyme’s recognition pat-
tern. The resulting plasmid was called pCW328. We next modified
pCW328 to make a golden-gate-ready vector, with the final identi-
fier pJC31, by replacing transposon nucleotides with those of a
stuffer at a location 70 nucleotides from the end of the right arm of
the transposon (Supplementary Table S1); see Supplementary Note
and Figure S2 for a description of this choice. The stuffer contained
two BbsI cut sites with custom type IIS overhang sequences from
Lee et al. (2015), and a NotI cut site in between the two BbsI cut sites.
All cloning steps were carried out by GenScript, Inc.

Preparation of barcode oligonucleotides
To make barcodes, we acquired an oligonucleotide pool from IDT
that contained random 20 bp sequences (from hand-mixed ran-
dom nucleotides) flanked by universal priming regions, U1 and
U2 (Wetmore et al. 2015; Coradetti et al. 2018). These custom oli-
gos were produced and PAGE purified by IDT. Additionally, we
designed forward (FW_BbsI_JC) and reverse (REV_BbsI_JC) pri-
mers which each contained a BbsI cut site, BbsI overhang sequen-
ces complementary to the backbone vector, and the respective
universal priming sequence (Supplementary Table S2) (Coradetti

et al. 2018). We set up 50 ll amplification PCR reactions with 1 ll
of random 20 bp barcodes as template, from a 2.5-lM stock, and
0.25 ll of each of the forward and reverse primers from a 100-lM
stock. Amplification used Phusion High Fidelity polymerase (NEB)
and the following cycling protocol: 98�C for 30 s (98�C for 10 s,
58�C for 30 s, and 72�C for 60 s) � 6, 72�C for 5 min. PCR products
were purified (Zymo DNA Clean & Concentrator kit) and then
combined. This yielded the final donor barcodes: random 20 bp
barcodes flanked by universal priming regions, with BbsI cut sites
at the extreme edges.

Cloning barcodes into plasmids
To clone barcodes into pJC31, we proceeded in two barcoding
reactions.

The first reaction contained 2:1 molar ratio of vector to barco-
des (4 lg of pJC31 and 128 ng of donor barcodes), 5 ll of 10� T4
Ligase Buffer (ThermoFisher), 2.5 ll of T4 Ligase (ThermoFisher),
2.5 ll FastDigest Bpil (ThermoFisher), and sterile water up to
50 ml. The cycling program was: 37�C for 5 min (37�C for 2 min,
16�C for 5 min) � 25, 65�C for 10 min. Then a mixture containing
5 ll 10� FastDigest Buffer (ThermoFisher), 3.13 ll BSA 2 mg/ml
(NEB), 12.5 ll FastDigest NotI (ThermoFisher), and 12.5 ll
FastDigest Bpil (ThermoFisher) was spiked into the reaction and
incubated at 37�C for 16 h to digest unbarcoded backbone vectors.
Ten of these reactions were combined, purified, and eluted in
H2O (Zymo DNA Clean & Concentrator). To spot-check this
cloning, 5 ll of this product was transformed into 25 ll of E. coli
10-beta electrocompetent cells (NEB). Sanger sequencing across
the barcode regions of 20 individually miniprepped E. coli colonies
showed 95% barcoding efficiency.

The second reaction contained 2:1 molar ratio of vector to
donor barcodes (4 lg of pJC31 and 128 ng of donor barcodes), 5 ll
of 10� T4 Buffer (ThermoFisher), 2.5 ll T4 Ligase (ThermoFisher),
2.5 ll Bpil (ThermoFisher), and sterile water up to 50 ml. The
cycling program was: 37�C for 5 min (37�C for 2 min, 16�C for 5
min) � 25, 65�C for 10 min. Then a mixture containing 2.5 ll 10�
FastDigest Buffer (ThermoFisher), 2.5 ll G Buffer, (ThermoFisher),
3.13 ll BSA 2 mg/ml (NEB), 12.5 ll FastDigest NotI (ThermoFisher),
and 12.5 ll Bpil (ThermoFisher) was spiked in the reaction and
incubated at 37�C for 16 h to digest remaining unbarcoded back-
bone vectors. Six of these reactions were combined, purified, and
eluted in H2O (Zymo DNA Clean & Concentrator). Then every 5 ll
of cleaned eluted product was redigested with 5 ll of NotI-HF
(NEB), 5 ll 10� CutSmart buffer (NEB), and 35 ll H2O at 37�C for
16 h then 80�C for 20 min. The reactions were purified again
(Zymo DNA Clean & Concentrator) and pooled. Spot checks of
this cloning reaction proceeded as above, and Sanger sequencing
across the barcode regions of 20 individually miniprepped E. coli
colonies showed 95% barcoding efficiency.

Purified plasmids from the two reactions were combined in a
master tube of DNA before transforming into electrocompetent
E. coli cells (NEB) to generate the final barcoded piggyBac pool
(final identifier P58). Each electroporation cuvette (BTX) con-
tained 25 ll of 10-beta electrocompetent cells (NEB) and 5 ll of
cleaned master tube DNA from the previous golden-gate barcod-
ing step. We performed 21 electroporation reactions in total using
the Bio-Rad GenePulser Xcell machine set to 2.0 kV, 200 X, 25 lF.
After electroporation, each culture was recovered in provided
outgrowth media (NEB) by shaking at 37�C at 250 rpm for 1.5 h.
After recovery, all independent 21 electroporation reactions were
combined.

The combined recovered transformation E. coli culture was
used to inoculate two 1 l fresh LB cultures containing
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carbenicillin at 100 lg/ml to select for E. coli cells containing bar-
coded piggyBac plasmids. Each culture was incubated for 15.5 h
at 37�C, 250 rpm (overnight) to expand the barcoded piggyBac
E. coli pool. Then the two cultures were combined yielding the
final barcoded transposon plasmid pool, P58. This was aliquoted
into 1 ml volumes with 15% glycerol and stored at �80�C.

Sequencing verification of barcoded piggyBac pool plasmid
DNA for barcode diversity
To verify barcode diversity in the barcoded piggyBac plasmid pool
(P58), we sequenced barcodes as follows. One frozen aliquot of
P58 was inoculated into 1.25 l of LB containing carbenicillin
100 lg/ml and grown for 16 h at 37�C, 250 rpm or until it reached
an OD600 of 2.1. This culture was gigaprepped on using a column
kit (Invitrogen) to generate 5 mg of plasmid. We used this as input
into a PCR with primers (Supplementary Table S2) annealing to
the universal priming regions flanking the barcode. These pri-
mers were dual-indexed, although in this work we only carried
out sequencing of the resulting amplicon from one end (see be-
low), such that only one index was used. The generic form of the
forward primer was AATGATACGGCGACCACCGAGATCTAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT(N1–4)xxxxxxGTCG
ACCTGCAGCGTACG, where the N1–4 represent variable
amounts of random bases from 1 to 4 to help samples cluster
on the Illumina lane and the (x6) represent a unique 6-bp index
sequence for multiplexing samples. The generic reverse primer
was CAAGCAGAAGACGGCATACGAGATxxxxxxGTGACTGGAGTTC
AGACGTGTGCTCTTCCGATCTGATGTCCACGAGGTCTCT. Four PCR
reactions used 50ng of prepped P58 plasmid template each.
Amplification used Q5 High Fidelity Polymerase (NEB) and a cycling
program 98�C for 4 min (98�C for 30 s, 55�C for 30 s, 72�C for
30 s)� 25, 72�C for 5 min. Each PCR product was purified on a col-
umn (Zymo DNA Clean & Concentrator-5 Kit) and eluted in 10ll
prewarmed 65�C provided elution buffer (Zymo). Six microliters of
each were then combined and sequenced off the U2 region via
Illumina amplicon sequencing, on one lane of HiSeq4000 SR50 at
the Genomics Sequencing Laboratory at UC Berkeley. Reads se-
quenced per library are reported in Supplementary Table S3.
Sequencing of the E. coli vector pool p58 revealed 27,538,142 barco-
des with an estimated sequencing error rate of 1.38% analyzed as
described (Coradetti et al. 2018).

Yeast hemizygote pool construction via barcoded
transposon mutagenesis
We constructed our yeast hemizygote pool essentially as de-
scribed (Weiss et al. 2018) but with modifications as follows.

To prepare plasmid DNA for mutagenesis, one frozen aliquot
of P58 was inoculated into 1.25 l of LB containing carbenicillin
100 lg/ml and grown for 16 h at 37�C, 250 rpm or until it reached
an OD600/ml of 2.1. This culture was gigaprepped on using a
column kit (Invitrogen) to generate 5 mg of plasmid.

Next, we transformed yeast in several, smaller subpools that
we combined to form a final pool as follows. We carried out mu-
tagenesis of CW27, an F1 hybrid from the mating of S. cerevisiae
DBVPG1373 with S. paradoxus Z1 (Weiss et al. 2018), across two
days. The first day, we generated one subpool in a single 50 ml
culture and one subpool in five 50 ml cultures at OD600/ml �0.9
(�45 OD600 units of cells each). The second day, we generated two
subpools in five 50 ml cultures each at OD600/ml �0.9 (�45 OD600

units of cells).
To generate subpools consisting of a single 50 ml culture, one

colony of CW27 was inoculated into 5 ml of YPD and incubated at
28�C 200 rpm. Twenty-four hours later, the OD600/ml of the

overnight culture was 3.86. It was back-diluted to an OD600/ml of
0.1 in 50 ml of YPD in a 250-ml Erlenmeyer flask and grown with
shaking at 28�C, 200 rpm for 5.5 h. After 5.5 h, it had reached
OD600/ml �0.9 and cells were at mid-log phase. This 50 ml culture
was gently pelleted at 1000�g for 3 min. The pellet was washed
with 25 ml sterile water and then 5 ml of 0.1 M lithium acetate
(Sigma) mixed with 1� Tris–EDTA buffer (10 mM Tris–HCl and
1.0 mM EDTA); after spin-down, to the tube was added a solution
of 0.269 mg of P58 mixed 5:1 by volume with salmon sperm DNA
(Invitrogen), followed by 3 ml of 39.52% polyethylene glycol, 0.12
M lithium acetate, and 1.2� Tris–EDTA buffer (12 mM Tris–HCl
and 1.2 mM EDTA). The tube was rested for 10 min at room tem-
perature, then heat-shocked in a water bath at 37�C for 26 min.
The tube was gently spun at 1000�g for 3 min after which super-
natant was removed. We transferred the cells to a flask and
added YPD to attain an OD600/ml of �0.35–4 in �70 ml. Each such
culture was recovered by shaking at 28�C and 200 rpm for 2 h.
G418 (Geneticin; Gibco) was added to each at a concentration of
300 lg/ml to select for those cells that had taken up the plasmid,
and cultures were incubated with 200 rpm shaking at 28�C for 2
days until each reached an OD600/ml of �2.5. We transferred cells
from this culture, and YPD þ G418 (300 lg/ml), to new 250 ml
flasks at the volumes required to attain an OD600/ml of 0.2 in
50 ml each. We cultured each flask with 200 rpm shaking at 28�C
overnight until each reached an OD600/ml of 3.43. To cure trans-
formants of the P58 URA3þ plasmid, we spun down 10% of this
master culture and resuspended in water with the volume re-
quired to attain a cell density of 1.85 OD600/ml. Four milliliters of
this resuspension were plated (1 ml per 24.1 cm� 24.1 cm plate)
onto plates containing complete synthetic media with 5-fluoroor-
itic acid [0.2% dropout amino acid mix without uracil or yeast ni-
trogen base (US Biological), 0.005% uracil (Sigma), 2% D-glucose
(Sigma), 0.67% yeast nitrogen base without amino acids (Difco),
0.075% 5-fluorooritic acid (Zymo Research)]. After incubation at
28�C to enable colony growth, colonies were scraped off all four
plates and combined into water at the volume required to attain
44 OD600/ml, yielding the transposon mutant hemizygote
subpool. This was aliquoted into 1 ml volumes with 10%
dimethylsulfoxide and frozen at �80�C.

To generate subpools consisting of five 50 ml cultures, one col-
ony of CW27 was inoculated to 100 ml of YPD in a 250-ml
Erlenmeyer flask and incubated shaking at 28�C, 200 rpm.
Twenty-four hours later, the OD600/ml of the overnight culture
was OD600/ml 3.89. The overnight culture was back-diluted to
OD600/ml 0.1 in 250 ml of YPD and incubated for 5.5 h at 28�C,
200 rpm. After 5.5 h, the OD600/ml reached 0.9 and cells were split
into five 50 ml conical tubes, and subjected each to heat shock as
above. We then transferred all cells from this post-
transformation culture to one 1 l flask and added fresh YPD to at-
tain OD600/ml 0.4 in �750 ml YPD. The transformed culture was
recovered by shaking at 28�C, 200 rpm, for 2 h. G418 (300 mg/ml)
was added to select for the transposed cells. The culture contin-
ued shaking for 48 h or until the OD600/ml reached 2.1. This cul-
ture was then back-diluted to create a new culture at OD600/ml
0.2 in 500 ml of YPD with 300 mg/ll G418 shaking for 24 h at 28�C,
200 rpm until it reached OD600/ml �3.4 The curing, scraping, and
freezing steps were the same as above.

To combine the four subpools to yield the final 160� hemizy-
gote pool (final identifier P75), three 1 ml aliquots of each subpool
were thawed on ice for 1 h. They were transferred to each of four
1 L flasks with 500 ml YPD to OD600/ml 0.2, cultured at 28�C,
200 rpm for 17 h after which the OD600/ml was 3.5–4. These cul-
tures were gently pelleted, combined, and resuspended either in
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YPD with 15% glycerol or YPD with 7% DMSO, to a final OD600/mL
of 44; aliquoted to 1 ml volumes; and frozen at �80�C.

Tn-seq mapping of yeast hemizygote pool
Tn-seq library preparation
To associate barcoded transposon insertions to genomic location in
the hemizygote pool, which we refer to as Tn-seq, we first
sequenced barcoded transposon insertions according to the
methods of Weiss et al. (2018) as follows. Each 44 OD600/ml aliquot
of each subpool or final pool was thawed on ice, and its genomic
DNA (gDNA) was harvested with the ZR Fungal/Bacterial DNA
MiniPrep Kit (Zymo Research). gDNA was resuspended in DNA
elution buffer (Zymo Research) prewarmed to 65�C, and its concen-
tration was quantified using a Qubit 4.0 fluorometer. Illumina
transposon sequencing (Tn-seq) library construction was as
described. Briefly, gDNA was sonicated and ligated with common
adapters, and for each fragment deriving from a barcoded transpo-
son insertion in the genome, a sequence containing a barcode, a
portion of the transposon, and a portion of its genomic context (the
barcoded transposon–genome junction) was amplified using one
primer homologous to the U1 region immediately upstream of bar-
code and another primer homologous to a region in the adapter.
See Supplementary Table S2 for the transposon-specific primer
(“forward primer”), where Ns represent random nucleotides, and
the indexed adapter-specific primer (“reverse primer”).
Amplification used Jumpstart polymerase (Sigma) and the following
cycling protocol: 94�C for 2 min (94�C for 30 s, 65�C for 20 s, 72�C for
30 s) � 25, 72�C for 10min. Sequencing of paired-end reads of 150 bp
was done over two lanes on a HiSeq4000 at Novogene Corporation
(Sacramento, CA, USA) and one lane on a NovaSeq SP at the
Genomics Sequencing Laboratory at UC Berkeley (Berkeley, CA,
USA). Reads sequenced per library are reported in Supplementary
Table S4.

Tn-seq data analysis
Tn-seq data of the hemizygote pool was analyzed, to infer trans-
poson insertions on the basis of barcodes detected in reads as
junctions with genomic sequence, essentially as described
(Coradetti et al. 2018) (https://github.com/stcoradetti/RBseq/tree/
master/Old_Versions/1.1.4; last accessed October 10, 2021), with
the following modifications. For each barcode, instead of scan-
ning positions for the end of the insertion from a sequence speci-
fied by a model file, we searched for the final 22 base pairs of the
right arm of the piggyBac transposon allowing for two mis-
matches. For annotation, we converted the annotation file from
https://github.com/weiss19/rh-seq (last accessed June 5, 2021) for
the S. cerevisiae D1373� S. paradoxus Z1 hybrid to a compliant
GFF3 file using Another GFF Analysis Toolkit (AGAT) - Version:
v0.4.0 (https://github.com/NBISweden/AGAT). Then, we used a
custom Jupyter notebook to annotate the file generated by the
RBseq mapping software.

Quality control for Tn-seq, to eliminate barcodes whose junc-
tion genomic sequence mapped to multiple insertion locations in
the hybrid genome, and to minimize the proportion of sequenc-
ing errors included in final tallies, was as described (Coradetti
et al. 2018). Briefly, we eliminated from further consideration any
case where a barcode observed in Tn-seq sequencing data dif-
fered from another, much more abundant, barcode by a single
base (a total of 2,024,812 off-by-one barcodes in 2,888,129 reads).
We also filtered out off-by-two barcodes (280,949 barcodes in to-
tal). Separately, we eliminated barcodes that were detected in se-
quencing data as a junction with more than one genomic
context, suggesting the respective transposon had inserted into

multiple locations in one or many clones (98,669 barcodes where
this inference was based on multiple strong mapping matches,
and an additional 46,583 barcodes where this inference was am-
biguous, with one strong mapping match with reads outnum-
bered by those assigned to weaker mapping matches). The final
filtered barcode set comprised 548,129 uniquely barcoded and
mapped inferred transposon insertions in the P75 hemizygote
pool, at an average read depth of 308.6 reads, and a median read
depth of 47 reads; 166,834 of these insertions were mapped as
genic. The annotation script, GFF3 file, and modified mapping
script are available at https://github.com/melanieabrams-pub/
RH-seq_with_barcoding.

Competition cultures
For thermotolerance competition at 37�C (Supplementary Table
S5), one aliquot of the yeast hemizygote pool was thawed and in-
oculated into 150 ml of YPD in a 250-ml unbaffled Erlenmeyer
flask and grown for 6 h at 28�C, 200 rpm. This pre-culture (T0, at
OD600/ml of 1.22) was back-diluted into 12 10 ml competition cul-
tures at 200 rpm at each of 28�C and 37�C, with a starting OD600/
ml of 0.02 or 0.05 in at 28�C and 37�C, respectively. These compe-
tition cultures were maintained within logarithmic growth
through back-dilutions into fresh tubes of 10 ml of YPD at the
same optical density as the starting culture, for a total of 10–15
generations. Dilutions for the 28�C competition cultures were
performed after 8.5, 18.5, and 25.5 h after the T0 timepoint, and
dilutions for the 37�C competition cultures were performed after
8.5, 18.5, 25.5, and 32.5 h after the T0 timepoint. The entire cell
culture was harvested from each of these biological replicate
tubes for sequencing as biological replicates.

For thermotolerance competition at 36�C (Supplementary
Table S6), competition cultures were grown as above with the fol-
lowing differences. The high temperature was 36�C, instead of
37�C. The preculture (T0, at OD600/ml of 0.693 after 5.5 h at 28�C,
200 rpm) was back-diluted to a starting OD600/ml of 0.02 for com-
petition cultures at 36�C. Dilutions for both the 28�C and 36�C
competition cultures were performed after 8.5, 18.5, and 25.25 h
after the T0 timepoint. Eleven instead of 12 replicates were car-
ried out at 28�C.

Barcode quantification from competition cultures
Bar-seq library preparation
To determine the abundance of barcoded transposon mutant
hemizygote clones after selection, we sequenced barcodes inser-
tions as follows. Each cell pellet from a selection sample was
thawed on ice, and its gDNA was harvested with the Zymo
QuickDNA Kit (Zymo#D6005). gDNA was resuspending in DNA
elution buffer (Zymo Research) prewarmed to 65�C, and its con-
centration was quantified using a Qubit 4.0 fluorometer. The bar-
code insertion was amplified as above (see Sequencing verification
of barcoded piggyBac pool plasmid DNA for barcode diversity). Each
PCR product was purified on a column (Zymo DNA Clean &
Concentrator) and eluted in 10 ll prewarmed 65�C provided elu-
tion buffer (Zymo). Six microliters of each were then combined
and sequenced off the U2 region by Illumina sequencing on one
lane of HiSeq4000 SR50 at the QB3 Genomics Sequencing
Laboratory at UC Berkeley.

Bar-seq data analysis
Bar-seq mapping and quantification were as described (Coradetti
et al. 2018) (https://github.com/stcoradetti/RBseq/tree/master/
Old_Versions/1.1.4; last accessed October 10, 2021), wherein only
barcodes that passed quality control in Tn-seq (see Tn-seq data
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analysis) were analyzed for quantitative measures of abundance
via Bar-seq. Thus, we did not use in our screen any barcode that
was detected in Bar-seq sequence data but not Tn-seq data (the
product of, e.g., sequencing errors in Bar-seq, or a failure to ob-
serve in Tn-seq a barcode associated with a bona fide transposon
insertion that could be detected in Bar-seq). A total of 301,349
barcodes conformed to these criteria from across all replicates of
Bar-seq in competitions for the dissection of determinants of
growth at 37�C relative to 28�C, with an average read depth of
305.3 reads and a median of 12 reads. 89,772 of these Bar-seq
detected barcodes corresponded to inferred transposon inser-
tions in genes and were analyzed as input to the reciprocal hemi-
zygosity testing pipeline described below. In a given replicate
competition culture we detected a median 1� 105 barcodes. The
latter represented a fifth of the size of the total pool of hemizy-
gotes detectable after quality control by Tn-seq (5.5� 105; see Tn-
seq data analysis). Thus, the extent of bottlenecking in any given
competition experiment was modest, with diversity retained at
the order of magnitude of the mutant pool size.

Competitions for the dissection of growth at 36�C relative to
28�C (Supplementary Table S6) used the same procedures as
above, mapping a total of 230,469 barcodes, 68,523 of which cor-
responded to inserts in genes and were analyzed as input to the
reciprocal hemizygosity testing pipeline described below. In a
given replicate competition culture, we detected a median 5� 104

barcodes.

Reciprocal hemizygosity testing
The tabulated counts of abundance from Bar-seq for each barcode
in each replicate were used as input into reciprocal hemizygosity
tests essentially as in Abrams et al. (2021) with slight changes as fol-
lows. We had in hand each barcode which had been sequenced as a
junction with a unique genomic location in the Tn-seq step and had
passed quality control there (see Tn-seq data analysis), and which
was now detected in competition cultures. We interpreted each
such barcode as reporting a hemizygote clone bearing a transposon
insertion at the respective position of the respective species’ allele
(S. cerevisiae or S. paradoxus), with the other species’ allele retained
as wildtype at that locus. In what follows, we refer to each such bar-
code as reporting an inferred hemizygote clone, with respect to its
growth behavior in competition cultures. As in Abrams et al. (2021),
for a given biological replicate we normalized the abundances at-
tributed to each inferred hemizygote genotype to the total number
of sequencing reads in the respective sample, and we eliminated
from further analysis insertions which had been annotated as inter-
genic, or as corresponding to the plasmid used to generate this pool.
For reciprocal hemizygosity tests, we excluded from consideration
any gene with fewer than three inferred hemizygote genotypes per
allele. Of the retained genes, for each inferred hemizygote genotype,
we tabulated the quantity aexperimental,i, the sequencing-based abun-
dance measured after the competition culture in biological replicate
i of growth at the experimental temperature (36�C or 37�C), and,
separately, we calculated acontrol,i, the analogous quantity from
growth at the control temperature (28�C), for i ¼ [1,12]. We then
took the mean of the latter and used it to tabulate the temperature
effect on the inferred hemizygote genotype in replicate i, ti ¼
log2(aexperimental,i/acontrol, mean). As in Abrams et al. (2021), we elimi-
nated an inferred hemizygote genotype if the coefficient of variation
of this quantity exceeded 2.0, or there were fewer than 1.1 normal-
ized reads. With the data for the remaining inferred hemizygote
genotypes (Supplementary Tables S5 and S6), for a given gene, we
compiled the vector of the t measurements across all replicates and
all inferred hemizygote genotypes with each species’ allele of the

hybrid disrupted in turn, and discarded genes where the coefficient
of variation of the t measurements across hemizygote inserts for
one or both alleles exceeded 10. For the remainder, we used the
Mann–Whitney test to compare these two vectors, with Benjamini–
Hochberg correction for multiple testing (Supplementary Tables S7
and S8). For a given gene, we calculated the effect size as the differ-
ence between two values: the log2(abundance at the experimental
temperature/abundance at 28�C) of the average inferred hemizygote
genotype representing a transposon insertion in the
S. cerevisiae allele, and the analogous quantity among inferred hemi-
zygote genotypes representing insertions in the S. paradoxus allele of
the gene. Scripts for this modified RH-seq analysis pipeline are avail-
able at https://github.com/melanieabrams-pub/RH-seq_with_barcod
ing. We earmarked top candidate genes for factors contributing to
the thermotolerance of S. cerevisiae as those with corrected Mann–
Whitney P< 0.05 in the reciprocal hemizygosity test, and an effect
size <�0.5, i.e., disrupting the S. cerevisiae allele was associated with a
strong defect in thermotolerance relative to disruption of the S. para-
doxus allele; we refer to this gene set as our top barcoded RH-seq hit
gene list.

Analysis of inferred interactions between top hit
genes from barcoded RH-seq
For the circos plot reporting inferred interactions between top hit
genes from barcoded RH-seq, we used the STRING database
(Szklarczyk et al. 2021), last accessed September 30, 2021, which
incorporates experimental/biochemical data from DIP, BioGRID,
HPRD, IntAct, MINT, and PDB, and curated data from Biocarta,
BioCyc, Gene Ontology (GO), KEGG, and Reactome. Widths of
edges between nodes in the circos plot represent STRING confi-
dence scores, each the probability of a true positive interaction
between a given two genes (Szklarczyk et al. 2021).

To test the encoded proteins of top barcoded RH-seq hit genes
for enrichment of physical interactions with each other, we used
curated known interactions from BioGRID (Oughtred et al. 2021)
as housed in the Saccharomyces Gene Database, downloaded
February 19, 2021. We tabulated the number of physical interac-
tions between the proteins encoded by RH-seq hit genes, and we
divided that by the total number of interactions involving one
RH-seq hit gene and any other gene in the genome; call this ratio
rtrue. Then, we drew a random sample of genes from the genome,
as described above for GO term resampling. We tabulated, in this
random gene set, the number of physical interactions between
genes in that sample, and we divided that by the total number of
interactions involving one gene in the random sample and any
other gene in the genome, to yield rresample. We repeated this pro-
cedure 10,000 times, and we used the proportion of resampled
groups where rresample was greater than or equal to rtrue as a one-
sided P-value assessing the significance of enrichment of
interactions between our genes of interest.

GO analyses of top hit genes from barcoded
RH-seq
To test top barcoded RH-seq hit genes for enrichment for overrep-
resentation of a particular GO term, we mapped each gene to its
GO groups based on data from geneontology.com (Ashburner
et al. 2000), last accessed May 13, 2021. We filtered out GO terms
with fewer than five or with more than 200 gene members. We
also filtered out GO terms with identical membership in the ge-
nome. We took the subset of the remaining GO terms with at
least one member among our top barcoded RH-seq hit genes. For
each such term, we randomly sampled genes from the genome,
ensuring the same proportion of essential genes as in our set of
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top barcoded RH-seq hit genes based on the essentiality annota-
tions of Winzeler (1999). We tabulated whether our random sam-
ple had greater or fewer genes with the term of interest than our
candidate set. We repeated this procedure 10,000 times and used
the proportion of these resampled groups that had more genes in
the term as the initial P-value assessing the significance of the
enrichment of that term. Then, we applied Benjamini–Hochberg
correction for multiple hypothesis testing across all terms to gen-
erate final, adjusted P-values across the experiment.

To test Biological Process ontologies for enrichment for large
magnitudes of the effect of allelic variation on thermotolerance,
we used the latter as tabulated in Reciprocal hemizygosity testing.
We filtered GO terms as above, and then excluded all genes ab-
sent in our barcoded RH seq analysis. For each retained term in
turn, we first tabulated the median absolute value of the effect
size of the gene members for which we had data, etrue. Then, we
tabulated the analogous quantity for a random sample of the
same number of genes from the genome, eresample, ensuring the
same proportion of essential genes as above. We repeated this
procedure 100 times, and used the proportion of the resampled
groups for which eresample was greater than or equal to etrue as an
initial P-value assessing the enrichment of large effects of allelic
variation in the genes the term. For all GO terms with an initial P-
value <0.1, we repeated this procedure 10,000 times to calculate
a more precise P-value. Then, we applied the Benjamini–
Hochberg correction for multiple hypothesis testing to generate
final, adjusted P-values across the experiment.

Molecular evolution analysis of RH-seq hit genes
Branch length PAML analysis with codeML was performed as in
Dubin et al. (2020). Hits were manually inspected for the quality
of the alignment, and one, YAL026C, was discarded for poor align-
ment quality leading to an artifactually high branch length. We
used the inferred branch lengths as input into a resampling test
as in GO analyses of top hit genes from barcoded RH-seq, and we per-
formed a one-sided significance test for long branch lengths
along the S. cerevisiae lineage. Branch-site PAML analysis with
codeML was performed as in Abrams et al. (2021). Jalview Version
2 was used to visualize the percentage of identity of amino acid
sequence alignments (Waterhouse et al. 2009). McDonald–
Kreitman analysis statistics were calculated as in Abrams et al.
(2021). Fisher’s exact test was used to compute P-values for indi-
vidual loci, and these were adjusted using the Benjamini–
Hochberg correction for multiple hypothesis testing.

Results
Dissecting thermotolerance divergence between
species by barcoded transposon mutagenesis
With the goals of boosting RH-seq throughput and power, and
achieving new insights into the genetics and evolution of yeast
thermotolerance, we set out to generate an RH-seq reagent for
yeast incorporating barcoded transposons (Wetmore et al. 2015).
For this purpose, we first generated a pool of plasmids, each
encoding a barcoded copy of the piggyBac transposon and its
transposase (Supplementary Figure S1, A–C). To use these in RH-
seq, we revisited our previously characterized model system: a
comparison between DVBPG1373, a thermotolerant Dutch soil
strain of S. cerevisiae, and Z1, an S. paradoxus isolate from the
United Kingdom (Weiss et al. 2018; Abrams et al. 2021; AlZaben
et al. 2021). The F1 hybrid formed from the mating of these strains
exhibits a thermotolerance phenotype intermediate between
those of the two species parents, and thus is well suited to

mapping of allelic effects on the trait (Weiss et al. 2018). We trans-
formed this F1 hybrid with barcoded plasmids, yielding a pool of
hemizygote mutants, which we expanded and then banked
(Supplementary Figure S1D). Next, to catalog the genomic loca-
tions of transposon insertions, we used the DNA from a culture
of the pool in standard conditions as input into a first round of se-
quencing library construction, whose primers recognized a com-
mon site on the transposon and a common DNA adapter ligated
to DNA fragment ends (“Tn-seq”; Figure 1A). Sequencing and data
analysis, with quality controls to eliminate barcodes that could
not be uniquely associated with a single transposon insertion lo-
cation (see Materials and methods), yielded a catalog of 548,129 bar-
coded hemizygotes in the pool whose genomic insertion locations
were tabulated. At this point, we could harness the pool for
highly replicated screens, each of which could quantify hemizy-
gote abundance in a condition of interest via relatively cheap and
straightforward barcode sequencing (“Bar-seq”; Figure 1B).

Thus, with our barcoded hemizygote pool, we implemented an
RH-seq screen to search for genes at which S. cerevisiae and S. par-
adoxus alleles drove differences in strain abundance at high tem-
perature. For this, we subjected the pool to growth assays with 12
biological replicate cultures at 37�C, alongside controls at 28�C.
We used DNA from each culture as input into barcode sequenc-
ing (Figure 1B). The resulting data revealed a total of 301,349
cases where a barcode, representing a hemizygote clone with a
transposon insertion catalogued by Tn-seq (Figure 1A), was de-
tectable in our growth assays. Transposon insertion positions
corresponding to these informative barcodes were evenly split be-
tween S. cerevisiae and S. paradoxus alleles of genes throughout
the F1 hybrid genome (Supplementary Figure S3). We took the
normalized count of a given barcode in a sequencing data set as a
report of the fitness of the respective hemizygote, i.e., its relative
abundance after growth in the pool in the respective condition.
We then used the complete set of such counts as the input into
reciprocal hemizygosity tests to compare, for a given gene, the
temperature-dependent abundance of strains harboring a disrup-
tion in the S. cerevisiae allele, relative to that of strains with the
S. paradoxus allele disrupted. A pipeline for these tests, including
filters for coverage and reproducibility and multiple testing cor-
rection (see Materials and methods), revealed 83 genes at a 5% false
discovery rate (Figure 2; Supplementary Table S7). This con-
trasted with the much smaller set of eight genes at which species’
alleles drove differences in high-temperature growth, identified
in our original nonbarcoded RH-seq approach (Weiss et al. 2018),
which had involved only three biological replicates. The 10-fold
increase in the number of significant hits in our barcoded RH-seq
screen reflects the statistical power afforded by our highly repli-
cated method to detect even quite small effects.

In our barcoded RH-seq screen hits, as a positive control we
first examined the set of genes known to contribute to thermotol-
erance divergence from our earlier study (AFG2, APC1, CEP3,
DYN1, ESP1, MYO1, SCC2, and DYN1) (Weiss et al. 2018). Several
did not meet the experiment-wide statistical thresholds of our
barcoded RH-seq pipeline (Supplementary Figure S4A), suggest-
ing an appreciable false negative rate of the latter overall.
However, manual inspection made clear that hemizygosity
effects at all gold-standard thermotolerance loci were borne out:
in each case, in barcoded RH-seq data, strains with disruptions in
the S. cerevisiae allele, and a wildtype copy of the S. paradoxus al-
lele, had worse thermotolerance than did strains with only the
S. cerevisiae allele intact (Supplementary Figure S4, A and B), as
we had previously reported (Weiss et al. 2018). Furthermore, the
list of gene hits from barcoded RH-seq also included HFA1
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(Figure 2B; Supplementary Tables S7 and S9) which was reported
and validated separately as a determinant of thermotolerance
differences between yeast species (Li et al. 2019). On the strength

of these controls, we considered our deep sampling of thermotol-
erance loci to serve as a useful proof of concept for the barcoded
RH-seq method.
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Figure 1 Barcoded RH-seq mapping of yeast thermotolerance loci. (A) Barcoded RH-seq sequencing analysis steps. Left, in a pool of S. cerevisiae�
S. paradoxus hybrid hemizygotes, each harboring a transposon (gray rectangle) marked with a unique 20-mer barcode (multicolored) flanked by
universal primer sites (U1 and U2), each barcode is associated with its insertion location by transposon sequencing (Tn-seq). Genomic DNA from the
pool is extracted, sheared, and ligated to universal adapters (pink ovals), followed by PCR amplification with a transposon-specific primer (forward
black arrow) and an adapter-specific primer (reverse black arrow) and sequencing. Right, for barcode sequencing (Bar-seq) to quantify hemizygote
strain abundance after pool growth in a condition of interest, gDNA is used as input to PCR with primers to universal primer sites for sequencing.
(B) Thermotolerance RH-seq screen design. An aliquot of the hemizygote pool was thawed and cultured in large format, then split into small replicate
cultures, each maintained in logarithmic growth phase at the temperature of interest by back-dilution, followed by quantification by Bar-seq.
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Figure 2 Hits from barcoded RH-seq mapping of yeast thermotolerance. (A) Each panel reports barcoded RH-seq results for a gene at which the S. cerevisiae
allele was associated with better thermotolerance than the S. paradoxus allele, when uncovered in the hybrid background. In a given panel, the x-axis reports
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proportion of observations of all clones bearing insertions in the indicated allele that exhibited the abundance ratio on the x, as a kernel density estimate.
Shown are the top six genes from among all barcoded RH-seq hit loci in terms of allelic effect size; see Supplementary Table S7 for effect sizes of the
complete set of hits. (B) Subcellular localization of RH-seq hit genes, where available from Pierleoni et al. (2007) and Huh et al. (2003). Genes at which effects of
allelic variation on thermotolerance were reported previously (Weiss et al. 2018; Li et al. 2019) are denoted in bold type.
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Functional-genomic analysis of thermotolerance
genes
We next aimed to pursue deeper analyses of the novel gene hits
from barcoded RH-seq in our yeast thermotolerance application.
We considered that a focus on the strongest and most evolution-
arily relevant sources of mapping signal would likely yield the most
informative results. As such, in light of our interest in explaining
the exceptional thermotolerance of purebred S. cerevisiae, we ear-
marked the 44 genes from our larger candidate set at which the
S. cerevisiae allele boosted the trait most dramatically relative to
that of S. paradoxus (Figure 2; Supplementary Table S9). In what fol-
lows, we refer to these genes as our top RH-seq hits, and we analyze
them as our highest-confidence predictions for factors that nature
would have used in evolving the S. cerevisiae phenotype.

We sought to use our mapped loci to explore potential functional
mechanisms underlying the thermotolerance trait. We hypothe-
sized that S. cerevisiae thermotolerance genes could participate in an
interacting network, jointly shoring up particular aspects of cell
machinery that were critical for growth at high temperature
(AlZaben et al. 2021). Consistent with this notion, the STRING
database, which collates experimentally detected protein–protein
interactions, genetic interactions, and pathway membership
(Szklarczyk et al. 2021), inferred multiple interactions among our
top genes from barcoded RH-seq, with salient signal involving cell
cycle factors (Figure 3). A more focused analysis revealed an enrich-
ment, among our top barcoded RH-seq hits, for protein–protein
interactions with one another as tabulated in BioGRID (Oughtred
et al. 2021), to an extent beyond the null expectation (resampling
P¼ 0.014). We also implemented qualitative gene set enrichment
tests, which revealed that chromosome segregation and mitosis fac-
tors, although relatively few in number among our top barcoded
RH-seq hit loci, were significantly enriched relative to the genomic
null (Table 1). And, we developed a complementary, quantitative
test to screen GO terms for large allelic effect size (the impact on
thermotolerance when the S. cerevisiae allele of a given gene was
disrupted in the hybrid, as a difference from the analogous quantity
for the S. paradoxus allele; see Materials and methods). The top-scoring
term in this test was a mitosis gene group, encoding components of
the septin ring (GO:0000921; resampling P< 0.0001). Together, these
results suggest that our top thermotolerance gene hits share com-
monalities in function, most notably involving cell cycle factors.
This dovetails with previous phenotypic and genetic characteriza-
tion of yeast thermotolerance, including the failure of cell division
in heat-treated S. paradoxus (Weiss et al. 2018), and supports a model
in which S. cerevisiae acquired thermotolerance in part by resolving
the latter cell cycle defect.

The genetics of yeast thermotolerance likely also involves
mechanisms beside mitosis, given the known role of mitochon-
drial genes (Baker et al. 2019; Li et al. 2019) and those operating
during stationary phase (AlZaben et al. 2021). Indeed, functional-
genomic tests revealed enrichment for secretion genes and for
regulatory factors in our top RH-seq hits, although no such group
constituted a large proportion of the total hit list (Table 1).
Annotations in transcription and translation, mitochondrial
function, and signaling were also apparent among our top ther-
motolerance loci (Figure 2B). These trends are consistent with a
scenario in which evolution built the trait in S. cerevisiae by
tweaking an array of housekeeping mechanisms, beside those
that involve cell cycle machinery.

Evolutionary analysis of thermotolerance genes
We anticipated that sequence analyses of the genes we had
mapped to thermotolerance by barcoded RH-seq could shed light

on the evolutionary history of the trait. To explore this, we used a
phylogenetic approach in Saccharomyces sensu stricto. We first in-
ferred species-specific branch lengths in the phylogeny of each
gene in turn, and focused on the lineage leading to S. cerevisiae.
The distribution of branch lengths along this lineage among top
thermotolerance gene hits was not detectably different from that
of the genome as a whole, with the exception of two rapidly
evolving thermotolerance genes, TAF2 and BUL1, encoding a tran-
scription initiation factor and ubiquitin ligase adapter, respec-
tively (Supplementary Figure S5). Separately, we quantified
protein evolutionary rates in top hits from barcoded RH-seq. A
branch-site phylogenetic modeling approach (Yang 2007)
detected striking evidence for positive selection along the S. cere-
visiae lineage in the amino acid permease GNP1, the kinetochore
DNA binding factor CBF2, and the sister chromatid cohesion fac-
tor CTF18 (Figure 4). Interestingly, however, McDonald–Kreitman
tests (McDonald and Kreitman 1991) on population-genomic data
did not detect an overall excess of amino acid variation relative
to synonymous changes, at these three genes or any other bar-
coded RH-seq hit locus (Supplementary Table S10). Thus, even at
genes harboring individual codons with likely signatures of selec-
tion, we could not detect evidence for a scenario where S. cerevi-
siae stacked up a large number of unique amino acid changes, in
the evolution of thermotolerance. Together, however, our analy-
ses do highlight thermotolerance genes with marked signal for
derived alleles in S. cerevisiae at single codons or in the overall
DNA sequence—cases where species divergence is likely to be of
particularly strong phenotypic and evolutionary importance.

Discussion
RH-seq power and the interpretation of mapped
loci
In this work, we established the barcoded RH-seq method for ge-
netic dissection of trait variation between diverged lineages. RH-
seq falls into a family of recently developed methods that can
dissect natural trait variation across species barriers (Weiss and
Brem 2019). A chief distinction of RH-seq is its low cost and low
overhead, and the barcoding feature we add here cuts down labor
and cost even further, enabling high replication.

Our application to yeast thermotolerance serves as an infor-
mative model for the performance of barcoded RH-seq on highly
genetically complex traits. We pinpointed dozens of candidate
genes at which species-level variation contributes to growth at
high temperature. And yet we also observed evidence for a size-
able false negative rate among our barcoded RH-seq results, since
some validated thermotolerance loci from our earlier screen did
not appear among the hits here. Likewise, a separate barcoded
RH-seq mapping of yeast species’ differences in growth under
milder heat stress revealed little signal above the noise
(Supplementary Tables S6 and S8), likely reflecting very weak ge-
netic effects under this condition. We thus expect that, as would
be true for a classical linkage or association scan, the statistical
power of a barcoded RH-seq experiment is a function of signal-
to-noise, genetic complexity, and genetic effect size; and that
many thermotolerance loci remain to be identified even in our
very deep set of screen results from high-temperature growth.

By virtue of our focus on prothermotolerance alleles in S. cere-
visiae, our work has left open the functional and evolutionary ge-
nomics of loci at which the allele from S. cerevisiae instead
conferred worse thermotolerance than that of S. paradoxus, when
each in turn was uncovered in the hybrid. Our barcoded RH-seq
identified a number of such genes at high statistical significance.
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These loci may well reflect the accumulation of advantageous
alleles in S. paradoxus, or deleterious alleles in S. cerevisiae, by
drift, even as S. cerevisiae was under selection to improve the trait
in evolutionary history. Analogously, in linkage mapping results,
the effect of an allele in recombinant progeny from a cross often
does not conform to that expected from the respective parent’s
phenotype (Burke and Arnold 2001; Brem and Kruglyak 2005). It is

also possible that some such allelic effects are the product of epi-
static interactions between a locus of interest and the hybrid
background, and would be phenotypically buffered (and thus
evolutionarily irrelevant) in the purebred species. Molecular vali-
dation will be necessary to confirm the phenotypic impact of var-
iation at our mapped loci, and its potential dependence on
genetic background.

Figure 3 Interactions between thermotolerance loci. Each node represents a top hit gene from barcoded RH-seq mapping of thermotolerance. Each
chord represents an inferred interaction, taking into account physical and genetic interactions as well as pathway membership, from the STRING
database (Szklarczyk et al. 2021). Chords are weighted by the confidence of the inference of interactions; genes with higher numbers of interactions
among the hits are represented by warmer colored nodes.

Table 1 Functional enrichment among thermotolerance loci

GO term nobserved:nexpected Adjusted P Name Total n

Cellular component
GO: 0000775 5:1 0.0366 Chromosome, centromeric region 75
GO: 0000778 4:0 0.0256 Kinetochore 40

Molecular function
GO: 0000149 3:0 0.0701 SNARE binding 28
GO: 0008081 2:0 0.0256 Phosphoric diester hydrolase activity 11
GO: 0004843 2:0 0.0998 Thiol-dependent deubiquitinase 24

Biological process
GO: 0007165 3:0 0.0923 Signal transduction 59
GO: 0001403 3:0 0.0923 Invasive growth in response to glucose limitation 42
GO: 0046580 2:0 0.0256 Negative regulation of Ras protein signal transduction 6
GO: 0001934 2:0 0.0256 Positive regulation of protein phosphorylation 5
GO: 0016042 2:0 0.0923 Lipid catabolic process 26
GO: 0034087 2:0 0.0923 Establishment of mitotic sister chromatid cohesion 16

Each row with numerical data reports a GO term enriched for RH-seq hit genes. nobserved, the number of genes from among top hits from thermotolerance RH-seq
that were annotated with the term. nexpected, the number of genes annotated with the term in the same number of randomly chosen genes from the genome, as a
median across samples. Adjusted P, resampling-based significance of the enrichment after Benjamini–Hochberg correction.
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That said, we consider genes with prothermotolerance S. cere-
visiae alleles according to barcoded RH-seq to be strong candi-
dates for bona fide determinants of the trait from the wild in this
species. Indeed, earlier work has shown that for such genes
mapped by RH-seq in the hybrid, the advantage of S. cerevisiae
alleles is borne out in tests in purebred backgrounds (Weiss et al.
2018). Accordingly, we have shown here that as a cohort, bar-
coded RH-seq hits with advantageous S. cerevisiae alleles exhibit
functional and sequence-based attributes consistent with a role
in thermotolerance evolution in the wild.

Cellular and molecular mechanisms of
thermotolerance
Our top RH-seq hits revealed strong evidence for chromosome
segregation and other mitosis functions as a linchpin of S. cerevi-
siae thermotolerance. As a complement to earlier characteriza-
tion of six such genes (APC1, ESP1, DYN1, MYO1, CEP3, and SCC2)
(Weiss et al. 2018; Abrams et al. 2021), we now report seven new
thermotolerance determinants that function in cell division
(MEC1, MLH1, CTF13, CTF18, MCM21, CBF2, and MYO2). The
emerging picture is one in which the ancestor of modern-day
S. cerevisiae, faced with dysfunction of a slew of mitotic factors at
high temperature, acquired variants across the genome to shore
up their activity under these conditions. Under one model of
S. cerevisiae evolution, the particular niche to which this species
specialized was one of avid fermentation, producing (and resist-
ing) heat and ethanol at levels that eliminated its microbial com-
petitors (Goddard 2008; Salvadó et al. 2011). In such a scenario,
the maximum benefit could well accrue to the organism if it were
able to undergo rapid cell division under the challenging
conditions of its own making. Consistent with this notion,
another budding yeast, Hanseniaspora, which often dominates in
early fermentation prior to takeover by S. cerevisiae (Fleet 2003),
underwent evolutionary loss of much of the cell-cycle checkpoint

machinery, consistent with a strategy of accelerated growth at
any cost to outcompete other species (Steenwyk et al. 2019).

However, since our current hit list includes many genes
from other housekeeping pathways, from transcription/trans-
lation to transport and lipid metabolism, mitosis does not ap-
pear to be the whole mechanistic story for the thermotolerance
trait in S. cerevisiae. Indeed, other housekeeping factors also
showed up in our previous screen (Weiss et al. 2018) and in an
elegant complementary study of mitochondrial determinants
of thermotolerance divergence between yeast species (Baker
et al. 2019; Li et al. 2019). The panoply of functions detected
among our mapped loci conforms well to current models of the
mechanisms of thermotolerance, which invoke many essential
genes and housekeeping processes (Leuenberger et al. 2017).

The latter idea emerged largely from a proteomic study which
showed that thermotolerant organisms had higher thermostabil-
ity of essential proteins of many functions, across the tree of life
(Leuenberger et al. 2017). Were sequence changes that led to im-
proved protein stability a linchpin of thermotolerance evolution
in S. cerevisiae? Our data are consistent with a mechanistic role
for properties of the protein sequences of many thermotolerance
genes, in that variation in coding regions has come to the fore in
our sequence tests here and those of an earlier small-scale analy-
sis (Abrams et al. 2021). And interestingly, an experimental case
study of one of our mapped thermotolerance loci revealed no im-
pact on the trait from variation in the promoter, only from that in
the coding region (Abrams et al. 2021). We cannot rule out non-
coding determinants in some cases, especially given that a few
hundred genes exhibit temperature-dependent cis-regulatory
programs unique to S. cerevisiae (Tirosh et al. 2009; Li and Fay
2017). But if coding regions do hold much of the key to the mech-
anism of S. cerevisiae thermotolerance, they could well involve
variants that improve protein function and regulation alongside
folding/structure at high temperature. Overall, then, we envision
that nature could have used a variety of molecular mechanisms

229 239 249 259 269 279

S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. uvarum

D P A L G F S V AWL F C L QWL C V C P L E L V T A SM T I K YWT T S V N P D V F V V I F Y V L I V V I N V F G A KG
D P A L G F S V AWL F C L QWL C V C P L E L V T A SM T I K YWT V K V N A D V F V V I F Y V L I L V I N V F G A KG
D P A L G F S V AWL F C L QWL C V C P L E L V T A SM T I K YWT V K V D P D V F V V I F Y V L I I V I N V F G A KG
D P A VG F S V AWL F C L QWL C V C P L E L V T A SM T I K YWT V K V N A D V F V I I F Y V L I L V I N I F G A KG
D P A L G F S V AWV Y C L QWL C V C P L E L V T A SM T I K YWT V K V D P D V F V V I F Y V L I I V I N V F G A KGV

485 495 505 515 525 535

S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. uvarum

T I H S KG S P I L S F D I L PG F N K I Y K N K T N F Y S L L I E R P SQ L T F A S S H N P D T H P T Q KQ E S EG P L
T I H S KG S P I L S F D I L PG F N K I Y K N K T N F Y N L L I E R P SQ L A F S L S N N P D V H L PQ K A E S DG P S
T I P S KG S S I L P F D I L PG Y N K I Y K N R S N F Y N L L I E R P S E L V F SQ S N N S D V H P I Q K A E SQG L S
T I H S KG S P T L P F D I L PG F N K I Y K N K S N F Y N L L I E P P SQ L A L S S S N N P D A R F SQ R A E S EG P S
T I H S NG L D T L P F D I L PG F N K I Y K N E S N F C N L L I E P P SQ L T L S T T N N P D S R V SQ R A E S EG P SP

266 276 286 296 316 326

S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. uvarum

I MQ S D I K A T N K L L YGQ P D K K D K K R K K K R S K L L T R P I I C I C N N L Y A P S L E K L K P F C E I I A V K
I MQ N D I K A T N K L L F GQ P S K K D K K R K K K R S A L L T R P I I C I C N N L Y A P P L E K L K P F C E I V T V K
I I Q N D S K A T S K L L F GQ P D K K D K N H K R K R - A L L T R P I I C I C N N L Y A P S L E K L K P F C E I V A V K
I I QG DM K A T N K L L F GQ L D K K I K K R RG K S S A L L I R P I I C I C N N L Y A P S L E K L K P F C E I V A V K
I I Q N D I K A T N K L I F GQ P D K R N K K S K S R R S A L L I R P I I C I C N N L Y A P S L E K L K P F C E I V A V KK

A

B

C

Figure 4 Codons under positive selection in thermotolerance loci. Each panel shows the amino acid sequence context, across type strains of
Saccharomyces sensu stricto species, of codon(s) (red bar) inferred to be under positive selection along the S. cerevisiae lineage, in a hit gene from RH-seq
thermotolerance mapping. Darker shading indicates a higher % identity. (A) YDR508C/GNP1, (B) YGR140W/CBF2, and (C) YMR078C/CTF18.
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in building the trait, given the apparent complexity of the prob-
lem. Biochemical studies will be necessary to nail down exactly
how S. cerevisiae alleles advance thermotolerance in a given gene.

In summary, our data reveal a newly detailed picture of the
highly polygenic architecture for a natural trait divergence between
species. It is tempting to speculate that evolution may draw on a
vast number of variants across the genome to refine a trait over
millions of generations, making effects stronger, weaker, or less
pleiotropic, adding regulatory control, etc. (Orr 1998). If so, these
architectures may ultimately conform to the omnigenic model
(Boyle et al. 2017)—which was originally applied to human disease
genetics, but may also prove to be an apt description of ancient
adaptations.

Data availability
Sequencing data are deposited in the Sequence Read Archive un-
der the accession number PRJNA735401. Strains and plasmids are
available upon request. Custom scripts for the barcoded RH-seq
analysis are available at https://github.com/melanieabrams-pub/
RH-seq_with_barcoding. The authors affirm that all data neces-
sary for confirming the conclusions of the article are present
within the article, figures, and tables.

Supplementary material is available at figshare: https://doi.
org/10.25387/g3.16815100.
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