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Objective: To investigate the effects of mirror neuron theory-based visual feedback therapy (VFT) on
restoration of upper limb function of stroke patients and motor-related cortical function using functional
magnetic resonance imaging (fMRI).
Methods: Hemiplegic stroke patients were randomly divided into two groups: a VFT group and a control
(CTL) group. Sixteen patients in the VFT group received conventional rehabilitation (CR) and VFT for 8
weeks, while 15 patients in the CTL group received only CR. The Barthel Index (BI) was used to assess the
activities of daily living at baseline and the 8th week of the recovery training period. The FugleMeyer
assessment (FMA) scale, somatosensory evoked potential (SEP), and fMRI were used to evaluate the
recovery effect of the training therapies. The latencies and amplitudes of N9 and N20 were measured.
Before recovery training, fMRI was performed for all patients in the VFT and CTL groups. In addition, 17
patients (9 in the VFT group and 8 in the CTL group) underwent fMRI for follow-up 2 months after
treatment. Qualitative data were analyzed using the c2 test. The independent sample t-test was used to
compare normally distributed data among different groups, the paired sample t-test was used to
compare data between groups, and the non-parametric test was used to comparing data without normal
distribution among groups.
Results: There were no significant differences between the VFT and CTL group in all indexes. However,
after 8 weeks of recovery training, these indexes were all significantly improved (P < 0.05). As compared
with the CTL group, the FMA scores, BI, and N9/N20 latencies and amplitudes of SEP in the VFT group
were significantly improved (P < 0.05). Two months after recovery training, fMRI showed that the degree
of activation of the bilateral central anterior gyrus, parietal lobe, and auxiliary motor areas was signifi-
cantly higher in the VFT group than the CTL group (P < 0.05).
Conclusions: VFT based on mirror neuron theory is an effective approach to improve upper extremity
motor function and daily activity performance of stroke patients. The therapeutic mechanism promotes
motor relearning by activating the mirror neuron system and motor cortex. SEP amplitudes increased
only for patients who participated in visual feedback. VFT promotes sensory-motor plasticity and
behavioral changes in both the motor and sensory domains.
© 2020 Chinese Nursing Association. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
What is known?

� Upper extremity function loss is a major sequel of stroke. An
influential idea in neuroscience is that the sensory-motor sys-
tem is activated when visual feedback therapy(VFT). This idea
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has recently been extended to motor learning, in which obser-
vation results in sensory-motor plasticity and behavioral
changes in bothmotor and somatosensory domains. However, it
is unclear how the brain maps visual information onto motor
circuits for learning.
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What is new?

� This paper gives a mirror neuron theory-based visual feedback
therapy (VFT) is a therapy method for functional restoration of
upper extremity. Watching patients movement activates brain
networks involved in producing movement. VFT in motor
learning provide evidence that the somatosensory system,
especially primary somatosensory cortex, is involved in motor
learning by observing visual feedback.
1. Introduction

Stroke is a major cause of long-term disability in adults, as more
than 50% of surviving stroke patients have left upper limb
dysfunction [1]. Over the last decade, visual feedback therapy (VFT)
has been used as an optional or add-on therapy for the rehabili-
tation of patients with neurological disorders. VFT was developed
based on the discovery and role of the mirror neuron system in
motor learning to enhance the effects of upper limb training [2,3].
During VFT, patients are instructed to observe and imitate the ac-
tions portrayed in a video [4]. An increasing number of randomized
controlled trials and review studies have reported that VFT
improved upper limb function of stroke patients. However, the
treatment protocols and outcome measures differed among these
studies. Motor cortical activity can be modified by observing and
matching the actions performed, which is known as observational
learning, for both explicitly and implicitly acquiredmotor skills. The
specific mirror activation of the movement representations
included in a motor task is triggered as a result of actions both
observed and executed [5,6].

Some studies have identified VFT associations in the human
brain. Functional neuroimaging studies have demonstrated that
VFT activates a network of cortical regions, incorporating the su-
perior and inferior parietal cortices, the ventral premotor cortex,
primary motor cortex, dorsal premotor cortex, inferior frontal gy-
rus, and supplementary motor areas [7]. The potential mirror
mechanisms result in comparable activation of motor or motor-
related cortical networks when individuals are observing or con-
ducting an identical action. Activation of this neural system by VFT
enhances motor skill acquisition of the observer. A possible
mechanism of this skill-enhancing effect of VFTmight be long-term
potentiation, such as plasticity of the respective regions, which is
suggested to be promoted by task-related motor cortex activities
and excitability enhancements. However, it is unclear how the
brain maps visual information onto motor circuits for learnig. Here,
we test the idea that the somatosensory system and, specifically,
the primary somatosensory cortex (S1), plays a role in motor
learning by VFT [8]. S1 cortical processing was assessed before and
after observation by measuring somatosensory evoked potentials
(SEPs) associated with median nerve stimulation. SEP amplitudes
increased only for participants who observed learning. In this
study, the FugleMeyer assessment (FMA) scale, Barthel index (BI),
SEP, and functional magnetic resonance imaging (fMRI) were
employed to assess the effect of VFT on restoration of upper limb
function of stroke patients.

2. Methods

2.1. Study approval and design

The study cohort consisted of 46 stroke patients admitted to the
Rehabilitation Medical Center of the Second Affiliated Hospital of
Jiaxing University (Jiaxing City, Zhejiang Province, China) from July
2017 to June 2018 and randomly assigned to the control (CTL) group
(n ¼ 23) or the VFT group (n ¼ 23). The subjects and the rehabili-
tation specialist nurses were blinded to group assignment. Of these
46 patients, the data of 31 individuals (16 in the VFTgroup and 15 in
the CTL group) were included for statistical analysis (Fig. 1). There
were no statistically significant differences between the two groups
in regard to sex ratio, age, disease course, hemiplegia, and other
general clinical data (P > 0.05, Table 1).

The study protocol was approved by the Ethics Committee of the
Second Affiliated Hospital of Jiaxing University (approval no. jxey-
2017012) and conducted in accordance with the tenets of the
Declaration of Helsinki. Before inclusion, the researchers informed
all potential patients and their families about the details of this
study, including the treatment methods, possible therapeutic ef-
fects, and treatment risks. Informed consent was obtained from all
patients prior to participation in this study.

2.2. Inclusion and exclusion criteria

Patients who met the following criteria were included for
analysis: (1) definitive diagnosis of stroke by cranial computed
tomography or fMRI; (2) disease onset of <3 months, sitting
balance > grade 1, and hand and upper limb > Brunnstrom stage III;
(3) stable condition with unilateral limb hemiplegia; (4) Mini-
Mental State Examination score > 27 and ability to execute the
treatment instructions; (5) age of 40e75 years; and (6) signed
informed consent to voluntary participate in this study.

The exclusion criteria included: (1) transient ischemic attack,
venous sinus thrombosis, subarachnoid hemorrhage, progressive
stroke, reversible ischemic attack; (2) lesions of the brain stem,
bilateral cerebral hemisphere, and/or cerebellum; (3) osteoarthritis
and diseases affecting the ability to sit or the upper limbs; (4) se-
vere spasm of the upper limbs; (5) severe diseases of the heart,
lung, liver, or kidney; (6) inability to complete the tests; (7) visual
spatial disorders; (8) other serious diseases that could possibly
complicate the course of treatment; (9) poor compliance or failure
to complete the treatment protocol; and (10) self-withdrawal from
the study.

2.3. Research methods

All patients received conventional medical therapies for stroke
(i.e., nutrient intervention, improvement of microcirculation and
cerebral metabolism, control of blood pressure and sugar, etc.) and
traditional rehabilitation training (i.e., exercise and occupational
therapies). During an 8-week rehabilitation period, training was
conducted 3e4 h per day for 6 days per week. Training included the
Bobath and Brunnstrom approaches, proprioceptive neuromus-
cular facilitation techniques, physical exercise, participation in daily
activities, physiotherapy, occupational therapy, etc. Additionally,
patients received VFT (VFT group) or conventional medical thera-
pies and traditional rehabilitation training (CTL group). The specific
training of patients in the VFT group included the following:

(1) Before exercise training, the patient was seated 2 m in front
of a color television screen with the hemiparalateral arm
resting on a table (Figs. 2 and 3).

(2) Patients were instructed to imitate and practice actions
involved in activities of daily living (ADLs) as shown on the
television screen.

(3) The following 40 actions for ADLs were assessed in this
study: flexion/extension, abduction/adduction, pronation/
supination, and shrugging of the shoulders, flexion/exten-
sion of the elbows, flexion/extension and radial/ulnar devi-
ation of the wrists, flexion/extension of the thumbs, grasping
of larger/small balls, cubes, and cylinders, picking up coins,



Fig. 1. Flow chart of the cases included in this study.
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picking up and setting down identity cards, twisting of wide-
mouth and narrow-mouth bottle caps, picking up and setting
down keys and pens, operating a computer mouse, typing on
a keyboard, dialing a phone, grasping a spoon and chopsticks,
closing a zipper, buttoning a shirt, and putting on clothes.

(4) All of the actions were demonstrated by the same rehabili-
tation specialist nurse. Each action was observed from three
different angles (straight ahead, right above, and right
inside).

(5) The duration of each action video was about 50 s and con-
sisted of three different angles: forward (20 s), directly above
(15 s), and right inside (15 s). Each action at each angle was
recorded 2e3 times.
Table 1
General information of patients in the two groups.

Information VFT (n ¼ 16) CTL (n ¼ 15) t P

Gender, n[%]
Male 10(62.50%) 8(53.33%) e 0.722a

Female 6(37.50%) 7(46.67%)
Age, years, x± s 57.75 ± 16.75 56.89 ± 17.93 0.192 0.424
Course, x± s 30.67 ± 17.85 31.54 ± 18.79 0.184 0.427
Side of hemiplegia, n[%]
Left side 9(56.25%) 8(53.33%) e 1.000a

Right side 7(43.75%) 7(46.67%)
Stroke type, n[%]
Intracerebral hemorrhage 5(31.25%) 4(26.67%) e 1.000a

Cerebral infarction 11(68.75%) 11(73.33%)

Note: VFT, visual feedback therapy; CTL, control; a Fisher’s exact probability value.
(6) Each action portrayed in the video was scored from 1 to 30
with 1 being the easiest and 30 being the most difficult. The
six action videos with similar difficulty levels were grouped
together. There were five groups of videos. The first group
was the easiest and the fifth groupwas themost difficult. The
duration of each group of videos was about 5 min.

(7) The patients were instructed to watch the videos from the
first group and try to imitate the movements with the
paralyzed arm. Each patient was required to complete more
Fig. 2. Patient receiving visual feedback therapy.



Fig. 3. Patients receiving visual feedback therapy in a group.
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than four actions in one group independently prior to the
next group of actions.

The specific training session lasted for about 30 min per day for
6 days per week over a period of 8 weeks.

2.4. Assessment methods

All patients in this study were assessed by two specially trained
nurses and the average of two scores was used for analysis. The two
nurses who assessed the patients did not participate in the treat-
ment regimen. SEP was used by the staff of the Neuro-
electrophysiological Laboratory to detect sensory pathways.

2.4.1. The FugleMeyer assessment scale
The FugleMeyer assessment (FMA) scale was used to evaluate

synergistic movements of the flexors and extensors of the shoul-
ders, elbows, and wrists, wrist stability, joint action (e.g., hand grip,
finger pinching, finger pointing, etc.), coordination ability, and
speed. The FMA scale consists of 10major items and 33minor items
that are assigned a score of 0e2 points for a possible total of 66
points [9]. The grading criteria were as follows: a score of less than
50% of the total score (66 points) is considered as a severe move-
ment disorder (grade I); 50%e84% is considered as a significant
movement disorder (grade II); 85%e95% is considered as a mod-
erate movement disorder (grade III); and >96% of total score is
considered as mild dyskinesia (grade IV) [10,11]. Since this scale has
good reliability and validity, it is highly recommended for clinical
and scientific evaluation of post-stroke motor function [12].

2.4.2. Barthel Index (BI)
Barthel Index (BI) [13] was used to evaluate the ADLs of patients

before and 8 weeks after treatment. In 1989, the Canadian scholars
Shah and Vanchay weighted BI on the basis of unchanged evalua-
tion content in order to improve the defects of a few of the rank-
ings, rough classification, and low sensitivity. They divided the 10
evaluation items into five grades (i.e., total dependence, maximum,
medium, minimum, and total independence) and assigned each
grade a different score. In the same way, the scores of decoration
and bathing items ranged from 0 to 5; the scores of eating, dressing,
defecation control, urination control, toilet control, and the ability
to ascend and descend stairs was assigned a score of 0, 2, 5, 8, or l0;
the ability of transferring from a bed or chair and flat walking was
assigned a score of 0, 3, 8,12, or 15. The total possible score of the 10
items was 100 points. Independence was positively correlated with
a greater score. Detailed scoring rules were formulated according to
the degree of assistance required.
2.4.3. SEP
SEP was assessed using a Viking electromyography evoked po-

tential instrument (Nicolet Instrument Corporation, Madison, WI,
USA). The stimulating electrodes were placed on the transverse
stripes of the wrist at 2e3 cm and the median nerves were stim-
ulated. A square wave pulse stimulator was used for stimulation
(duration, 0.2 ms; frequency, 5 Hz). The stimulation intensity is
controlled with the thumb. A needle electrode was used to record
the latency and amplitude of the N9 and N20 hemispheres. The N9
wavewas recorded at the Erb point and the N20wavewas recorded
at the C3 and C4 points. Additionally, a reference electrode was
placed at the Fz point. Each stimulus was superimposed about 150
times, the duration of analysis was 100 ms, and each measurement
was repeated twice. The values were averaged for analysis. The test
was performed in a quiet environment.

2.5. fMRI

All patients underwent fMRI before treatment. After treatment,
nine patients in the VFT group and eight in the CTL group were re-
examined by fMRI, which was conducted by an experienced
technician.

A 1.5T superconducting twin-speedmagnetic resonance scanner
(SignaHDxt 1.5T; GE Healthcare, Chicago, IL, USA) was used for fMRI
examinations. Visual stimulation was performed using a SA-9900
brain function audiovisual stimulation system (Shenzhen Sinorad
Medical Electronics, Inc., Shenzhen, Guangdong Province, China).
The system can ensure the synchronization of the action observa-
tion stimulation task and scanning.

Video Stimulation Task for Motion Training: A healthy adult fe-
malewas photographed from the sidewhile grabbing and releasing a
small cylinderwith her right hand. Then, a 30-s videowas edited and
imported into SA-9900 Brain Function Visual and Audiovisual
Stimulation System for use as a stimulus event. The stimulation time
and rest time of a single stimulus event were 30 s. Each fMRI test
consisted of three stimulus events over a duration of 3 min and 12 s,
which included 12 s for preparation. In the resting state, the subjects
received no stimulus. In the stimulus state, the subjects received the
same stimulus events. During the stimulation time, a 30-s action
training video was presented. During the rest time, a white plus sign
(þ) on a black background was presented for 30 s.

Prior to entering the MRI room, all patients were informed what
to observe during the examination. Then, the subjects watched one
of the action training video in advance, which featured movements
of a healthy female, and then were instructed to attempt a slight
grasp with the hemiplegic hand. The subjects were instructed to
remain still in order to avoid head movements. After lying down on
the examination table, the subjects also practiced several grasp
movements to ensure that they fully understood the main points of
motion training, synchronized with the motion training video, and
were instructed to avoid head movements. During the MRI scan,
the subjects were told to lie quietly on the scanning bed with the
head fixed on a foam pad and to insert foam earplugs to reduce the
influence of noise. A mirror above the scanning coil displayed a
motion training video. The angle of the mirror was adjusted to
ensure that the participants could view the action training video
when lying down. During the MRI scan, the patient was instructed
to avoid movement, not speak, and to concentrate on the displayed
hand movements. The following parameters were used to obtain
T1-weighted sagittal images with three-dimensional sequences:
slice thickness, 1.2 mm; inversion angle, 13�; and field of view,
24 � 24. The scanning parameters for functional imaging with a
plane echo imaging sequence were as follows: repetition time,
3000 ms; echo time, 40 ms; deflection angle, 90�; layers, 40, image
field of view, 22 � 22; and matrix, 64 � 64.



Table 2
Physical function of the upper limbs and BI of the two groups (x± s).

Group FMA BI

VFT (n ¼ 16) Baseline 21.76 ± 6.89 42.75 ± 11.09
8th week 43.85 ± 6.42ab 72.33 ± 11.82ab

t 7.51 9.56
P 0.03 <0.001

CTL
(n ¼ 15)

Baseline 22.01 ± 5.67 43.78 ± 12.11
8th week 38.31 ± 7.36a 63.75 ± 10.45a

t 6.42 7.22
P 0.04 0.03

Note: BI, Barthel Index; VFT, visual feedback therapy; CTL, control; FMA, FugleMeyer
assessment; a means P < 0.05 compared with baseline data; b means P < 0.05
compared with data of CTL group.
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2.6. Statistical analysis

All statistical analyses were performed using SPSS Statistics for
Windows, version 17.0. (SPSS, Inc., Chicago, IL, USA). Quantitative
data were analyzed using the chi-square test and are presented as
the mean ± standard deviation. The independent sample t-test was
used to compare normally distributed data among different groups,
the paired sample t-test was used to compare data between groups,
and the non-parametric test was used to compare data without
normal distribution among different groups. A probability (P) value
of <0.05 was considered statistically significant. The fMRI images
were processed using Statistical Parametric Mapping software
(SPM8; The MathWorks, Inc., Natick, MA, USA). Prior to data pro-
cessing, the orientation of all data was adjusted. Then, head
alignment, high-resolution structural imaging, and average func-
tional image registration were performed. After registration, a
high-resolution structural image was segmented. All aligned
functional images were standardized to the Montreal Institute of
Neurology space using standardized parameters generated during
the segmentation process. The standardized voxel size was
3� 3� 3mm and the standard voxel size was 3� 3mm. The quasi-
functional image was smoothed in space. The single-sample t-test
was used for intra-group analysis of activated brain regions and
voxels, and the double-sample t-test was used for inter-group
Table 3
SEP results at baseline and 8th week in the two groups (x±s).

Group N9 latency
(ms）

N9 am

VFT
(n ¼ 16）

Hemiparalysis side
Baseline 10.29 ± 1.20 3.51 ±
8th week 9.03 ± 1.68ab 3.91 ±
t 6.51 7.49
P 0.04 0.03
Contralateral side
Baseline 9.44 ± 1.39 4.28 ±
8th week 9.37 ± 1.49 4.24 ±
t 2.22 4.62
P 0.38 0.10

CTL
（n ¼ 15）

Hemiparalysis side
Baseline 10.08 ± 1.45 2.70 ±
8th week 9.52 ± 1.54a 2.84 ±
t 8.43 3.42
P 0.03 0.21
Contralateral side
Baseline 9.44 ± 1.52 3.77 ±
8th week 9.27 ± 1.23 3.97 ±
t 1.32 2.62
P 0.83 0.23

Note: SEP, somatosensory evoked potential; VFT, visual feedback therapy; CTL, control; a m
CTL group.
analysis. Comparisons of the VFT and control groups before and
after activation of the brain areas were performed. A P value of
<0.001 and cluster of >5 voxels were considered as a significant
difference. The Fisher exact test was used to assess the occurrence
rate of activated areas in the main functional areas of the brain
between the two groups before and after treatment.

3. Results

3.1. Effect of VFT on upper limbs physical function score and BI

As shown in Table 2, there was no significant difference in the
FMA score of the upper limbs and BI before recovery training be-
tween the two groups (P > 0.05). After 8 weeks of recovery training,
the FMA score of the upper limbs and BI had been improved, as
compared to those before treatment in both groups (P < 0.05). After
8 weeks of treatment, the FMA score of the upper limbs and BI were
significantly better in the VFT group than the CTL group (P < 0.05).

3.2. SEP results

The SEP detection results of patients in the VFT and CTL group
are shown in Table 3. After 8 weeks of treatment, the latencies of N9
and N20 of the hemiparetic side of patients in the VFT group were
significantly shortened and the amplitudes were significantly
increased (P < 0.05) as compared to the baseline levels, although
there was no significant change in the N9 amplitude in week 4.
Meanwhile, in the CTL group, the latencies of N20 inweek 4 and N9
and N20 in week 8 were significantly shorter than the baseline
levels, while the amplitude of N20 in week 8 was significantly
increased over the baseline level (P < 0.05). The difference in la-
tency between N20 and pretreatment was statistically significant
(P < 0.05). In addition, after 8 weeks of treatment, there were no
significant differences in the latencies and amplitudes of N9 and
N20 of the contralateral side of patients in the VFT group (P > 0.05),
as compared with the baseline levels, with the exception of N20
latency in week 8, which was significantly higher than the baseline
level. Interestingly, similar changes were observed for the latencies
and amplitudes of N9 and N20 of the contralateral side of patients
in the CTL group (Fig. 4).
plitude(uv） N20 latency(ms） N20 amplitude(uv）

1.35 21.84 ± 2.23 1.46 ± 0.37
1.18ab 20.32 ± 2.57ab 2.08 ± 0.51ab

7.64 9.27
0.03 0.02

1.38 20.25 ± 1.72 2.23 ± 0.55
1.16 19.85 ± 1.53b 2.27 ± 0.58

5.96 5.67
0.57 0.06

1.41 21.11 ± 2.31 1.26 ± 0.40
1.47 20.51 ± 2.69a 1.51 ± 0.44b

7.35 2.17
0.03 0.42

1.64 20.10 ± 1.89 2.05 ± 0.47
1.52 19.77 ± 2.00 2.11 ± 0.50

4.69 3.76
0.47 0.36

eans P < 0.05 compared with baseline data; b means P < 0.05 compared with data of



Fig. 4. Comparison of SEPs before and after recovery training. SEP, somatosensory evoked potential; VFT, visual feedback therapy; CTL, control; TB, VFT group before; TA, VFT group
after; CB, CTL group before; CA, CTL group after.
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3.3. FAM score and BI at follow-up for 2 months after treatment
between 2 groups

In this study, a total of 17 patients (9 in the VFT group and 8 in
the CTL group) were followed-up for 2 months after treatment. As
shown in Table 4, the FMA score of the upper limbs and BI of both
groups at 2 months later were obviously higher than those at the
end of recovery training. Moreover, the FMA score and BI of the VFT
group were significantly improved at months 1 and 2 as compared
to those of the CTL group (P < 0.05).
3.4. fMRI imaging results

Brain activation of the two groups before and after treatment is
shown in Table 5. At followed-up 2 months after treatment, acti-
vation of the precentral gyrus, parietal lobe, and supplementary
motor area were obviously increased in the VFT group as compared
to the CTL group (P < 0.05). However, there were no significant
changes in brain activation in the CTL group as compared with the
baseline levels (P > 0.05).



Table 4
FMA score and BI in the two groups at the end of treatment and follow-up for two
months (x±s.

Group FMA BI

VFT
（n ¼ 9）

At the end of treatment 43.85 ± 6.42 72.21 ± 11.82
Follow-up for 2 months 50.11 ± 7.11ab 82.11 ± 9.93ab

t 8.31 9.41
P 0.01 0.01

CTL
（n ¼ 8）

At the end of treatment 38.31 ± 7.36 63.75 ± 10.45
Follow-up for 2 months 45.50 ± 7.52a 73.25 ± 11.57a

t 8.50 7.60
P 0.01 0.02

Note: FMA, FugleMeyer assessment; VFT, visual feedback therapy; CTL, control; a

means P < 0.05 compared with the baseline data; b means P < 0.05 compared with
the data of CTL group.
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4. Discussion

Themirror neuron is a special type of neuron. Human beings can
activate the same neurons either by performing certain actions
themselves, by observing the same activities of others, or by action
intentions [14,15]. The mirror neurons distributed in different brain
regions constitute a mirror neuron system, which provides an
"observation-execution matching mechanism" for action percep-
tion and execution [16,17]. Motion observation therapy based on
the mirror neuron theory can promote plasticity change and
functional reorganization of the brain through activation of the
mirror neuron system and accelerate restoration of upper limb
function of stroke patients [18,19]. Nojima et al. [20] reported that
this "observation-execution matching mechanism" plays a key role
in fundamental neurophysiological processes, such as motor un-
derstanding, kinematic learning, motor imagery, and motion
imitation, especially in the restoration of upper limb motor func-
tion after stroke. A fMRI study of stroke patients conducted by
Wang et al. [21] found high signals in the first motor area and
auxiliary motor area of the affected cerebral cortex in the motion
observation therapy group. Marangon et al. [22] and Liepert et al.
[23] used transcranial magnetic stimulation to perform VFT for
chronic and acute stroke patients, respectively, and found that VFT
can facilitate movement of the hemiparetic limb. Evoked potentials
have a positive effect on the recovery of hemiparesis of stroke pa-
tients [24]. Brunner et al. [25] showed that the activation of neurons
in the insular lobe, infratemporal gyrus, parietal lobule, and inferior
parietal lobule increased significantly during the course of obser-
vation therapy and task execution of stroke patients using fMRI.
Activated clusters were mostly observed in the thalamus, infra-
temporal gyrus, and motor-related areas. Most activation clusters
are observed in the thalamus and motor-related areas, such as the
premotor cortex, auxiliary motor area, and motor cortex. Likewise,
the results of the present study indicate that activation of the cer-
ebellum and premotor areas is closely related to the recovery of
arm motor function [26,27].
Table 5
Activation areas of brain in the two groups after treatment (n).

Group Time Precentral gyrus

VFT
（n ¼ 9）

At the end of treatment 2
Follow-up for 2 months 8ab

P 0.015

CTL
（n ¼ 8）

At the end of treatment 2
Follow-up for 2 months 4
P 0.608

Note: VFT, visual feedback therapy; CTL, control; a means P < 0.05 compared with the da
Fisher’s exact was used for data analysis.
In the present study, patients in the VFT group received con-
ventional action therapy based on the paramedic upper extremity
supplemented with VFT. After 8 weeks of training and 2 months of
follow-up, the FMA score, BI, and SEP indexes were improved,
suggesting that VFT can significantly improve upper limb function
after stroke. Assessments, such as FMA and the BI, are widely used
to assess motor function after stroke, as the reliability and validity
of these scales have been confirmed [28]. Our results suggest that
motor observation therapy has a significant effect on functional
restoration of the upper limbs of hemiplegic patients after stroke. In
addition to routine rehabilitation training, action observation
therapy was conducted. After 8 weeks of treatment, the results of
SEP analysis showed that the latency periods of N9 and N20 of the
affected limbs of the observation group were significantly shorter
than those of the CTL group, while the amplitudes of N9 and N20
were increased.

As a possible mechanism, increased excitability of the mirror
neuron system enhanced the excitability of brain regions related to
upper limbmotor function and the enhanced excitability of the brain
is linked to the mirror neuron system and other brain regions, which
leads to stronger plasticity of the motor regions that control the
upper limbs in stroke patients. At the same time, because of the
abundant visual training and daily life simulation training in the
course of treatment, motion observation therapy can fully stimulate
imitation, which is of great significance to inhibit the onset of disuse
syndrome and accelerate recovery of upper limbmotor function, and
effectively improve treatment efficiency [29,30]. This possible
mechanism has been verified by evoked potential and fMRI exami-
nations, as an improvement in evoked potential indicates restoration
of the somatosensory pathway in the VFT group, resulting in a better
prognosis [31,32]. S1 cortical processing before and after observation
was assessed by measuring SEPs associated with median nerve
stimulation. However, SEP amplitudes increased only for those who
participated in observed learning.Moreover, SEPs increasedmore for
participants who exhibited greater motor learning following obser-
vation. Taken together, these findings support the idea that motor
learning by observation relies on the functional plasticity in S1. We
propose that visual signals of the movements of others are mapped
onto motor circuits for learning via the somatosensory system
[33,34]. Meta-analysis results also revealed that the motor function
of the upper limbs at the onset of stroke is the most important factor
to predict the motor rehabilitation potential of the upper limbs, as
compared with other factors, such as age, sex, lesion location, SEP,
andmotor evoked potentials [35,36]. The results of the present study
showed that 8 weeks of VFT combined with conventional rehabili-
tation training resulted in shortened latencies and increased ampli-
tudes of N9 and N20 of the hemiparetic side. The results indicated
that the sensory pathway of the VFT group was recovered and limb
mobility and prognosis were further improved. Therefore, VFT is
conducive to exercise learning and has beneficial effects on para-
plegic limb function and ADL recovery [37,38].

Further analysis of the fMRI data of the two groups of patients in
Parietal lobe SMA Occipital lobe Basal ganglia

2 2 7 2
8ab 9ab 8 4
0.015 0.002 1.000 0.620

2 2 6 0
4 3 6 2
0.608 1.000 1.000 0.467

ta at the end of treatment; b means P < 0.05 compared with the data of CTL group;
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this study showed that excitability of the anterior central gyrus,
parietal lobe, and auxiliary motor areas of the brain increased
significantly in the VFT group during the course of action obser-
vation therapy. These areas were widely distributed in the mirror
neuron system, suggesting that action observation therapy may
improve neurological function of stroke patients and increase
excitability of the mirror neuron system. The fMRI technique used
in this study, as first proposed by Ogawa et al. [39,40], can be used
to assess cortical activation by analyzing changes in the levels of
oxygenated and deoxygenated hemoglobin in different areas of the
brain in real time.

In brief, this study aiming at stroke patients with upper ex-
tremity motor dysfunction action concluded that VFT based on
mirror neuron theory could improve motor function of the upper
extremity of stroke patients due to increased excitability in the
distribution of brain neurons in themirror image [40e42]. VFT is an
effective treatment strategy for patients and a new breakthrough in
the recovery of upper extremity function after stroke hemiplegia
[43e45]. However, there are also deficiencies in this study. First, the
sample size was relatively small, thus larger samples for follow-up
observations are needed. The fMRI image data collected and
analyzed in this study were limited and must be further confirmed
and supplemented in follow-up experiments. Second, in this study,
most patients underwent fMRI voluntarily, while some did not.
Thus, the patients examined by fMRI were not randomly selected.
Third, fMRI and motor evoked potentials analysis should be
included in follow-up studies and the underlying mechanisms
should be further explored to identify other factors that affect or
confirm the role of mirror neurons, which should be supplemented
by magnetoencephalography in future studies.
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