
Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License  
(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission 

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/1176934319853580

Evolutionary Bioinformatics
Volume 15: 1–8
© The Author(s) 2019
DOI: 10.1177/1176934319853580

Introduction
Temperature influences the biological processes of an organism 
which affect their survivability, but may also determine their 
distribution in the native ranges.1,2 Although climate change is 
often associated with increased temperature, cold shock cata-
strophically occurs in natural events such as thermocline tem-
perature variation, abnormal water movements, rapid 
precipitation, and rapid changes in seasonal temperatures.3,4 
Fish, like other ectotherms with body temperatures conform-
ing to the environmental temperatures, has metabolic processes 
highly dependent on water temperature.5 Notably, any changes 
in water temperature could lead to overproduction of reactive 
oxygen species (ROS) and cause oxidative stress to fish. Indeed, 
increased ROS level results in lipid peroxidation that poten-
tially damages cellular molecules.6 To neutralize the deleterious 
impact of ROS, fish uses their antioxidant defense mecha-
nisms, which can be either enzymatic or non-enzymatic.2 
Superoxide dismutase (SOD), catalase (CAT), peroxiredoxin 
(Prx), and glutathione peroxidase (GPx) are parts of the enzy-
matic mechanisms involved in the detoxification of ROS.4,7,8

Glutathione peroxidases represent an important enzyme 
family that protects the living organisms from oxidative dam-
age.8,9 This family comprises widespread proteins that can be 

found in most living organisms.10 Together with SOD, CAT, 
and Prx, GPx family is the key enzyme for the detoxification of 
ROS in aquatic organisms, including fish.4,11 Thermal stress 
may promote the generation of oxidative stress that results in 
the variation of GPx gene expression levels.2,12–14 The complex 
observation of GPx gene expression can be explained by simul-
taneous metabolic processes in fish in response to ROS eleva-
tion during temperature fluctuations.14,15

Glutathione peroxidase enzyme family is divided into 2 
groups: the selenium-dependent glutathione peroxidase 
(Se-GPx), which can reduce both organic and inorganic perox-
ides, and the selenium-independent glutathione peroxidase 
(non-Se-GPx), which can reduce only organic peroxide.16 In 
vertebrates, up to 8 distinct GPx isoforms were identified.17 
Among them, GPx1, GPx2, GPx3, and GPx4 are selenoproteins 
in mammal, whereas GPx6 is selenoprotein in human only.18 In 
the remaining isoforms, the selenocysteine residue (Sec) is 
replaced by cysteine.19 GPx1 (classical GPx) is first discovered 
and most abundantly expressed in the GPx family.20

Although numerous studies on the enzyme activity of GPx 
have been performed regarding thermal stress in fish, studies on 
the gene expression of GPx are limited.9 Fish species of the 
genus Tor, commonly referred to as the mahseers, are important 
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to most nations in the Asian region for biodiversity reasons and 
are also sought after as high-valued food and game fish.21 
However, overfishing has caused the reduction of Tor tambroides 
populations in the nature.22 Given the wide geographical distri-
bution of T tambroides (Himalayas to Southeast Asia)23 and its 
capability to survive in a large range of temperature conditions, 
the temperature tolerance of this species is of particular interest. 
Taking the possible role of GPx on oxidative stress into consid-
eration, the objectives of this study were to identify GPx 
sequence and quantify its expression levels in T tambroides under 
temperature transitions. cDNA and amino acid sequences of 
Tor-GPx1 were characterized and analyzed. Based on full GPx 
cDNA sequence, we measured the changes in Tor-GPx1 tran-
script using real-time polymerase chain reaction (PCR) to 
describe the effects of temperature transitions from 28°C to 2 
stress temperature points (11°C and 38°C) on the GPx gene 
expression.

Materials and Methods
Experimental design and sample collection

Fingerlings of T tambroides (17.7 ± 1.4 cm; 64.9 ± 16.2 g) were 
collected from the Freshwater Hatchery of School of Fisheries 
and Aquaculture Sciences, Universiti Malaysia Terengganu. All 
experimental procedures of fish were approved by the Ethics 
Committee of Institute of Tropical Aquaculture, Universiti 
Malaysia Terengganu. The fish were acclimatized in their 
respective tanks for a week at 28°C ± 0.5°C and fed to satiation 
with commercial pellet (TP-2, 28% crude protein, 3% crude 
fat). After a week of acclimation, fingerlings were randomly 
selected and distributed into 3 aquaria (250 L). Control tem-
perature was set at 28°C, whereas both upper and lower ther-
mal limits were achieved by increasing 1°C or decreasing 2°C 
per day from 28°C until the experimental fish displayed signs 
of extreme heat stress (fading body color, heavy breathing, 
gasping at the surface for air, and strange swimming behavior) 
and extreme cold stress (minimal activity, stop swimming, rest-
ing at the tank bottom, and increased respiration) during the 
thermal stress tests. The final experimented temperatures were 
11°C, 28°C, and 38°C. Throughout this study, the dissolved 
oxygen level and water pH were maintained at >5.0 mg L–1 
and 7.0 ± 0.5, respectively. After the thermal experiment, 8 fish 
from each tank were randomly collected and dissected. The 
liver and muscle tissues were preserved in RNAlater and stored 
at −20°C prior to total RNA extraction.

Total RNA extraction and molecular cloning of 
GPx cDNA

Total RNA was extracted from the liver and muscle tissues 
using TRIzol (Invitrogen, USA) following the manufacturer’s 
protocol. The concentration and quality of RNA were meas-
ured using ScanDrop 200 (Analytik Jena, Germany). cDNAs 
were synthesized from 1 µ g total RNA using the iScript 
Supermix cDNA Synthesis Kit (Bio-Rad, USA).

A fragment of GPx was amplified using degenerate primers 
by Choi et al.24 This fragment was used to design species-specific 
primers for rapid amplification of cDNA ends (RACE) by 
Primer3 program.25 To obtain full-length sequences of GPx gene 
for T tambroides, RACE was performed using the SMARTer 
RACE 5′/3′ Kit (Clontech Laboratories, USA). The reaction 
conditions were as follows: 94°C for 5 minutes, followed by 35 
cycles of 94°C for 30 seconds, 68°C for 1 minute, 72°C for 1 min-
ute, and final step of 72°C for 10 minutes. The amplicons were 
ligated into pRACE vectors and transformed into Stellar 
Competent Cells (Clontech Laboratories). Plasmid DNA of 
positive clones was then extracted and purified by Wizard Plus 
SV Minipreps DNA Purification System (Promega, USA). 
Three independent clones were sequenced by First BASE 
Laboratories Sdn Bhd (Malaysia) and showed the same result.

Sequence alignment and phylogenetic analysis

The open reading frame (ORF) and amino acid sequences of 
GPx1 were deduced from the full-length cDNA using Geneious 
v. 9.1.7.26 The obtained amino acid sequence was compared 
with other reported teleost GPx sequences available on National 
Center for Biotechnology Information (NCBI; www.ncbi.nlm.
nih.gov) using BLAST.27 GPx1 sequence motifs were identified 
by MEME Suite.28 Amino acid sequences of GPx1 to GPx4 
from various vertebrate species were used to construct phyloge-
netic tree (Supplemental Table S1). The sequences were aligned 
using Clustal W29 and ambiguous positions were excluded 
using Gblocks.30 MEGA X was used to determine the best evo-
lutionary model for the dataset.31 The best model was identified 
as Le and Gascuel32 (LG) model together with Gamma (G) 
distribution of rates. A phylogenetic tree of GPx isoforms was 
constructed using the maximum-likelihood (ML) method with 
the LG + G model and 10 000 bootstrap replicates in MEGA 
X.31 Bayesian tree was inferred using MrBayes v3.2.6.33 Four 
independent runs of Markov chain Monte Carlo (MCMC) 
were performed for 1 000 000 generations, and sampling was 
done every 1000 generations.

Expression of GPx1 gene

Real-time PCR was performed to quantify the expression of 
GPx1 gene in the liver and muscle tissues of T tambroides. 
Amplifications were conducted for triplicates of each sample 
using the SensiFAST SYBR lo-ROX kit following the stand-
ardized protocol (Bioline, USA) in a Mx3005P quantitative 
polymerase chain reaction (QPCR) system (Agilent technolo-
gies, USA). All GPx primers including endogenous control 
(β-actin gene), which were used in this study, are listed in Table 
1.24,34 The real-time PCR profile was 10 minutes at 95°C, fol-
lowed by 40 cycles of 10 seconds at 95°C, 20 seconds at 60°C 
and 10 seconds at 72°C. The specificity of primer amplification 
was confirmed by melting curve analysis (60°C-95°C) with a 
heating rate of 0.5°C/s. To test the amplification efficiency, a 
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standard curve was generated for both targeted and reference 
genes from a 10-fold serial dilution of cDNA.

Statistical analysis

The GPx1 gene expression levels of all samples were normal-
ized to the expression levels of β-actin gene of the same sam-
ples using Relative Expression Software Tool 384 v. 1 (REST).35 
The transcript levels of fish at 11°C and 38°C were compared 
and converted to relative fold changes with that at 28°C using 
the relative quantification method.

Results
Using the RACE procedure, the full-length cDNA of GPx1 
(GenBank accession no. KY984468) was successfully obtained 
from T tambroides (Figure 1). It included 899 bp in length with 
an ORF of 576 bp, 28 bp of the 5′-untranslated region (UTR), 
and 295 bp of the 3′-UTR. The ORF was predicted to encode 

for a protein of 191 amino acids. The ORF contained TGA 
codon at position 146 (40th codon) encoding for selenocyst-
eine instead of functioning as a stop codon.

The MEME analysis showed that there were 3 signature 
sequence motifs, each of which includes 50 conserved amino 
acid residues (Figure 2). Selenocysteine residue (U40) encoded 
by a stop codon (TGA) is found conserved among all the ana-
lyzed fish species. The Tor-GPx1 amino acid sequence was 
compared with other teleost fish available on GenBank. The 
results indicated that Tor-GPx1 shared 80% to 96% identity 
with the GPx sequences of other teleost fish species. Tor-GPx1 
was closest to GPx1b of Acrossocheilus fasciatus, a cyprinid with 
96% similarity (Table 2).

Maximum-likelihood and Bayesian inference (BI) methods 
generated phylogenetic trees with consistent topology. A com-
bined tree of GPx sequences from the two methods is presented 
in Figure 3. Accordingly, there were 3 clusters in the tree, includ-
ing GPx1/GPx2, GPx3, and GPx4, respectively. Tor-GPx1 

Table 1. Primer sequences used in this study.

PRIMER SEqUENCES (5′ - 3′) SOURCES

GPx degenerate primer F: TACACCCAGATGAACGAGC Choi et al24

R: AGGAACTTYTCAAAGTTCCAGGA

GPx1-3′ RACE F: CTGATCAGGGGCTCGTGGTTCTGGG This study

GPx1-5′ RACE R: GTTCGCACCGTTCACTTCCAGCTTCTC This study

GPx1 real-time PCR F: GTGACGACTCTGTGTCCTTG This study

R: AACCTTCTGCTGTATCTCTTGA

β-Actin F: GATGGACTCTGG TGATGGTGTGAC Xing et at.34

R: TTTCTCTTT CGG CTGTGGTGGTG

Abbreviations: F, forward; GPx, glutathione peroxidase; PCR, polymerase chain reaction; R, reverse; RACE, rapid amplification of cDNA ends.
β-actin acts as the reference gene.

Figure 1. Nucleotide sequence and deduced amino acid sequence of GPx1 cDNA cloned from Tor tambroides. The letters in boxes represent the start 

codon (ATG), selenocysteine codon (TGA), and the stop codon (TAA).
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formed a clade with other fish’s GPx1 isoforms in the GPx1/
GPx2 cluster. Particularly, Tor-GPx1 has a close relationship 
with GPx1 sequences of other cyprinid species, including 
Acrossocheilus fasciatus, Ctenopharyngodon idella, Gobiocypris rarus 
and Gobio gobio.

Figure 4 depicts the relative expression of GPx1 gene in T 
tambroides after exposure to 2 extreme thermal limits, 11°C 
and 38°C, respectively, compared with the control tempera-
ture (28°C). In general, Tor-GPx1 gene expression showed 
down-regulation at 11°C (Figure 4A). The Tor-GPx1 gene 
expression in the muscle of fish at 11°C decreased 1.49-fold 
compared with that at 28°C. Noticeably, Tor-GPx1 gene 

expression was significantly down-regulated in the liver tis-
sue. The expression level of Tor-GPx1 gene reduced 7.05-
fold for individuals at 11°C. In contrast, the gene expression 
pattern of the Tor-GPx1 gene at 38°C was inherently differ-
ent from that at 11°C (Figure 4B). There was no significant 
difference in Tor-GPx1 gene expression at 38°C in compari-
son with 28°C.

Discussion
In this study, degenerate primers followed by RACE-PCR 
were used to obtain the first cDNA sequence of GPx in T 
tambroides. Based on sequence comparison, Tor-GPx1 shows 

Figure 2. Comparison of deduced amino acid sequence of glutathione peroxidase 1 of Tor tambroides with other fishes using Geneious software. Three 

different boxes present 3 conserved motifs based on the MEME analysis. Selenocysteine (U40) is inserted in the box and labeled as Se. The positions of 

Glutamine 71 (q71), Tryptophan 153 (W153), Arginine 91 (R91), and Arginine 169 (R169) are included in the boxes.

Table 2. Sequence identity between Tor tambroides GPx1 and other fish GPxs.

SPECIES GENBANK ACCESSION NO. AMINO ACID LENGTH IDENTITY (%)

Acrossocheilus fasciatus AIM56842 191 96

Carassius auratus ssp. “Pengze” AGC50802 191 95

Ctenopharyngodon idella ACF39780 191 93

Danio rerio NP_001007282 191 93

Gobiocypris rarus AHA82628 191 92

Gobio gobio AEX57308 191 91

Takifugu obscurus ACR20471 191 83

Oncorhynchus mykiss CCG28019 190 83

Sparus aurata AFY97790 191 80

Thunnus orientalis CCG28019 189 80

Oreochromis niloticus NP_001266640 191 80

Abbreviation: GPx, glutathione peroxidase.
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high similarity with other GPx1 sequences in cyprinid species 
such as A fasciatus and Carassius auratus ssp. “Pengze.” Three 
signature sequence motifs with conservation of amino acid 
were identified (Figure 2). The conservation of amino acid 
revealed that the essential function of GPx may also be con-
served.36 Tor-GPx1 is a selenoprotein that includes a seleno-
cysteine amino acid residue. Like other fish, there are 
conserved amino acid residues in Tor-GPx1 which are related 
to the role of selenium.36 U40 (Selenocysteine 40) is a typical 
amino acid for selenoprotein and is known to be the catalytic 
site of the enzyme.16 In addition to U40, there are 4 other 
amino acid residues, which play a crucial role in the enzy-
matic function of GPx (Figure 2). The first two, Q71 
(Glutamine 71) and W153 (Tryptophan 153), are involved in 
the fixation of selenium.36,37 The remaining residues R91 and 

R169 (Arginine 91 and Arginine 169) are demonstrated with 
the contribution to direct the donor substrate (glutathione) 
toward the catalytic center.36–38

The homology analysis demonstrated that Tor-GPx1 is simi-
lar to GPx1 sequences in fish from GenBank data at different 
levels. As a member of the cyprinid family, Tor-GPx1 has high 
similarity with different species in this group. Our results are 
concordant with previous reports on GPx sequences of cyprinid 
fishes.16,36 A phylogenetic tree was built to investigate the evolu-
tionary relationship between Tor-GPx1 and other GPx isoforms 
in various vertebrate organisms (Figure 3). The tree indicated 
that there were 3 clusters: GPx1/GPx2, GPx3, and GPx4. 
Interestingly, GPx1 of birds and mammals was sister to the 
GPx2 clade. This result demonstrated a close relationship 
between GPx1 and GPx2 genes in these organisms. Our finding 

Figure 3. Phylogenetic relationships of Tor tambroides and various vertebrate species based on GPx amino acid sequences. The accession numbers of 

sequences used for phylogenetic analysis are provided in Supplemental Table S1. Bootstrap values > 50 (ML) and probabilities > 0.5 (BI) are shown at the 

nodes. BI indicates Bayesian inference; GPx, glutathione peroxidase; ML, maximum likelihood.

https://journals.sagepub.com/doi/suppl/10.1177/1176934319853580
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is in agreement with earlier studies by Malandrakis et al9 and 
Duan et  al39 based on the phylogenetic relationship of GPx 
sequences of gilthead sea bream (Sparus aurata) and ridgetail 
white prawn (Exopalaemon carinicauda) with that of different 
animals. As seen from the tree, Tor-GPx1 is closely related to 
other GPx1 sequences, especially those of fish species (Figure 3). 
Tor-GPx1 formed a clade with other cyprinid species, showing 
the conservative character of GPx.9 Previous studies reported 
that there are 2 variants of GPx1 in fish species: GPx1a and 
GPx1b.19,36,40 These 2 variants are found in many fish species of 
various orders. Protein sequences of 2 variants show high simi-
larity, up to 77.5% in Larimichthys crocea40 and 81.6% in A fascia-
tus.36 High similarity between GPx1a and GPx1b may indicate 
their similar structure and function.36 Two variants may appear 
through a duplication that occurs early together with the evolu-
tionary process of fish.19,40

The identification of Tor-GPx1 sequences allowed us to 
study its expression under thermal stress. It is well docu-
mented that temperature stress induced ROS production 
that resulted intracellular oxidative stress which triggers 
antioxidant defense activation as consequences.41 GPxs 
belong to the family of antioxidant enzymes, which catalyzes 
the reduction of hydrogen peroxide and organic hydroperox-
ides.19 It is reported that GPxs are fairly abundant, widely 
distributed, and expressed in different organs of fish.36 In 
this study, GPx1 gene expression levels in the liver and mus-
cle of T tambroides were investigated within temperature 
transition. The results did not detect a significant difference 
in Tor-GPx1 gene expression at an extremely high tempera-
ture compared with the control temperature. Several studies 
have been performed to investigate responses of GPx in 
fishes to the changes of water temperature. Under elevated 
temperatures, GPx expression levels in fishes may increase42,43 
or decrease.14,44 Effects of temperature increase on cellular 

mechanisms are still poorly understood, especially those 
related to redox chemistry.45,46 It is reported that elevated 
temperature results in enhanced oxygen consumption and 
ROS production.42 In this case, fish need to produce more 
antioxidant enzymes like GPx to prevent oxidative dam-
ages.47 On the other hand, a decrease in mitochondrial ROS 
production (mitochondria are the major sites of ROS pro-
duction) as a consequence of reduced overall metabolism 
under thermal stress may result in lower GPx levels.14,15 The 
observation of dissimilar GPx levels among species and tis-
sues under thermal stress demonstrated that GPx expression 
is tissue specific and species specific.13 In the same fish spe-
cies, acute heat stress and long-term heat stress may show 
different effects on GPx gene expression. GPx levels in bald 
notothen (Pagothenia borchgrevinki) were unchanged after 
fish individuals were exposed to a higher temperature for 
12 hours, but increased after being exposed to the same tem-
perature for 3 weeks.45 The indifferences of GPx gene expres-
sion in T tambroides under a high temperature compared 
with control may reflect a similar trend found by Almroth 
et al45 in which GPx gene expression depends on the acute or 
long-term thermal stress.

Compared with heat shock, fewer studies on the response of 
antioxidant enzymes have been conducted under cold shock.4 In 
this study, we observed a down-regulation of Tor-GPx1 gene 
expression when water temperature reduced to 11°C. Our finding 
corresponds with the reduction of GPx4 gene expression found in 
common carp (Cyprinus carpio).48 Similar to heat shock, GPx gene 
expression in fish exposed to cold shock may depend on organs 
and exposure time. It is reported that GPx levels in the liver and 
gill of zebrafish (Danio rerio) transferred from 28°C to 11°C 
showed no changes after 1 hour, but their levels were increased 
after 6 hours.4 However, GPx level in the brain was down-regu-
lated at both 1 and 6 hours.4 All these observations elucidated the 

Figure 4. Relative expression of glutathione peroxidase 1 gene (Tor-GPx1) in different tissues of stressed fish and control fish. The RNA expression 

values of fish exposed to (A) 11°C and (B) 38°C are presented relative to that of control fish at 28°C. Asterisks indicate statistical significance (P < .05). 

GPx indicates glutathione peroxidase.
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fact that cold temperature is known to reduce physical activities 
and metabolic rate in fish.13 A decrease in the metabolic rate dur-
ing cold temperature is reported to reduce the expression of anti-
oxidant genes, including GPx.41,47,49 As a consequence, this results 
in a lower GPx level in fish exposed to cold temperature.

Dissimilar patterns in responses to temperature changes 
were not only observed in GPx, but also found in other antioxi-
dant genes.12,13,50 The inconsistent results in previous studies 
have been found in different tissues, fish species, temperature 
acclimation regimes, and/or assays used to assess oxidative 
stress.12,50 When transferring golden fish (C auratus) from cold 
to warm temperatures, increases and decreases in oxidative 
markers were dependent on the tissues.51 Moreover, it is 
reported that multiple oxidative stress indicators were dis-
turbed as fishes were exposed to hot temperature, but the anti-
oxidant capacity was impacted only to some extent.15,46 To 
accurately evaluate the oxidative stress under temperature 
changes, both ROS production and responses of antioxidant 
enzymes should be taken into consideration.

Conclusions
In this study, we identified full-length GPx1 cDNA and 
assessed the expression patterns of GPx1 mRNA in the liver 
and muscle of T tambroides in response to temperature 
changes. Our phylogenetic analysis demonstrated that Tor-
GPx1 formed a cluster and had high similarities with other 
GPx1 sequences from vertebrate species, particularly GPxs of 
other fishes. Tor-GPx1 contained conserved amino acid resi-
dues to function as an antioxidant selenoprotein. The levels of 
Tor-GPx gene expression showed a downward trend under 
cold temperature (11°C) and no changes under high tempera-
ture (38°C) when compared with the control temperature 
(28°C). This finding suggests that Tor-GPx1 gene expression 
was influenced by cold temperature stress which resulted in a 
reduced metabolic rate.
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