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A B S T R A C T

Background

Langerhans cell histiocytosis (LCH) is a rare clonal granulomatous disease that affects mainly
children. LCH can involve various tissues such as bone, skin, lung, bone marrow, lymph nodes,
and the central nervous system, and is frequently responsible for functional sequelae. The
pathophysiology of LCH is unclear, but the uncontrolled proliferation of Langerhans cells (LCs)
is believed to be the primary event in the formation of granulomas. The present study was
designed to further investigate the nature of proliferating cells and the immune mechanisms
involved in the LCH granulomas.

Methods and Findings

Biopsies (n¼ 24) and/or blood samples (n¼ 25) from 40 patients aged 0.25 to 13 y (mean 7.8
y), were studied to identify cells that proliferate in blood and granulomas. We found that the
proliferating index of LCs was low (;1.9%), and we did not observe expansion of a monocyte
or dendritic cell compartment in patients. We found that LCH lesions were a site of active
inflammation, tissue remodeling, and neo-angiogenesis, and the majority of proliferating cells
were endothelial cells, fibroblasts, and polyclonal T lymphocytes. Within granulomas,
interleukin 10 was abundant, LCs expressed the TNF receptor family member RANK, and
CD4þ CD25high FoxP3high regulatory T cells (T-regs) represented 20% of T cells, and were found
in close contact with LCs. FoxP3þ T-regs were also expanded compared to controls, in the
blood of LCH patients with active disease, among whom seven out of seven tested exhibited an
impaired skin delayed-type hypersensitivity response. In contrast, the number of blood T-regs
were normal after remission of LCH.

Conclusions

These findings indicate that LC accumulation in LCH results from survival rather than
uncontrolled proliferation, and is associated with the expansion of T-regs. These data suggest
that LCs may be involved in the expansion of T-regs in vivo, resulting in the failure of the host
immune system to eliminate LCH cells. Thus T-regs could be a therapeutic target in LCH.

The Editors’ Summary of this article follows the references.

PLoS Medicine | www.plosmedicine.org August 2007 | Volume 4 | Issue 8 | e2531374

PLoSMEDICINE



Introduction

Langerhans cell histiocytosis (LCH), also known as histio-
cytosis X, affects mainly young children with a peak incidence
between the ages of 1 and 3 y, and features granulomas
consisting of macrophages, multinucleated giant cells, lym-
phocytes, eosinophils, and CD1aþ Langerinþ Langerhans-like
cells, accumulating within various tissues such as bone, skin,
lung, liver, bone marrow, lymph nodes, the gastrointestinal
tract, and the central nervous system [1–6]. The clinical
course of LCH is remarkably varied, ranging from lesions that
spontaneously resolve, to a chronic disease, or even to a
widespread and sometimes lethal disease [1,7,8]. The patho-
physiology of LCH remains enigmatic, but seems to be
associated with abnormalities in the biology of Langerhans
cells (LCs) and macrophages [5,9,10]. Genetic factors are
suspected because of the existence of familial cases [11–13],
suggesting that predisposing mutations could be present at
least in some patients. Serum cytokines that may promote the
growth of dendritic cells (DCs), such as GM-CSF (granulocyte
macrophage-colony stimulating factor), M-CSF (macrophage-
colony stimulating factor), and FLT3-L (FMS-like tyrosin
kinase 3 ligand), have been shown to be increased in the
blood of patients with the more severe form of the disease
[9,14]. LCs have been shown to be clonal by X-inactivation
studies [15,16] (reviewed in [10,17]), and proliferation of LCs
has been generally proposed as the mechanism responsible
for LC accumulation in most [3,16,18,19], but not all [20]
studies. Cytogenetic abnormalities such as loss of hetero-
zygosity of tumor suppressor genes and chromosomal
instability have also been described as case reports [21–23],
although no recurrent molecular abnormality has been yet
characterized. Active viral infections such as herpesvirus
infections may worsen the disease [24]; a possible causative
role of herpesviruses in LCH has been debated [25–28].

LCs are members of the DC family, which triggers and
shapes immune responses, and the pathophysiology of LCH is
likely to involve immune mechanisms (reviewed in [10,17]).
We have previously reported that LCs found in LCH
granulomas were functional semi-mature LCs, able to regulate
T cell proliferation [5]. The present study was designed to
further investigate the nature of proliferating cells and the
immune mechanisms involved in LCH granulomas.

Materials and Methods

Patients
Fresh and/or frozen biopsies from granulomas, and/or

peripheral blood specimens from 40 pediatric patients with
LCH (Table 1) were obtained after written, witnessed,
informed consent was obtained from the parents of all
patients. All patients were included in the French LCH
registry and the research protocol was approved by the ethics
committee of the Centre Hospitalier Universitaire de Nantes,
France. The inclusion criteria as well as the definition of the
organs involved for the French nationwide LCH survey have
been described elsewhere [1]. The status of the disease and
time of specimen collection relative to treatments are given in
the Table 1. LCH tissues (patients 1–12, 29, and 35–37) and
peripheral blood mononuclear cells (PBMCs) (patients 3 and
12–34) were obtained at the time of diagnosis and before
treatment except otherwise indicated. To study the tuberculin

PPD-skin reaction in patients previously vaccinated with BCG
(Table 2), 10 TU of PPD (Pasteur-Merieux, http://www.
sanofipasteur.com/) was injected intradermally in the forearm
of patients. The result was read 3 d later and any induration of
6 mm or more, when read across the forearm, was regarded as
a positive result [29], an induration of 4–5.9 mm as a weak
positive, and an induration less than 4 mm as a PPD-negative.
Biopsies and peripheral blood specimens were also

obtained from four pediatric patients with sinus hyperplasia
with massive lymphadenopathy (SHML, or Rosai-Dorfman
Disease) after written, witnessed, informed consent was
obtained from the parents of all patients.

Statistical Methods
Stata Software (http://www.stata.com) version 8 was used for

statistical analyses. Quantitative data were studied by the
Kruskal-Wallis test. All tests were two-tailed. p-Values of less
than 0.05 were considered to indicate statistical significance.

Immunohistochemistry
For proliferation studies, paraffin-embedded and cryostat

sections of biopsy specimens were examined by immunohis-
tochemistry. Cryostats sections were fixed with acetone
before staining. Paraffin-embedded sections were heat-
treated in a target retrieval solution (pH 6, Dako, http://
www.dako.com) for 20 min at 95 8C.
Double staining was performed with the double stain

EnVision kit (Dako) according to the manufacturer’s instruc-
tions. Sections were labeled with mouse anti-Ki-67 (clone
MIB-1 1:100, Dako) revealed with horseradish peroxidase
anti-mouse antibody and diaminobenzidine substrate and
then labeled with mouse anti-CD1a (clone O10 1:2, Beckman
Coulter Immunotech, http://www.beckmancoulter.com/), rab-
bit polyclonal anti-CD3 (A0452 1:100, Dako), mouse anti-
CD68 (clone KP1 1:3,000, Dako), or mouse anti_CD20 (L26
1:200, Dako), revealed by alkaline phosphatase anti-mouse/
rabbit antibody and Fast blue substrate. Paraffin-embedded
sections were labeled with mouse anti-CD1a, and detected
with horseradish peroxidase anti-mouse antibody and dia-
minobenzidine substrate, then labeled with mouse anti-
RANK (clone 80707 1:500, R&D Systems, http://www.
rndsystems.com/) and detected by alkaline phosphatase anti-
mouse/rabbit antibody and Fast blue substrate. For each
biopsy a minimum of 100 cells were counted from at least
three distinct microscopic fields randomly chosen and
photographed.
Sections of formalin-fixed paraffin embedded biopsy were

examined by immunohistochemistry for expression of FoxP3
using a mouse monoclonal anti-human FoxP3 antibody (clone
236A/E7 1:40, #Ab20034, Abcam, http://www.abcam.com),
endothelial cell markers with mouse anti-CD34 (clone Qbend
10 1:800, Beckman Coulter Immunotech) and mouse anti-
CD31 (clone JC70A 1:20, Dako), and TRANCE with mouse
anti-RANKL (clone 70525, R&D Systems). Primary antibodies
were revealed with a biotinylated secondary antibody,
streptavidin peroxidase and diaminobenzidine as a substrate
(ChemMate detection kit, Dako) [5]. Sections were then
counterstained with hematoxylin.

Immunofluorescence
For staining of FoxP3 on cryostat sections, sections were

incubated with a polyclonal rabbit anti-FoxP3 1:100
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(Ab10563, lot 79423, Abcam, Cambridge, UK) for 1 h at 37 8C.
Secondary antibodies were biotinylated donkey anti-rabbit
(Jackson Immunoresearch, http://www.jacksonimmuno.com/)
and Alexa 488-conjugated streptavidin. For CD3, CD25, Ki-
67, and CD1a staining, mouse anti-CD3 (clone UCHT1 1:50,
Dako), mouse anti-CD25 (clone 2A3 1:20, BD Biosciences),
mouse anti-Ki-67 (clone MIB-1 1:100, Dako), and mouse anti-
CD1a (clone O10 1:2, Beckman Coulter Immunotech) were
revealed by Cy3 anti-mouse antibodies. DAPI or TOPRO-3
was used to stain nuclei. DAPI-stained sections were
examined with an inverted fluorescence microscope (Zeiss)
coupled to a Coolsnap ES video camera (Roper Scientific,
http://www.roperscientific.com/), and the images were ana-
lyzed using Meta Morph software (Universal Imaging, http://
www.photomet.co.uk/). TOPRO-3-stained sections were ex-
amined with an Axiovert 200 attached to LSM 510 confocal
system was use to visualize TOPRO-3. For each biopsy a

minimum of 100 cells were counted from three to five distinct
microscopic fields randomly chosen and photographed.

Isolation of Mononuclear Cells from Fresh Biopsies
Sterile tissues from eosinophilic granulomas were har-

vested in RPMI and digested in the presence of collagenase D
(1 mg/ml) for 45 min at 37 8C. Cell suspensions were then
passed through a 70 lm cell strainer, and mononuclear cells
were separated over Ficoll-Paque Plus (Amersham, http://
www5.amershambiosciences.com/).

Flow Cytometry
Mononuclear cells either from fresh biopsies (patients 11,

12, and 30) or peripheral blood (patients 3 and 12–34) were
stained with antibodies against CD3 (pacific blue, clone
UCHT1) from Dako; CD4 (FITC, clone Leu 3a þ 3b), CD25
(PE, clone 2A3), CD8 (APC, clone RPA-T8), HLA-DR

Table 1. Patient Characteristics

Patient Number Age at Diagnosis (Years) Disease Stage at Diagnosis Treatment before Sample Treatment after Sample

1 3.5 UFB None (naı̈ve) None

2 1 MSD None (naı̈ve) CC, CTC

3 7.5 UFB Nonea (naı̈ve) None

4 1.5 MFB None (naı̈ve) CC, CTC

5 7.5 MFB None (naı̈ve) Surgery

6 5.3 MFB None (naı̈ve) CC, CTC

7 0.25 MSD None (naı̈ve) CC, CTC

8 0.5 MSD CC, CTC CC, CTC, BM graft

9 10.5 UFB None (naı̈ve) None

10 10.5 UFB None (naı̈ve) None

11 9 UFB None (naı̈ve) NSAID

12 13 UFB Nonea (naı̈ve) CC, CTC

13 1.6 MSD CC, CTC CC

14 0.4 SK None (naı̈ve) Caryolysinb

15 0.6 MSD None (naı̈ve) CC, CTC

16 5.8 SK Nonec (naı̈ve) Caryolysinb

17 1 MFB None (naı̈ve) CC, CTC

18 3.5 UFB None (naı̈ve) None

19 2.9 UFB None (naı̈ve) None

20 2.25 SK Nonec (naı̈ve) Caryolysinb

21 10.5 UFB None (naı̈ve) None

22 1.4 LN None (naı̈ve) None

23 3.5 UFB None (naı̈ve) NSAID

24 11.4 MSD CC CC

25 1.5 UFB None (naı̈ve) None

26 0.9 UFB, SK None (relapse) Caryolysinb

27 2.33 MSD None (relapse) Retinoic acid

28 2.4 MSD None (remission) None

29 0.75 UFB None (naı̈ve) None

30 0.25 MSD CC CC

31 1.8 UFB, SK CC, CTC CC

32 0.6 MFB, SK CC CC

33 3.4 UFB None (remission) None

34 0.5 MSD None (remission) None

35 4.0 MFB CC CC

36 2.83 UFB None (naı̈ve) CC, CTC

37 3.75 UFB CC, CTC CC, CTC

38 10 UFB NSAID CC, CTC

39 13 MFB None (naı̈ve) CC

40 1.41 UFB None (naı̈ve) CC

aBiopsy was obtained at diagnosis, but blood sample was obtained after remission or under treatment.
bTopical caryolysin.
cBlood samples were obtained before and after treatment.
UFB, unifocal bone disease; CC, cytotoxic chemotherapy; CTC, corticosteroids; LN, lymph node; MFB: multifocal bone disease; MSD, multisystem disease; NSAID, nonsteroidal anti-
inflammatory drugs; SK, skin.
doi:10.1371/journal.pmed.0040253.t001
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(biotinylated, clone L243), CD14 (PE, clone M5E2), CD16 (PE/
FITC, clone 3G8), CD11c (APC, clone S-HCL-3), from Becton
Dickinson; CD20 (PE, clone 2H7), from eBioscience (http://
www.ebioscience.com/); CD123 (APC, cloneAC145), BDCA-1
(FITC, cloneAD5-8E7), BDCA-2 (FITC, clone AC144), from
Miltenyi Biotech (http://www.miltenyibiotec.com/). Lineage
negative (lin�) antibodies to detect myeloid DCs (MDCs)
included PE-CD19, PE-CD16, and PE-CD14. Cascade Blue-
streptavidin from Molecular Probes/Invitrogen (http://probes.
invitrogen.com/) stained cells marked with biotinylated anti-
bodies.

APC anti-human FoxP3 (clone PCH101) staining kit from
eBioscience was used after CD3, CD4, and CD25 cell surface
staining according to the manufacturers instructions to
detect regulatory T cells (T-regs).

Stained cells were acquired with a three-laser, nine-color
CyanADP flow cytometer and analyzed with Summit 4.1
software (Dako).

T Cell Isolation
T cells were isolated either from biopsies or from PBMCs

using CD3þ selection (Miltenyi Biotec) according to the
manufacturer’s instructions. CD3þ cell purity was controlled
by flow cytometry and was .95%. For stimulation with
soluble OKT3, CD14þ monocytes were positively selected
from the same healthy blood donor using CD14-microbeads
(Miltenyi Biotec) with a high purity (.95%). CD4þ CD25hi

and CD4þ CD25lo T cells were purified from LCH peripheral
blood using the ‘‘CD4þ CD25þ regulatory T cell isolation kit’’
(Miltenyi Biotec). Each fraction’s purity was over 75%.

T Cell Proliferation Assay
CD3þ T cells were purified from fresh biopsies (LCH T

cells) and from healthy blood donors (donor T cells).
Triplicate 10,000 T cells were seeded in round bottom 96-
well plate in RPMI 10% AB serum either alone or mixed at
1:1 and 2:1 LCH T cell-to-donor T cell ratio and were
stimulated with soluble OKT3 (50 ng/ml) in the presence of
CD14þ cells (CD3:CD14 ratio is 1:5). The regulatory capacity
of LCH T cells was based on the resulting T cell proliferation
measured by the incorporation of (3H)-thymidine (3HTdR)
per well added during the last 18 h of a 3- to 5-d culture. Cells

were harvested using a Skatron harvester (Lier, Norway) and
counted in a Tri-carb 2100TR liquid scintillation analyzer
(Packard, http://www.packardbioscience.com/).

T Cell Clonality
T cell receptor gamma (TCRG) rearrangement was analyzed on

the DNA extracted from four frozen tumors. 100 ng of DNA
was amplified in two different mixes using one set of three Jg
fluorescent primers (Jg1/2–6FAM/JgP-HEX/JgP1/2-TET) and
either VgfI/Vg10 primers or Vg9/Vg11 primers [30]. Identi-
fication of Vg and Jg utilization was, respectively, based on
PCR product size and fluorescent aspect after Genescan
analysis on a 310 automated DNA fragment analyzer (PE
Biosystems, http://www.appliedbiosystems.com/). All PCRs
were also analyzed by heteroduplex nondenaturing 8%
polyacrylamide gel electrophoresis and ethidium bromide
staining (EB PAGE). Cases were considered to be TCRG clonal
if either multiplex reaction demonstrated at least one
discrete band. This strategy provided a reproducible sensi-
tivity of 1%–5%

IL10 Transcript Quantification
DNA and RNA were successively extracted from frozen

biopsies using AllPrep DNA/RNA mini kit (Qiagen, http://
www.qiagen.com/). Cell number per biopsy was assessed in a
real-time PCR assay by determining the number of beta-
globin gene copies from extracted DNA (RTQ-PCR beta-
globin kit, Roche, http://www.roche.com/). Complementary
DNA was synthesized using random primers and Superscript-
III. Interleukin (IL) 10 and 18S cDNA were amplified in the
same run with IL10 forward primer (59- GGCGCTGTCATC-
GATTTCTT-39) and IL10 reverse primer (59- GGCATTCTT-
CACCTGCTCCA-39) , or 18S forward primer (5 9-
AACGGCTACCACATCCAAGG-39) and 18S reverse primer
(59- GGGAGTGGGTAATTTGCGC-39) with Power SYBR
Green PCR master mix using a 7300 Real Time PCR System
(Applied Biosystems). cDNA from unstimulated or LPS-
stimulated PBMCs of healthy donors were used as positive
controls. The quantity of IL10 transcripts was calculated
according to IL10 Ct and 18S Ct for each biopsy. Relative
light units (RLUs) were determined by the IL10 biopsy-to-
IL10 unstimulated PBMC ratio. Since beta-globin real-time
PCR indicated an inconstant cell number per biopsy, RLUs
were then adjusted to 104 cells. The experiment was run twice
with the same samples, and gave similar results.

Results

Active Neo-Angiogenesis, Tissue Remodeling, and T Cell
Proliferation in LCH Granulomas
The human Ki-67 protein is present in nuclei during all

active phases of the cell cycle (late G1, S, G2, and mitosis) but
is absent from resting cells (G0) [31]. Double staining for the
detection of cell surface antigens and Ki-67 is an excellent
tool to quantify the growth fraction of a given cell population
in normal tissues and in tumors composed of mixed cell
populations [32,33]. We performed immunostaining with
antibodies against Ki-67, the LC antigen CD1a, CD68 (which
is also expressed by macrophages), the T cell antigen CD3,
and the B cell antigen CD20 in tissue samples from a
retrospective series of 16 patients with various clinical forms
of LCH (patients 1–12, 31, and 35–37; Table 1). We observed

Table 2. PPD Results in Tested Patients

Patient

Number

Age at

BCG

(Months)

PPD Skin

Test 1

Result/Age

(Months)

PPD Skin

Test 2

Result/Agea

(Months)

19 1 þ/11 �/23

20 11 ND �/31

25 11 ND �/16

26 5 þ/12 �/53

27 1 þ/8 �/67

38 3 �/12; �/24b �/123

39 13 �/20; �/90b �/158

aPPD skin test 2 was performed at diagnosis of LCH, and before the initiation of any
immunosuppressive treatment.
ND, not done.
bPPD skin test 1 was repeated.
doi:10.1371/journal.pmed.0040253.t002
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that a mean of 1.9% (range 0.8%–2.4%) of CD1aþ LCs were
proliferating (Figure 1A and 1B). In the same specimens, a
mean of 2% of CD3þ T cells were also proliferating (Figure
1A [open arrowheads] and 1B). CD1aþ cells accounted for
only 6%, while CD3 T cells accounted for 12%, of proliferat-
ing cells (Figure 1C). B cells were present in some but not all
cases and when present accounted for only 1% of proliferat-
ing cells. Proliferating cells did not stain for the macrophage
marker CD68 (Figure 1C). Therefore, most (80%) of the
proliferating cells in LCH tumors were negative for CD1a,
CD3, CD68, and CD20 (Figure 1C). Examination of histo-
logical slides also clearly indicated that LCH granulomas were
a site of extensive neo-angiogenesis and tissue remodeling, as
evidenced by immunostaining using CD31 and CD34 anti-
bodies (Figure 1D). We observed that 20% of Ki-67þ cells had
the morphology and location of endothelial cells (Figure 1A
[arrows] and 1E) and 50% were identified as fibroblastic cells
(Figure 1F).

Putative LC Precursors are Detected at Normal Levels in
the Blood of LCH Patients

The low-growth fraction of CD1aþ LCs in LCH granulomas
was similar in the different clinical forms of the disease
(unpublished data). This observation indicates that prolifer-
ation of LCs is limited and may not account for granuloma
maintenance and dissemination, and that other mechanisms
may be involved such as the recruitment of LC precursors or
increased LC survival. We therefore investigated whether
putative LC precursors were increased in proportion, or in
absolute numbers, in the blood of patients. Toward this aim
we explored naı̈ve patients at the time of diagnosis and
before treatment (n¼12; patients 14–23, 25, and 29; see Table

1). Peripheral blood CD14þ monocytes, CD16þ monocytes,
plasmacytoid DC (PDC), and classical MDC subsets were
within the normal range in frequency (Figure 2) and numbers
(unpublished data), in comparison to age-matched controls.
Circulating CD1aþ cells were never detected in the peripheral
blood of the patients or the control children (unpublished
data). Together, these data suggest that LCs accumulate in
granuloma by a mechanism other than local proliferation or
recruitment of LC precursors. To investigate potential
mechanisms that could lead to the increased survival of
tumor LCs, we studied further the immunological character-
istics of LCH granulomas.

Accumulation of Polyclonal Regulatory CD4þ T Cells in
LCH Granulomas
CD3þ T cells were often found in intimate contact with

CD1aþ LCs (Figure 3A). We therefore investigated their
phenotype, clonal origin, and function. The existence of
clonal populations among T cells was investigated by
exploring TCRG rearrangement with a multiplex fluorescent
PCR with a sensitivity of 5 3 10�2 [30]. T cells that
accumulated in the LCH lesions were polyclonal (Figure
3B), in line with previous results [34]. In tissue samples
available for this analysis, we observed that 13%–25% of T
cells (n ¼ 11; mean 6 SD, 18% 6 7%) of CD3þ T cells
coexpressed CD4þ, CD25hi, and strongly expressed the tran-
scription factor FoxP3, as determined by flow cytometry
(patients 11, 12, and 29) and by in situ immunofluorescence
staining (patients 3 and 6–10) (Figure 4A–4C). FoxP3þ T cells
were located within LCH granulomas, in close contact with
histiocytes and with FoxP3� lymphocytes (Figure 4C). In line
with the presence of T-regs, transcripts for the cytokine IL10

Figure 1. Proliferating Cells in LCH Granuloma are Mostly Endothelial Cells, Fibroblasts, and T Cells

Paraffin-embedded and frozen sections were stained with antibodies against Ki-67 (which label proliferating cells), CD1a (LCs), CD3 (T cells), CD20 (B
cells), CD68, CD31, and CD34 (endothelial cells).
(A) Double immunostaining of paraffin-embedded section from LCH eosinophilic granulomas with anti-Ki-67 Ab, (brown nuclear staining) and with anti-
CD1a Ab (upper images, blue staining) or anti-CD3 Ab (lower images, blue staining). Open arrowheads indicate double-stained cells, black arrowheads
indicate Ki-67þ cells with an endothelial morphology.
(B) Histogram represents percentage of CD1aþ cells and of CD3þ cells labeled with Ki-67 (n¼ 15).
(C) Histogram represents percentage of proliferating cells (Ki-67þ) that express CD1a, CD3, CD20, or CD68 (n ¼ 15).
(D) Histogram represents percentage of proliferating cells (Ki-67þ) that are endothelial cells, interstitial cells (fibroblasts), and other types based on
morphological examination.
(E) Immunolabeling of blood vessels on paraffin-embedded section from LCH eosinophilic granulomas with CD34 (left) and CD31 (right) antibodies.
(F) Proliferating Ki-67þ cells (brown nuclear staining) with a fibroblast-cell morphology in an eosinophilic granuloma.
doi:10.1371/journal.pmed.0040253.g001
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were abundant in 14 samples from eight patients (patients 2,
3, 4, 6, 7, 11, 24, and 40) out of 12 available for this analysis
(Figure 4D). In addition, T cells could be purified from the
biopsy of patient 12, and were incubated with allogenic
peripheral blood T cells, monocytes, and anti-CD3 antibody
(Figure 4E). These granuloma-derived T cells inhibited
allogenic T cell proliferation at a 1:1 ratio, albeit by only
50%, suggesting that they indeed exert a regulatory activity.
Of note, FoxP3þ T cells were scarce (4.07% 6 1.47% of CD3þ

T cells) in lesions from four children with SHML, a non-
Langerhans cell histiocytosis that features the accumulation
of CD1a�/CD68þ histiocytes.

Expansion of T-Regs in Patients with LCH
RANK and RANKL have been found to be involved in the

systemic increase of T-regs by RANK-expressing skin DCs
[35]. We found that LCs from LCH granulomas expressed
RANK (Figure 4F; n ¼ 9; patients 1, 3, 4, 7, 9, 29, 31, 35, and
36), as previously described [36]. RANKL was also expressed
in LCH granulomas; however, in contrast to a previous

report [35], RANKL appeared to be expressed by small
lymphocytes rather than LCH cells (Figure 4F). Ki-67 protein
was detected in the nuclei of FoxP3þ T cells, suggesting that
they were proliferating (Figure 4G: n ¼ 2; patients 6 and 7).
To further investigate whether T-regs actually expand in
LCH patients or accumulate within LCH granuloma, we
examined the number of peripheral blood T-regs in un-
treated, ‘‘naı̈ve’’ patients with newly diagnosed LCH (n ¼ 12,
patients 14–23, 25, and 29; see Table 1), patients with active
disease under treatment or after treatment (n ¼ 10; patients
12, 13, 16, 20, 24, 26, 27, and 30–32), or patients in clinical
remission (n¼ 4; patients 3, 28, 33, 34; Table 1) in comparison
with samples from adult and children controls matched for
age with LCH patients, and from children with SHML. Naı̈ve
LCH patients had, overall, normal blood lymphocyte counts,
but their absolute number and the frequency of blood CD3þ

CD4þ CD25hi FoxP3high T cells were significantly higher at
diagnosis than in age-matched controls and children with
SHML (Figure 5A and 5B). Sorted CD4þ/CD25hi T cells, but
not CD4þ/CD25lo T cells, from one LCH patient out of one

Figure 3. Polyclonal T Cells Infiltrate LCH Granuloma in Close Contact with LCs

(A) Double immunohistochemical labeling of frozen sections from an eosinophilic granuloma with anti-CD3 (brown) and anti-CD1a antibodies (blue).
(B) T cell receptor gamma rearrangement was determined on the DNA extracted from frozen biopsies from four patients. Fluorescent profiles for Vgfl/
Vg10 PCR using fluorescent Jg primers (JgP, red; Jg1/2, green; JgP1/2, blue) are shown; all the biopsies display a polyclonal profile in comparison to
polyclonal and monoclonal positive controls.
doi:10.1371/journal.pmed.0040253.g003

Figure 2. Putative LC Precursors are Detected at Normal Frequencies in the Peripheral Blood of Naı̈ve LCH Patients

CD14þmonocytes (DRþ, CD14þ, CD16lo) and CD16þmonocytes (DRþ, CD14�, CD16hi), MDCs (DRþ, CD11cþ, lin�), CD1cþMDCs (DRþ, CD1cþ, CD11cþ, lin�),
and PDCs (DRþ, BDCA-2þ, CD123þ) from naı̈ve (untreated) LCH patients and age-matched control children were studied by five-color flow cytometry.
Data are represented as the percentage of PBMCs. p-Values (Kruskal-Wallis test) for the comparison between naı̈ve (untreated) LCH patients and age-
matched control children were not significant either in the number or in the frequency of DC and monocyte subsets present in the peripheral blood.
doi:10.1371/journal.pmed.0040253.g002
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tested (patient 29), inhibited CD3-induced proliferation of a
healthy donor T cells (Figure 5C). The higher number and
frequency of T-regs in the peripheral blood of children with
LCH in comparison to controls suggests that T-regs expand
in patients with LCH. In addition, the observation of Ki-67þ

T-regs and RANK/RANKL expression in the granuloma (see
Figure 4F and 4G), suggests that the expansion of T-regs takes
place at least in part in the granuloma. We found that
children with LCH during and after treatment had a
decreased frequency of blood CD3þ CD4þ CD25hi FoxP3high

cells (Figure 5B). This finding suggests that the increased
frequency of CD4þ CD25hi FoxP3high cells in LCH patients
correlated with active disease. Therefore, patients with LCH
have an expanded FoxP3high T-reg population in the blood,
which could be relevant to the pathophysiology of the
disease.

Impaired Delayed-Type Hypersensitivity Response in

Patients with LCH
Patients with LCH do not exhibit overt immunodeficiency.

However, CD4þ CD25high FoxP3high T-regs have been shown
to inhibit T cell activation, in an antigen-independent
manner [37,38] and can inhibit cellular immune response
such as delayed type hypersensitivity (DTH) to tuberculin
[39]. We therefore investigated whether patients with LCH
had a normal DTH response to tuberculin. DTH responses to
tuberculin were evaluated in seven children previously
vaccinated with BCG. All seven patients had negative DTH
test to PPD (Table 2). Information about previous DTH
responses to tuberculin before the onset of LCH was available
for five patients, of whom three had tested positive and two
negative. The frequency of negative DTH responses to
tuberculin (PPD) after vaccination with BCG ranges from

Figure 4. CD4þ CD25þ FoxP3high T Cells Accumulate in LCH Granulomas

(A) Identification of CD4þ CD25þ FoxP3þ T cells by flow cytometry on fresh granuloma tissue. Dot plots are representative of similar data obtained in
three patients (11, 12, and 29).
(B) Histograms represent percentage of FoxP3þ T cells among CD3þ T cells in eosinophilic granuloma: 17.2% 6 3.36% of T lymphocytes expressed
FoxP3 (n ¼ 6).
(C) Left image, immunohistochemical staining on a paraffin-embedded section with FoxP3 antibodies showing FoxP3þ T cell (arrow, brown nucleus) in
close contact with histiocytes (arrowhead). Right images, double immunofluorescence labelling with anti-FoxP3 (green nucleus) and anti-CD3þ, anti-
CD25þ, or anti-CD1a (red) in frozen sections.
(D) Real-time PCR assay showing a high level of IL10 transcripts in eosinophilic granulomas (n¼ 12 patients).
(E) T cells were isolated by CD3þ selection from a fresh LCH biopsy (patient 12; LCH T cells) and from the peripheral blood of a healthy blood donor
(Donor T cells) and were stimulated by soluble OKT3 (Anti-CD3) in the presence of CD14þmonocytes. Unsorted T cells from an LCH granuloma (LCH T
cells) caused an approximate 50% decrease in the proliferation of normal T cells. Filled bar, healthy donor T cells alone, open bar LCH T cells alone,
hatched bar, mix of healthy donor T cells and LCH T cells.
(F) Immunohistochemistry on paraffin-embedded section from an eosinophilic granuloma using RANK (upper) and RANKL antibodies (bottom) (n¼ 9
patients).
(G) Double immunolabeling with Ki-67 and FoxP3 antibodies of frozen sections from an eosinophilic granuloma (n¼ 2 patients).
doi:10.1371/journal.pmed.0040253.g004
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10% up to 30% in France [29,39]. In this latter hypothesis, the
probability of observing seven negative DTH responses
among seven tested patients, according to Bernouilli’s
distribution, is very low (p ¼ 2.2 3 10�4). Despite the small
number of patients, our observations favor the hypothesis
that LCH is associated with impaired DTH.

Discussion

The results from the present study indicate that fibroblasts,
endothelial cells, and T cells account for the bulk of
proliferating cells in LCH granulomas. This result is in line
with the pathological description of the disease as a
granuloma. LCs themselves exhibited a proliferation index
of only 1.9%, and represented only 6% of proliferating
granuloma cells. Putative LC precursors such as blood
monocytes and DCs were not expanded in the blood of
patients. Therefore, the accumulation of LCs in granulomas is
mainly the consequence of increased survival rather than
proliferation.

An explanation for increased survival of LCs is our finding
that LCH is associated with the local and systemic expansion
of T-regs, which may in turn impair the resolution of chronic
granulomas. Local proliferation of LCs may thus contribute
relatively little to granuloma maintenance and dissemination
compared to the effect of immunological mechanisms.
Although previous studies have reported high cell prolifer-
ation within LCH granulomas [3,18,19], the conclusion that
LC-type cells were proliferating was not directly supported by
these studies, because granulomas are a mix of several cell
types. Our results indicate that neo-angiogenesis and tissue

remodeling account for a substantial proportion (80%) of
proliferating cells, while the proliferative index of LCs is low,
on average 1.9%. A recent study has found moderately
increased frequencies of MDCs in the blood of a fraction of
patients with LCH [9]. In a previous study by Hosmalin et al.
[40] eight out of ten patients had normal frequencies of blood
DCs, while two patients with severe disease had an increased
frequency of circulating DCs. In the studies of Rolland et al.
[9] and Hosmalin et al. [40], some patients have been
previously treated by steroids and/or cytotoxic chemother-
apy, and it is thus difficult to ascertain whether the increased
frequency of MDCs in these patients was due to the disease or
to the treatment, because the numbers and relative frequen-
cies of myeloid cells in the blood can be affected by steroids
and cytotoxic chemotherapy.
In the present prospective study, patients were analyzed at

the time of diagnosis and before any treatment, and we did
not observe a significant increase in either number or
frequency of monocytes or blood MDCs in 11 out of 11
patients. Therefore, increased frequency of blood MDCs is
not a general feature of LCH.
The present data do not rule out a neoplastic origin of

LCH lesions; however, we propose that enhanced cell survival,
rather than uncontrolled LC proliferation as occurs in
neoplasia, is likely to play a major role in the maintenance
and dissemination of these slow-growing tumors. A potential
involvement of immune mechanisms in the pathogenesis of
LCH is probable, because DCs are key regulators of the
immune response [41], both initiating adaptive immunity and
inducing unresponsiveness or tolerance [42,43]. The regu-
latory function of T-regs in granulomas and blood of patients

Figure 5. Regulatory CD4þ CD25þ FoxP3þ T Cells Are Expanded in the Peripheral Blood of LCH Patients

(A and B) Flow cytometry analysis of CD4þ/CD25hi FoxP3high cells in the blood of LCH patients in comparison to healthy controls. (A) Representative dot
plots from the blood of one patient and one control. (B) CD3 and CD4 lymphocyte counts were similar in naı̈ve (untreated) LCH patients at diagnosis
and in control children, but the absolute number and the frequency of T-regs were significantly higher in the blood of naı̈ve LCH patients at diagnosis
than in patients with LCH under treatment, in control children, and in children with SHML. *Chi-squared¼ 7.125 with 1 df, p¼ 0.0076; **Chi-squared¼
13.714 with 1 df, p , 0.001; ***Chi-squared ¼ 6.682 with 1 df, p¼ 0.0097.
(C) Regulatory activity of CD3þ CD4þ CD25hi T cells isolated from the blood of LCH patients. Proliferation of control T cells (Donor T cells) induced by
soluble OKT3 (Anti CD3) in the presence of CD14þ monocytes was inhibited by the addition of sorted CD3þ CD4þ CD25hi T cells (LCH CD4/CD25hi)
isolated by positive selection from the blood of a patient with LCH, but not by CD3þ CD4þ CD25low T cells (LCH CD4/25lo) isolated from the blood of the
same patient. *p , 0.02, **p¼ 0.01.
doi:10.1371/journal.pmed.0040253.g005
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with LCH was suggested by their phenotype (CD4þ CD25high

FoxP3high), their intimate contact with LCH histiocytes
(Figure 3A), their ability to inhibit T cell proliferation in
vitro (see Figures 4B and 5C), the presence of IL10 transcripts
in the lesion, and the lack of DTH response in vivo in patients
with LCH (see Table 2). Another limitation of this study is
that the functional data were obtained on a small number of
patients, due to the rarity of the disease and the extreme
difficulty of purifying cell populations from small, rare
biopsies. However, altogether these data provide an explan-
ation for the paradox of an ‘‘antigen-presenting cell tumor’’
that does not induce its own rejection by the immune system.

LC-type cells in LCH granulomas have been found to be in
an immature, or semimature, stage of differentiation in vivo
and to only weakly stimulate allogeneic T cell proliferation
[5]. Immature and/or semimature DCs are prone to induce T-
regs that inhibit polyclonal T cell responses and promote
tolerance [43–46], whereas mature DCs stimulate effector T
cells, facilitating immunity [43]. Therefore we have proposed
that the accumulation of immature LCs in LCH granulomas
may inhibit the efficient immune response against these LCs
[5]. The idea that LCs may play a role in the down-regulation
of the cutaneous immune response is supported by three
studies; first, a study in humans showed that immature LCs
accumulate in skin-draining lymph nodes in patients with
cutaneous infections or malignancies in the absence of
autoimmune response such as vitiligo [47]; second, a recent
work suggested that mice without LCs have increased skin
contact hypersensitivity [48]; a third study showed that
environmental stimuli at the skin can redirect the local and
systemic immune system by means of RANKL [35]. In
addition, IL10 has been repeatedly detected in T cells and
macrophages within LCH granulomas [5,49] and has been
shown to play a role in locking immature DCs in a tolerogenic
state, which in turn induces T-regs that produce more IL10
[50,51]. Thus a positive feedback loop might ensure pro-
longed immunosuppression within LCH granulomas. Indeed,
recent studies have shown in vivo that T-regs in contact with
DCs resulted in the inhibition of subsequent T cell activation
by these DCs, supporting the idea that DCs are central to T-
reg function in vivo [52].

One hypothesis for LCH pathogenesis is, therefore, that T-
regs accumulate in contact with immature LCs and inhibit
the immune response against these LCs, leading to increased
survival and granuloma maintenance and dissemination. T-
regs are polyclonal in LCH lesions and their expansion is
therefore likely to be a consequence of the disease. Increased
knowledge of the pathophysiology of LCH and LCs is
important for better management of the disease and for the
benefit of the patients. The finding that LCH cells may be
involved in the expansion of T-regs allows a different and
novel view on the pathogenesis of this disease, and may lead
to the development of new, hitherto unconsidered, thera-
peutic strategies in LCH. Drugs that target T-regs, or
overcome tolerance, may be beneficial to some patients. In
return, LCH may also teach us important information about
the biology and functions of normal Langerhans cells in vivo.
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Editors’ Summary

Background. Langerhans cell histiocytosis (LCH) is a rare disease,
affecting mainly children, in which the number of Langerhans cells
(immune system cells that are also known as histiocytes) in the body
greatly increases. In LCH, immature Langerhans cells spread throughout
the body—they are usually found only in the skin and airways—and
accumulate in small inflamed nodules called granulomas. The symptoms
and severity of LCH depend on where these granulomas (which contain
several different types of cells) occur. Granulomas in bone, for example,
can weaken the bone and lead to frequent fractures. Other symptoms of
LCH include skin rashes, breathing difficulties, and hearing problems.
LCH is usually treated with corticosteroids, drugs that suppress immune
function, but if the disease is widespread, anticancer drugs may also be
used. Most affected children recover from the disease but the disease
can be fatal if multiple organs are affected.

Why Was This Study Done? For many years LCH has been regarded as a
cancer-like condition (hence the use of anticancer drugs in its treatment)
in which the uncontrolled proliferation of Langerhans cells drives the
formation of granulomas. However, some researchers are beginning to
ask whether LCH might actually be a problem with the immune
system—Langerhans cells are dendritic cells, and these normally activate
the immune response when the body is challenged by bacteria or
viruses. To find better ways to treat LCH It is important to understand the
underlying defect in the disease and how it develops. In this study, the
researchers have investigated which cells in LCH granulomas are
proliferating and whether immune mechanisms are involved in the
development of LCH.

What Did the Researchers Do and Find? The researchers stained slices
of LCH granulomas with antibodies (proteins made by the immune
system) that label different types of cell and with an antibody that
recognizes Ki-67, a protein made by proliferating cells. On average, only
6% of the proliferating cells in the granulomas were Langerhans cells.
12% were T lymphocytes (immune system cells that directly kill bacteria
and viruses and stimulate antibody production by B lymphocytes). The
rest were endothelial cells (which line blood vessels) and fibroblasts
(which form the framework that supports the tissues of the body). These
data suggest that abnormal proliferation of Langerhans cells is not
responsible for maintenance and spread of granulomas—so could
increased survival of these cells lead to their accumulation in granulomas
instead? When the researchers investigated the immunological charac-
teristics of LCH granulomas, they found that many of the T cells in the

granulomas were regulatory T cells (T-regs), a type of T cell that inhibits T
cell responses and prevents the body from attacking itself. Consistent
with the presence of T-regs, IL10 (a protein made by T cells that
suppresses the function of Langerhans cells) was abundant within the
granulomas. Furthermore, the Langerhans cells in the granulomas
expressed RANK, a protein that stimulates the proliferation of T-regs,
and patients with LCH had a higher proportion of T-regs in their blood
than did healthy children; this proportion decreased during their
treatment for LCH. Finally, all the children with LCH that the researchers
tested had an impaired delayed-type hypersensitivity response, an
indication that the increased numbers of T-regs had inhibited their
immune system.

What Do These Findings Mean? These findings indicate that
proliferation of Langerhans cells is not the driving force behind the
development of LCH. Instead they suggest that abnormal Langerhans
cells induce the accumulation of T-regs within the granuloma. These T-
regs inhibit the induction of an efficient immune response against the
Langerhans cells, and this sets up a vicious cycle in which the increased
survival of Langerhans cells leads to their accumulation in granulomas,
the production of more T-regs, and so on. This new model, although it is
based on the investigation of a small number of patients with LCH,
strongly suggests that drugs that target T-regs should be investigated as
treatments for LCH.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0040253.

� Information is available for patients and health professionals on
Langerhans cell histiocytosis from the Histiocytosis Association of
America
� Information is also available (in French) for patients and health

professionals on the Histiocytose.org Web site, which has links to the
Association Histiocytose France and Groupe d’Etude des Histiocytoses
� The MedlinePlus encyclopedia contains a page on histiocytosis (in

English and Spanish)
� Information is made available by the UK charity Cancerbackup on

Langerhans cell histiocytosis in children
� Wikipedia page on regulatory T cells (note: Wikipedia is a free online

encyclopedia that anyone can edit; available in several languages)
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