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Abstract

Genome-scale genetic interaction networks are progressively contributing to map the molecular circuitry that determines cellular

behavior. To what extent this mapping changes in response to different environmental or genetic conditions is, however, largely

unknown.Here,weassembledageneticnetworkusingan insilicomodelofmetabolism inyeast toexplicitlyaskhowseparategenetic

backgroundsalternetworkstructure.Backgroundsdefinedbysingledeletionsofmetabolicallyactiveenzymes inducestrongrewiring

when the deletion corresponds to a catabolic gene, evidencing a broad redistribution of fluxes to alternative pathways. We also show

how change is more pronounced in interactions linking genes in distinct functional modules and in those connections that present

weak epistasis. These patterns reflect overall the distributed robustness of catabolism. In a second class of genetic backgrounds, in

which a number of neutral mutations accumulate, we dominantly observe modifications in the negative interactions that together

with an increase in the number of essential genes indicate a global reduction in buffering. Notably, neutral trajectories that originate

considerablechanges in thewild-typenetwork comprisemutations thatdiminished theenvironmentalplasticityof thecorresponding

metabolism, what emphasizes a mechanistic integration of genetic and environmental buffering. More generally, our work dem-

onstrates how the specific mechanistic causes of robustness influence the architecture of multiconditional genetic interaction maps.
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Introduction

Gene action is commonly determined by its interactions with

other genes. This includes not only genes known to be asso-

ciated to the action under study but also those whose associ-

ation is less expected or their biochemical properties still

unknown. Both classes of interactions can now be effectively

mapped at a large scale by following two complementary

strategies.

The first one relies on the progress of experimental tools to

produce genetic perturbations in large numbers and to auto-

matically quantify their effects (Baryshnikova et al. 2013,

growth being typically the primary phenotypic readout but

see, for instance, Jonikas et al. 2009). These tools are now

providing initial genetic landscapes of cells (e.g., Roguev et al.

2008; Costanzo et al. 2010). A second approach benefits

from the advance of computational methods capable to pre-

dict phenotypes. Metabolic flux balance models are particu-

larly useful in this regard, as they incorporate genomic

information (of metabolism) into an in silico framework that

can estimate cell growth under specific conditions (Reed et al.

2006). Notably, flux balance predictions have been confirmed

experimentally (e.g., Snitkin et al. 2008). Single mutant fitness

and their corresponding genetic interactions can also be pro-

duced in this framework (Szappanos et al. 2011).

These strategies are currently being combined to better

interpret the molecular underpinnings of genetic interactions

(i.e., epistasis), both negative and positive. Negative epistasis

(observed when the fitness defect of a double mutant is lower

than that expected from single mutant values) indicates re-

dundancy that can reveal as functional associations between

some pathways and/or complexes (e.g., the presence of neg-

ative epistasis between the urmylation pathway and the elon-

gator complex in yeast suggested that both jointly modify

certain transfer RNAs, Costanzo et al. 2010) or as the buffer-

ing of alternative metabolic routes (e.g., leading to the syn-

thesis of the same component, Papp et al. 2004). Positive

genetic interactions, in contrast, are commonly observed be-

tween genes that constitute a multiprotein complex or meta-

bolic pathway, that is, genes being part of the same functional

unit (St Onge et al. 2007): A mutation in one of its constituents

can inactivate this unit what reduces the effect of other per-

turbations in additional components.
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Large-scale approaches lead as well to the identification of

system-level patterns, when the interactions are represented

as genetic networks. For instance, the network presentation

of high-throughput data of Caenorhabditis elegans and

Saccharomyces cerevisiae clearly identified the presence of ge-

netic hubs that are mostly associated to chromatin regulation

(Lehner et al. 2006; Costanzo et al. 2010). Another feature,

revealed for the first time with flux balance modeling, is

monochromaticity; the specific distribution of epistasis types

in the interactions within/between functional modules (Segrè

et al. 2005). This characteristic was later confirmed by meta-

bolic experiments (Szappanos et al. 2011) and high-through-

put data (Costanzo et al. 2010), in which a specific distribution

of epistasis strengths was additionally identified (Poyatos

2011).

All previous properties implicitly suggest a stable architec-

ture of genetic networks, a view that was partially influenced

by the constant conditions in which interactions were

examined. However, recent studies are emphasizing that

this stability should not be necessarily the case. Genetic inter-

actions and, more broadly, genetic networks were shown to

change depending on the particular context where fitness is

evaluated (You and Yin 2002; Harrison et al. 2007;

St Onge et al. 2007; Bandyopadhyay et al. 2010; Guénolé

et al. 2013). Rewiring is further confirmed by means of

comparative analysis across organisms (Dixon et al. 2008;

Roguev et al. 2008; Frost et al. 2012; Ryan et al. 2012).

Moreover, the “instability” of these networks should not

come as a surprise; earlier works already discussed the influ-

ence of context (environmental and genetic) on the pheno-

typic effect of mutations and their interactions (e.g., Chandler

et al. 2013; Chari and Dworkin 2013), a phenomenon that

can directly influence evolutionary dynamics (Greenspan

2009; Chou et al. 2011; Khan et al. 2011). To what extent

genetic networks are context dependent is nevertheless

mostly unknown.

Here, we ask how the structure of a genetic network reor-

ganizes in response to changes in gene background. To this

aim, we mapped genetic interactions between metabolic

genes by using a computational model of metabolism in S.

cerevisiae. The advantage of this approach (beyond avoiding

experimental complexity) is that it enables the interpretation

of the phenotype (i.e., fitness) as an univocal consequence of

the structure of the metabolic reaction network underneath.

We consider two broad (genetic) background classes. The first

class corresponds to single gene deletions of each of the en-

zymes that are active (i.e., showed nonzero flux) in wild-type

(WT) conditions. We characterized which type of backgrounds

originate stronger network change and in which kind of in-

teractions this variation is more pronounced. The rewiring

patterns found stress the different organization of biosynthetic

and catabolic routes and how this impacts their capacity to

compensate change. A second class presents neutral back-

grounds that are generated by a trajectory of accumulated

neutral mutations. This helps us to appreciate how cryptic

variability modifies buffering in genetic networks and how

the new network structures associate to differential environ-

mental plasticity. We additionally corroborate some of these

patterns with inspection of experimental data.

Materials and Methods

Genotypes and Simulations

We considered the iND750 genome-scale model as the WT

genotype (Duarte et al. 2004). This model incorporates all the

necessary complexity of S. cerevisiae’s metabolism (e.g., it is

fully compartmentalized), has been empirically corroborated,

and also reduces the computational load associated to the

background analysis. We studied two types of genotype de-

rived from this model. Single deletion genotypes were ob-

tained by deleting each gene present in the model

individually. Neutral deletion trajectories were obtained by

successively deleting genes that have no effect on phenotype

(Pál et al. 2006, i.e., optimal growth does not change) until

reaching 100 deleted genes. All optimizations were per-

formed using flux balance analysis (FBA) (Price et al. 2004).

WT growth conditions correspond to glucose minimal

medium and aerobiosis (glucose: 18.5 mmol gr�1h�1, unlim-

ited O2). Fluxes through all reactions in the solution of a given

genotype were normalized by the amount of biomass pro-

duced. This enables the comparison of different solutions

with distinct growth rates.

Generation and Processing of Genetic Networks

Optimal growth of all single and double deletion mutants,

encompassing all nonessential genes in a given genotype,

was computed using FBA (Price et al. 2004). The mutant/

WT growth ratios obtained were used to compute the epis-

tasis (e) that incorporated a multiplicative model and posterior

scaling (Segrè et al. 2005); interactions with jej < 0.01 were

not considered. An additional processing was applied to the

networks to simplify functional redundancies that are nonin-

formative and do not contribute to the system-level analysis

discussed in the article. Namely, we identified all sets of genes

coding for exactly the same reactions and excluded all but one

from each set for further analysis. This simplifies positive inter-

actions associated to subunits of the same complex (e.g.,

mitochondrial ATP synthase has 15 essential subunits in the

model, which results in
15

2

 !
= 105 positive epistatic inter-

actions) and also negative interactions that exist between

equivalent gene duplicates coding for fitness contributing re-

actions. This data set reduction was applied in all our analyses,

unless otherwise specified.
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Types of Genetic Interactions

We classified genetic interactions in four groups according to

the underlying functional structure. Synthetic lethal (SL) inter-

actions, e ¼ �1, involve two unique alternatives for an essen-

tial function. Strong positive (SP) ones, e= 1, imply an absolute

functional dependence, for instance, like the one found in

genes that act sequentially in a parallel pathway. Two addi-

tional classes, weak positive (WP, 0:01 < e < 1) and weak

negative (WN, �1 < e < �0:01) were defined. WN interac-

tions appear when there exists an additional less efficient so-

lution to the two main functional alternatives represented by

the WN-interacting genes. This multiplicity of alternatives with

different efficiency usually reflects that (qualitatively) different

ways to perform a specific function. WP interactions emerge

when the fitness contribution of the interacting genes is only

partially overlapping, that is, if one of the genes is deleted, the

other still contributes (although to a lower extent) to fitness.

This could be interpreted as a form of “multifunctionality.”

Note that, as positive interactions appear only among fitness

contributing but nonessential genes, this implicitly reflects the

presence of a less efficient and qualitatively different

alternative.

Advantages of FBA

FBA was considered a suitable tool for this study due to several

reasons—beyond the obvious advantage of avoiding the com-

plications of producing the very large number of required ge-

notypes experimentally. First, it simplifies several layers of

biological complexity (e.g., gene expression or enzymatic ac-

tivity regulation) by means of optimality assumptions in a rel-

atively realistic way (Price et al. 2004). Although this could lead

to some artifacts, they do not modify in any case the general

conclusions of our analysis (see also supplementary material,

Supplementary Material online). Second, the model enables a

straightforward interpretation of the phenotype as an univocal

consequence of the structure of the underlying metabolic re-

action network. We can thus imagine the in silico model as a

biological “organism” per se that can provide broad concep-

tual guidelines for a comprehensive interpretation of the

rewiring of genetic networks associated to real biological sys-

tems (not necessarily restricted to metabolism).

Pleiotropy

We computed the pleiotropy of each nonessential and fitness

contributing gene in the WT genotype following Szappanos

et al. (2011). The method basically consists in optimizing for

the production of a given biomass constituent individually (in-

stead of using the entire biomass reaction) in presence and

absence of a given gene. The number of affected constituents

represents a rigorous measure of pleiotropy for that specific

metabolic gene.

Rewiring and Metabolic Modules

Background dispersion was quantified in figure 2B as normal-

ized Shannon entropy SMP (MP denotes “module pair”). This is

defined as SMP ¼ �
Xn

i¼1
ki log ki=log N, with n being the

number of backgrounds with new interactions between the

two modules, and ki the number of interactions appearing in

the background i (divided by the total number of interactions

considering all backgrounds). This was normalized by log N,

where N is the total number of analyzed backgrounds where

any new interaction appears between any two modules

(N = 37). The figure illustrates how catabolic modules are char-

acterized by appearance of many different new interactions in

different backgrounds. Conversely, much fewer interactions

appear among biosynthetic modules, these being generally

much more background specific. The notation of the modules

in the figure can be found in supplementary table S6,

Supplementary Material online.

Random Environments

One thousand random environments were generated in

which each of 107 organic nutrients was assigned a probabil-

ity of being present from an exponential distribution (with

mean = 0.1, Wang and Zhang 2009). After defining the par-

ticular set of nutrients, their dosage was randomly obtained by

applying an uniform distribution between 0 and

20 mmol gr�1h�1. All environments considered were aerobic

(i.e., unconstrained O2 availability).

Stability of Interactions in Response to Environmental
Change

Data on instability of interactions in response to environmental

change (yeast cells growing in rich media and in the presence

of three distinct DNA damaging agents: Methyl methanesul-

fonate, camptothecin, and zeocin) were obtained from

Guénolé et al. (2013). We considered as not significant epis-

tasis those values below 2 and above �2.5 (following the

original reference). We defined SP interactions as those in

the upper quartile among positive ones and similarly for neg-

ative ones. The instability of each category in figure 7A was

quantified as the average number of treatments where the

interaction changes or disappears (out of three). We quanti-

fied the functional similarity of the genes constituting an in-

teraction as the ratio between the number of shared

functional classes (i.e., biological process annotations as in

Guénolé et al. [2013]) and the minimal number of classes

that one of the genes of the pair presents. If this score was

more than 0.1 then genes were considered functionally

“close” and “distant” otherwise. In addition, we considered

an interaction “stable” if it remained within the same cate-

gory (sign, strength) in all conditions and unstable otherwise

(fig. 7B).
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Robustness and Genetic Landscape Clearly Distinguish
Catabolic from Biosynthetic Modules

We downloaded from http://www-sequence.stanford.edu/

group/yeast_deletion_project/deletions3.html a list of yeast es-

sential genes and used the genetic interaction data of yeast

metabolism from Szappanos et al. (2011). For each module,

we computed the ratio between the number of essential and

the number of epistatic genes that we term �. Average � for

catabolic and biosynthetic modules is hyi= 0.18 and 0.94, re-

spectively (Wilcoxon–Mann–Whitney test P = 0.01), what

broadly confirms the predictions of the in silico model (fig. 7C).

Results

Rearrangement of the Catabolic Repertoire Determines
Genetic Rewiring

We began analyzing the rewiring observed in genetic back-

grounds defined by deletions of single genes that are meta-

bolically active in WT conditions (see Materials and Methods).

These deletions normally result in the blockade of some (non-

essential) reactions and the corresponding reconfiguration of

metabolic fluxes (Papp et al. 2004; Blank et al. 2005). How is

this readjustment contributing to genetic rewiring?

To understand this correspondence, we quantified the

number of modified interactions with respect to the WT ge-

netic network as a simple rewiring score (fig. 1A) and also

counted the quantity of altered fluxes as measure of the un-

derlying metabolic readjustment. Figure 1B shows the strong

relation between these two scores (Spearman’s r ¼
0:72; P < 10�8). We subsequently partitioned the metabolic

measure into a qualitative and quantitative component (i.e.,

active fluxes that become inactive or vice versa and changes in

relative flux through already active reactions, respectively).

Qualitative changes predict the strength of genetic rewiring

(multiple linear regression P < 10�8), whereas quantitative

ones do not (P = 0.97). Thus, genetic rewiring denotes a redis-

tribution of metabolic fluxes to alternative reactions and

pathways.

We then explored if the perturbation of any specific met-

abolic function leads to particularly strong rewiring. If back-

grounds linked to a given function result in strong rewiring,

this should be detectable as variation on its associated metab-

olites. We found that rewiring is predicted by the variation of

several metabolites whose production and homeostasis is

tightly connected to catabolism (e.g., phosphate, redox equiv-

alents, quinones, or intermediaries from glycolysis or TCA

cycle, supplementary table S1, Supplementary Material

online). Indeed, backgrounds corresponding to catabolic func-

tions display stronger rewiring than those related to biosyn-

thetic functions (fig. 1B). Note also that the strong genetic

rewiring produced by some apparently biosynthetic genes

(e.g., SER1, SER2, or SHM2) revealed upon detailed inspection

an artifactually catabolic role of these genes (e.g., ATP

synthesis, supplementary table S2, Supplementary Material

online) that validates a general catabolic underpinning of net-

work rewiring.

Rewiring Is Pronounced between Functional Modules and
in Weak Genetic Interactions

We next examined the association of rewiring with the under-

lying metabolic organization and the type of genetic interac-

tion. We initially computed the instability of each WT

interaction by simply counting the number of backgrounds

in which it changes (from a total of 100). Interactions tend

to be conserved with instability being stronger for those con-

stituted by genes belonging to different metabolic annotation

groups (mean instability within same group = 5.1, mean be-

tween groups = 7.8, P ¼ 3:4� 10�5). New interactions ex-

hibit as well a tendency to connect different modules (90%

of cases) compared with the WT links (78%, Fisher’s test

P < 10�7). This pattern resembles recent reports that de-

tected stronger instability in interactions established between

(rather than within) functional modules but in response to

environmental change (Harrison et al. 2007; Bandyopadhyay

et al. 2010).

Figure 2A explicitly illustrates the concentration of genetic

interactions in catabolic modules (supplementary table S3,

Supplementary Material online) and their high relative insta-

bility. Conversely, biosynthetic modules exhibit fewer and

more stable links. Catabolic modules are characterized in ad-

dition by the appearance of new interactions in different back-

grounds. In contrast, new links arise less frequently between

biosynthetic modules and in a more background-specific

manner (fig. 2B).

Moreover, the strength and sign of the interaction influ-

ences as well its instability. We observed weak interactions to

be more unstable for each epistasis type (fig. 2C). Although

this could be associated to the fact that weak links tend to

appear between module (Fisher’s test, P<0.0002) both being

weak and between-module independently correlate to insta-

bility (supplementary fig. S1 and table S4, Supplementary

Material online). Within new interactions, we also noticed

that WN are the dominant class (fig. 2D) and the ones that

take part of most sign changes (which usually occur between

WN and WP, fig. 2E).

The Structure of Rewiring Evidences the Intertwined
Organization of Catabolism

Deletion of catabolic genes originates therefore a strong

rewiring of genetic interactions (fig. 1). That these genes ex-

hibit large connectivity (genetic hubs correspond almost

uniquely to catabolic genes, supplementary fig. S2,

Supplementary Material online) and that this connectivity is

dominantly constituted by weak interactions (i.e., nodes with

weak average epistasis jej < 0:5 present a mean of ~8 con-

nections, while those with strong average epistasis, jej > 0:5,
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present ~3, Wilcoxon test P = 0.003) suggest that the re-

sponse to a change in (catabolic) backgrounds is very much

linked to the rewiring of hubs—recall the stronger instability of

weak links between catabolic modules, figure 2—what ulti-

mately indicates the intertwined organization of catabolism

(fig. 3).

This organization is effectively described by the action of a

number of versatile genes capable to contribute to fitness in

different ways (by altering their function) and to partially

buffer each other’s action (fig. 3C–E). The abundance of WP

interactions emphasizes the different means to contribute to

fitness. For example, although glycolysis (e.g., genes such as

TPI1 and FBA1) and the TCA cycle (LPD1 and FUM1) work in

coordination to supply reduced equivalents to oxidative phos-

phorylation, they can also readjust their metabolic role when

one of the subsystems is compromised (what causes WP links

between TPI1 and LPD1 or FBA1 and FUM1; fig. 3D).

Moreover, WN interactions indicate distributed buffering

(Wagner 2005) among sets of genes that can implement

a particular metabolic action with different degree of

efficiency (fig. 3C). An example corresponds to MIR1 that

negatively interacts with a group of genes that jointly repre-

sent a metabolic alternative for mitochondrial phosphate

import (supplementary figs. S3–S5, Supplementary Material

online). These include not only genes that contribute to the

phosphate import strictly speaking but also many that reduce

the redox imbalances generated by this alternative mechanism

(as a result of malate being antiported out of mitochondria in

exchange for phosphate), with far reaching consequences re-

garding the whole set of fluxes through catabolic pathways.

In figure 4A, we showed in detail an example of the rewir-

ing experienced by a hub (PFK1) in different backgrounds

(supplementary figs. S6–S14, Supplementary Material online,

for rest of hubs). Despite the instability of their interactions,

hubs tend to exhibit a remarkable connectivity conservation

(supplementary fig. S15, Supplementary Material online).

We further display the rewiring caused by PFK1 acting as

background (fig. 4B) and how hubs principally rewire their

interactions in response to the deletion of other hubs

(fig. 4C); this demonstrates the functionally intertwined

A B

FIG. 1.—Genetic rewiring correlates with the underlying metabolic readjustment. (A) Cartoon that illustrates the kind of alterations in the genetic

network that contributes to the rewiring score: new interactions + interactions that changed sign+ disappeared links (excluding those of the gene acting as

background). (B) Association between genetic rewiring and metabolic readjustment (as number of reactions that modified their relative flux) in response to

deletions in active genes, that is, backgrounds; there exists 207 interactions in the WT network, we show this number as a dashed line to give a reference for

the amount of rewiring. There are as well 277 active fluxes in the corresponding metabolism (coordinates incorporate some noise to help visualization, and

the y axis logarithmic scale is broken to locate backgrounds with no genetic rewiring). Note that catabolic genes exhibit much stronger rewiring than

biosynthetic ones, regardless of the strength of metabolic readjustment (some genes are artifactually catabolic in the model, see supplementary material,

Supplementary Material online).
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A

B

C

D

E

FIG. 2.—Catabolic and biosynthetic modules exhibit distinctive genetic rewiring. (A) Number of interactions of the WT network between the corre-

sponding metabolic annotation modules (dot size) and associated average instability (dot color; measured for each interaction as the number of backgrounds

where it disappears, changes sign, or strength). Catabolic modules show higher instability than biosynthetic ones. (B) New interactions (i.e., absent in WT

network) between modules (dot size) and their distribution among backgrounds (dot color; distribution quantified as normalized Shannon entropy, see

Materials and Methods). Catabolic modules are characterized by the emergence of many new interactions in different backgrounds. Fewer new interactions

appear among biosynthetic modules, these being generally more background specific. (C) Instability of interactions, measured as the number of backgrounds

in which they disappear, as a function of sign and strength (median with upper and lower quartiles). Weak interactions are more unstable than strong ones of

the same sign, and positive interactions are more unstable than negative. (D) Average number of new interactions appearing in each background as a

function of strength and sign. WN interactions appear dominant on average. (E) Expected number of transitions between interaction types in an average

background. WP to WN conversions are the most recurrent ones. Interaction classes are SL, WN, WP, and SP, see Materials and Methods.
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architecture of catabolism. Notably, we detected a number of

genes that acquire the role of genetic hubs in some specific

contexts and that frequently corresponds again to catabolic

functions (fig. 4D).

Genetic Rewiring in Neutral Backgrounds Indicates
Reduction in Buffering

We now introduce a second class of genetic backgrounds in

which a set of neutral gene deletions accumulate (see

Materials and Methods and fig. 5A for a case trajectory).

How does the network rewire in response to these back-

grounds? We answer this question by discussing first which

genes appear in neutral backgrounds and how their mutation

modifies the network.

Note that a subset of these deletions could correspond to

nodes of the WT network. This implies genes that are part of

negative interactions and broadly causes the emergence of

novel buffering connections (in terms of new interactions or

change of sign of WT links). This is observed for instance in the

deletion of SDH2 in figure 5A, a gene that acts as buffer in WT

conditions of GCV3, LPD1, etc. (fig. 5B). SDH2 deletion un-

covers secondary buffering mechanisms (e.g., by FBP1 or

GLY1). Changes of sign in WT links are observed as well; for

example, interactions with MIR1 or ZWF1. These changes are

typically exhibited by catabolic genes in which different path-

ways often contribute to fitness either feeding one another

linearly (e.g., to ultimately supply redox power to oxidative

phosphorylation) or serving as substitutes to each other

(e.g., as direct mechanisms of ATP synthesis). In some cases,

the new buffering mechanisms can additionally modify how

active genes contribute to fitness by removing, or adding,

positive interactions to the network (e.g., ALT2–GCV3 link in

fig. 5B). Note also how genes that become nodes in one step
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FIG. 3.—The topology of the WT genetic network reflects the intertwined organization of catabolism. (A) WT genetic network with nodes colored by

function and interactions by class. (B–E) Decomposition of the network into the four interaction classes. Note the association between these types and

metabolic function (i.e., SL links broadly corresponding to biosynthetic genes and the rest—WN, WP, and SP—to catabolic) that we additionally corroborated

with experimental data of epistasis between metabolic gene pairs Szappanos et al. 2011 (supplementary fig. S24, Supplementary Material online). The

distribution of weak interactions emphasizes the intertwined organization of the catabolic core (some genes appear as artifactually catabolic in the model,

see discussion in supplementary material, Supplementary Material online). Moreover, SL links appear in the “periphery” of this core (full details of each SL

cluster in supplementary figs. S27–S33, Supplementary Material online).
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of the trajectory can produce relatively strong rewiring when

they undergo subsequent deletion (e.g., FBP1 that turns into a

node after SDH2 mutation to be deleted in a later step, fig.

5A).

Other genes that arise in neutral backgrounds (not being

network nodes) can reduce too buffering alternatives. This can

be exemplified, for instance, with the deletions of MIS1 or

HXK1/HXK2 in figure 5A. The latter is especially illustrative,

as three different genes are capable of performing the glucose

phosphorylation reaction: HXK1, HXK2, and GLK1. HXK2 is

deleted first, and the two remaining ones then exhibit an

SL link (fig. 5C). When HXK1 is later deleted, GLK1 becomes

essential. However, HXK2 and HXK1, but not GLK1, are

capable to perform additional functions as hexokinases,

such as fructose or mannose activation. Although not

essential, reduction of these functions induces many new cat-

abolic constraints that uncover new genetic interactions:

Negative ones, between glycolysis and respiration, and

positive ones, between respiration and folate pathway

genes (fig. 5D).

A B

C

D

FIG. 4.—Rewiring of hubs. (A) Map of the genetic rewiring of interactions between hub PFK1 and its partners (vertical) in all backgrounds where rewiring

of this hub is observed (horizontal). First column corresponds to the WT. Names of backgrounds and partners that are also genetic hubs are highlighted in

black. PFK1 shows no connectivity in gene contexts �FBA1 that presents an SP link with PFK1, and �TPI1, that presents an SL link (i.e., PFK1 becomes

essential in these backgrounds). Interaction classes denoted as figure 2. (B) Rewiring experienced by genes in a �PFK1 background (color coding illustrates

the different types of rewiring). Note that most of the rewiring in this background is observed in hubs (gene connectivity, i.e., degree, also shown)—most

specially, in those that are functionally related, e.g., PGI1, TPI1, FBA1—and pentose phosphate genes that assume initial glucose processing after PFK1

deletion. (C) Rewiring of hubs in response to hub deletions. Each rewiring score was normalized by the connectivity of the specific hub in the WT network.

The map represents the percentiles of these normalized scores (with percentiles [20, 40, 60, 80, and 100] corresponding to values of [0.22, 0.40, 0.66, 0.96,

and 5.6]; a value of 1 means that the number of rewired interactions equals WT connectivity; empty spaces correspond to absence of rewiring). The only hub

with a purely biosynthetic function (IRC7) is the one deviating most for this general pattern. (D) List of genes acting as condition-dependent hubs, and

number of backgrounds in which they exhibit such large connectivity; many of these genes are related to catabolism.
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FIG. 5.—Detailed view of a neutral deletion trajectory. (A) Genes were consecutively removed (from left to right; nodes of the WT network in red) what

accumulates network rewiring (curve). Bars depict “local” change or rewiring score and number of essential genes (both with respect to the previous step).

Many deletions do not affect network topology but some few ones produce strong rewiring. The appearance of essential genes is concomitant with variable

amounts of genetic rewiring. (B–D) The subnetworks that get to be modified before and after several critical steps of the trajectory. Deletion of SDH2 (B)

reveals second-order alternatives to the action of this gene in the “buffering ladder” (as new negative interactions). Several genes additionally undergo

changes in their functional role that are reflected in modification of their interaction signs and, notably, in the emergence of new positive interactions. In (C),

after the deletion of one of the three alternatives for hexokinase (HXK2), the other two constitute an SL link (HXK1 and GLK1). HXK1 is also able to

phosphorylate fructose, and this underlies a supplementary WN interaction with PGI1. Finally, in (D), deletion of HXK1 further rewires PGI1 interactions (e.g.,

the WN link with pentose phosphate pathway gene ZWF1 becomes SL, as the only alternative for initial glucose processing) and induces several positive links

at a relatively distant part of catabolism, for example, MTD1, involved in the artifactual glycine fermentative pathway (color code of genetic interactions as

previous figures).
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Similar analyses of a group of 200 alternative neutral back-

grounds contribute to distinguish common patterns of

change. First, the corresponding networks exhibit a smaller

number of nodes (196 out of 200 contain less nodes than

WT). This signal relates of course to the deletion of negatively

interacting nodes (supplementary fig. S16, Supplementary

Material online) that points to modifications of buffering

mechanisms. Second, networks tend to exhibit more epistatic

interactions per node (166 out of 200 present larger average

epistasis), a pattern again related to negative interactions (sup-

plementary fig. S16, Supplementary Material online). Third,

the negative component of the network undergoes a signifi-

cantly stronger rewiring than the positive one (supplementary

fig. S17, Supplementary Material online). This suggests overall

that previously hidden phenotypic effects unveiled as a result

of the global reduction in buffering mechanisms. This is fur-

ther evidenced by an increase in the number of essential

genes, which is observed in 93.5% (187/200) of genotypes

and occurs concomitantly with rewiring of the network.

Catabolic Perturbations Associate Network Instability to
Diminished Environmental Plasticity

One could expect that not all accumulated deletions in the

neutral backgrounds impair metabolism in the same way, and

thus different backgrounds could cause contrasting metabolic

plasticity. This can be detected by generating diverse random

environments (Wang and Zhang 2009, Materials and

Methods) in which fitness is computed. The resulting

growth measures did reveal the cryptic variability linked to

the neutral trajectories (fig. 6A).

To relate this variability to specific rewiring patterns (in WT

conditions), we assembled the genetic networks of the 100

genotypes with the highest (and lowest) median growth (HG

and LG, respectively; note that these are the 200 networks

considered as a whole before). Those networks corresponding

to LG genotypes display a significantly stronger rewiring

(fig. 6B and supplementary fig. S18, Supplementary Material

online) and are considerably smaller both in number of

nodes and edges (supplementary fig. S19, Supplementary

Material online). In addition, interactions associated to

catabolic pathways were considerably less conserved in LG

genotypes (supplementary fig. S20, Supplementary Material

online).

Although the number of new interactions did not differ

between LG and HG (mean = 60.6 and 61.0, respectively,

P = 0.96, see also supplementary fig. S21A, Supplementary

Material online), a subset of them appeared more frequently

in LG genotypes—notably, negative ones between pentose

phosphate pathway (ZWF1 and RPE1) and other catabolic

genes (e.g., PGI1, MIR1, or LPD1, supplementary fig. S21B

and S21C, Supplementary Material online). Sign and/or

strength change was also considerably stronger in LG geno-

types (mean = 24.3 interactions/genotype) when compared

with HG (mean = 13.4 interactions/genotype, P ¼ 6:7�

10�14, supplementary fig. S21D and S21E, Supplementary

Material online). As a result of the stronger rewiring, LG net-

works exhibited higher negative-to-positive interaction ratios

than HG ones (mean = 1.65 vs. 1.53, Wilcoxon’s test

P = 0.0005). The number of essential genes was higher as

well (fig. 6C), including several crucial catabolic components

(e.g., ATP8, FBA1, PGI1, supplementary fig. S22,

Supplementary Material online).

These results evidence that the loss of catabolic buffering

mechanisms underlies both genetic network rewiring and re-

duction of environmental plasticity in LG genotypes. Namely,

carbon sources other than glucose usually require only few

transformation steps before being incorporated into the core

catabolic pathways, for example, at different steps of glycol-

ysis or TCA cycle. Some other sources are alternatively trans-

formed into glucose by means of gluconeogenesis. Core

catabolic pathways are used then with relative independence

of the external carbon source. However, they can be used

differently: Some branches that are optimal in one environ-

ment can be suboptimal in another (where they can never-

theless serve as an alternative to the optimal one). This is

further corroborated by the differential distribution of dele-

tions between LG and HG genotypes (fig. 6D). LG genotypes

are enriched in 26 specific deletions that can be grouped in 1)

genes important for the initial processing of different carbon

sources (e.g., PNP1, XYL2, XKS1, GAL1, etc), 2) gluconeogen-

esis (e.g., PCK1), and 3) key catabolic genes, such as SDH2,

KGD1, or LSC1. Although neutral in glucose minimal medium,

they constitute buffering mechanisms for deletions in other

catabolic genes (evidenced also by their multiple negative in-

teractions) but importantly can take over their role under dif-

ferent carbon sources.

Discussion

Different genetic backgrounds can modify the observed phe-

notype of the interactions between mutations and conse-

quently rewire genetic networks. Here, we systematically

examined how backgrounds impact networks by using an in

silico model of yeast metabolism (Reed et al. 2006, Materials

and Methods).

We first analyzed to what extent strong genetic rewiring is

necessarily coupled to strong metabolic readjustments. To this

aim, we introduced a class of backgrounds defined by single

deletions of active enzymes (i.e., that exhibit nonzero flux in

WT conditions). As simple score to measure metabolic reor-

ganization, we counted the number of reactions with a

change of flux upon deletion. We found a relatively large

number of backgrounds that exhibit substantial readjustment.

However, only those that involved a switch to alternative met-

abolic pathways appeared coupled to strong genetic rewiring

(fig. 1). These backgrounds correspond to a set of catabolic

genes that act as genetic hubs (fig. 1 and supplementary fig.
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S2, Supplementary Material online). Interestingly, we also no-

ticed strong genetic rewiring in genes that (artifactually) act as

catabolic in the in silico yeast (see supplementary material,

Supplementary Material online), which further confirms the

linkage of metabolic readjustment and strong rewiring

through catabolism.

In fact, most of the genetic instability is observed in the

densely connected subnetwork associated to central catabolic

functions, which is mainly composed of positive and weak

interactions between different functional modules (figs. 2

and 3). In this way, the structure of the WT network is already

representing the functional associations that are more sensi-

tive to background change. In addition, most of the back-

ground-specific (i.e., not observed in the WT) interactions

and hubs are as well related to catabolism and enriched by

intermodule WN epistasis (figs. 2B and 4D).

The strong correlation between rewiring and perturbation

of currency metabolite balances (supplementary table S1,

Supplementary Material online) greatly helps to understand

these patterns. The existence of multiple NADH/NADPH and

ATP producing enzymes in catabolic pathways enables them

as potential substitutes to each other, that is, as regulators of

currency metabolite homeostasis (Fuhrer and Sauer 2009). But

these mechanisms are not equivalent biochemically and con-

sequently not equally optimal (see supplementary figs. S3–S5

for an example, Supplementary Material online). Catabolism

exhibits then a functional degeneracy in which qualitatively

different catabolic configurations lead to similar but not iden-

tically efficient solutions (Wagner 2005). This explains many of

the phenotypic features corresponding to catabolic genes. In

particular, it causes catabolic genes to be typically nonessential

but often fitness contributing. Degeneracy explains too the

A B

C D

FIG. 6.—Genetic rewiring patterns predict loss of environmental plasticity in response to neutral backgrounds. (A) Environmental plasticity exhibited by

4,000 different metabolisms originated from the WT after following a neutral deletion trajectory. Plasticity is scored as the median of the fitnesses (growth

ratio) of each genotype in 1,000 randomly generated environments (growth ratio, in a given environment, is the division between growth rate of a particular

metabolism to the WT growth rate). We highlight in red the groups with HG and LG. (B) Fraction of conserved interactions by type and LG or HG genotypes.

(C) Distribution of the number of essential genes in the HG and LG groups. (D) We performed a bootstrapping analysis to check for enrichment/depletion of

each metabolic gene in the LG or HG trajectories. Genes significantly enriched (or depleted) in the HG genotype, LG genotype, or both were correspondingly

colored in blue, yellow, and green (P< 0.01, after multiple testing). Inset. Percentage of genes with genetic interactions in the WT network in these

significant groups. Interaction classes denoted as figure 2.
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pervasiveness of weak and unstable interactions, which re-

flects either fitness contributions that are partially shared

(WP) or deficient buffering (WN). Notably, background-de-

pendent interactions tend to be weak as well. In sum, the

distributed nature of catabolic processing determines the tran-

sient and context-dependent functional associations that

define its epistasis network.

Biosynthetic pathways exhibit in contrast a much different

architecture. They usually display relatively isolated and linear

configurations, each of them containing very specific metab-

olites that simply act as intermediates for the synthesis of a

particular compound. This limits the buffering possibilities

compared with catabolism what is manifested in the enrich-

ment of essential genes and also in a genetic landscape dom-

inated by redundancy-based SL interactions (fig. 3,

supplementary figs. S27–S33, Supplementary Material

online). These SL interactions form smaller (peripheral) clusters

and exhibit a marked stability that only becomes disrupted

when one of the partners is deleted or becomes essential

(figs. 2–4).

These findings are consistent with several evidences from

previous experimental studies on the rewiring of genetic in-

teractions between two distantly related yeasts (S. cerevisiae

and Schizosaccharomyces pombe; studies not always linked to

metabolism). For instance, SL pairs and interactions within

functional modules were found considerably conserved,

whereas interactions between modules remodeled (Dixon

et al. 2008; Roguev et al. 2008)—both signals confirming

what we observed. The change of epistasis sign that we de-

tected in catabolic nodes could also indicate a sort of func-

tional repurposing (Frost et al. 2012). Moreover, using data

from (Ryan et al. 2012), we corroborated our predictions that

weak interactions are more unstable than strong ones (4.9%

vs. 8.7% of conservation, respectively, �2 test, P < 2:2�

10�16), as well as of positive interactions (0.8% conserved)

compared with negative ones (5.4%, �2 test, P < 2:2�

10�16, fig. 7A). Additionally, we observed that interactions

associated to central metabolic pathways tend to be more

unstable (39.4% of pairs not conserved) than those associated

to the rest of metabolism (29.0% not conserved, �2 test,

P < 2:2� 10�16, metabolic classification according to

Kanehisa et al. [2014]). Finally, we also recognized an associ-

ation between interaction type and metabolic function (as we

found in silico) in a set of genetic interactions recently mea-

sured experimentally between metabolic genes (supplemen-

tary fig. S24, Supplementary Material online) (Szappanos et al.

2011).

Likewise, our analysis clarifies the linkage among fitness

contribution, pleiotropy, and network connectivity (node

degree) (Szappanos et al. 2011). That a particular gene is non-

essential but contributes to fitness implies the existence of a

number of inefficient distributed buffering mechanisms (Papp

et al. 2004) of the type observed in catabolism. Pleiotropy is in

addition strongly related to catabolism due to the participation

of currency metabolites in all biosynthetic routes of biomass

constituents. Pleiotropy is thus present in catabolic genes and

absent in biosynthetic ones (supplementary table S5,

Supplementary Material online), and its correlation with fit-

ness contribution and node degree could in the end denote

the distributed robustness of the catabolic subsystem. As ex-

pected, both pleiotropy and fitness contribution anticipate

rewiring (supplementary fig. S23, Supplementary Material

online).

We examined a second class of backgrounds that are

rather defined by (the accumulation of) neutral deletions

(fig. 5) (Deutscher et al. 2006; Pál et al. 2006). These trajec-

tories generally originated metabolisms with a higher inci-

dence of essential genes and smaller but more densely

connected genetic networks (supplementary fig. S16,

Supplementary Material online). This denotes overall a

global reduction in buffering (supplementary fig. S19,

Supplementary Material online). Neutral backgrounds also

modify environmental plasticity (i.e., capacity for robust

growth in a range of environments) in divergent ways (fig.

6A–C and supplementary figs. S20 and S21, Supplementary

Material online). Notably, genetic networks associated to

more limited plasticity present strongest genetic rewiring

that it is mainly observed in interactions between genes asso-

ciated to catabolic function (fig. 6D). The mechanistic expla-

nation is that, after usually few initial specific processing steps,

all contrasting carbon sources enter the common catabolic

core (glycolysis, TCA cycle, and respiration). Mutations that

are neutral in glucose minimal medium (affecting less efficient

catabolic routes) can nevertheless represent the most efficient

catabolic processing alternatives in other carbon sources.

The connection between environmental and genetic ro-

bustness (Meiklejohn and Hartl 2002) would further predict

that the patterns identified in response to the alteration of

genetic background could be similarly recognized in reaction

to environmental change. To test this hypothesis, we charac-

terized rewiring of a recently assembled (yeast) genetic net-

work after several DNA-damaging treatments (Guénolé et al.

2013). Conservation of the untreated network is well pre-

dicted by our model, with weak interactions being more un-

stable than strong, and positive more unstable than negative

(fig. 7B, compare with fig. 2C). Interactions among genes that

are functionally related were also more stable (fig. 7C).

Moreover, treatment-specific links occur between functionally

different genes (92% when compared with 87% in the

untreated network, �2 test, P ¼ 3� 10�15) and are more

often weak (supplementary fig. S25, Supplementary

Material online).

In summary, we showed how distinct functional structures

within the metabolic system, that is, biosynthesis and catab-

olism, determine both the architecture of the network and its

rewiring (fig. 7C and D), an interpretation that is naturally

coupled to the two main sources of robustness, that is,

redundancies and distributed compensation (Wagner 2005).
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FIG. 7.—Robustness influences rewiring patterns. (A) We identified interactions between a subset of genes, which are one-to-one orthologs between

Saccharomyces cerevisiae and Schizosaccharomyces pombe using data from Ryan et al. (2012) and classified them by strength (SN [WN] denotes those that

belong to the upper 30 [lower 70] percentile of all negative interactions, SP and WP are similarly defined, and NO denotes absence of interaction). Box colors

represent ratios between the number of times that a transition is observed and its corresponding expected value (obtained by random permutation, 10,000

times; stars indicate significance with P < 10�4). (B) Relative instability of each interaction type after environmental change (interactions were experimentally

characterized in yeast growing in rich media and in three different environments, Guénolé et al. 2013, Materials and Methods). This pattern is qualitatively

similar to the one predicted in response to modifications of genetic background (fig. 2C). (C) We observe a higher proportion of unstable interactions among

those genes functionally distant (�2 test, P = 0.003, see Materials and Methods). (D) Robustness and genetic landscape clearly distinguish catabolic from

biosynthetic modules. Each dot represents a metabolic module with size and color indicating number of genes in the module and functional category,

respectively. We show percentage of essential genes in each module (as a proxy of robustness; horizontal axis) and number of (nonessential) genes that are

nodes in the WT genetic network (as a proxy of genetic landscape; vertical axis). We further confirmed this signal with experimental data (see Materials and

Methods). (E) The architecture of catabolism and biosynthesis (left) determines the resulting genetic network and its stability (right). We show in blue the

reactions producing NAD(P)H and in orange those producing ATP; metabolites (dots) that constitute biosynthetic precursors are highlighted in red. Some

representative genes and their corresponding genetic interactions are included (color code of genetic interactions as previous figures).
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These predictions are based on global features of metabolism,

what overcomes the limitations associated to FBA modeling

(that sometimes generates artifacts due, for instance, to its

latent optimality assumptions, Szappanos et al. 2011, but

that nevertheless can provide useful conceptual guidelines

to the associated biology, Wagner 2005). Differential network

mapping should thus consider the specific mechanistic causes

of robustness in the system under study to accurately interpret

the dynamic rewiring of genetic networks in health and

disease (Ideker and Krogan 2012; Furlong 2013).

Supplementary Material

Supplementary tables S1–S6 and figures S1–S33 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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