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Early T-Cell precursor acute lymphoblastic leukemia (ETP-ALL) is a relatively newly iden-
tified subset of T-lineage ALL. There are conflicting results regarding prognosis, and the 
genetic basis of this condition is variable. Here, we summarize the current status of the 
field and discuss the role of mutations in the Polycomb Repressive Complex 2 frequently 
identified in ETP-ALL patients.
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eTP-ALL, A NOveL SUBTYPe OF ACUTe LYMPHOBLASTiC 
LeUKeMiA

In 2009, Coustan-Smith and colleagues reported a subtype of T-lineage acute lymphoblastic leuke-
mia (T-ALL) with transcriptional and surface marker profile similarities to early T-cell precursors 
(ETP-ALL) (1). Clinical characteristics of ETP-ALL include associations with lower WBC, older 
age, and a very high rate of poor MRD response or even induction failure at the end of induction 
chemotherapy.

Initial reports suggested that ETP-ALL has an extraordinarily poor long-term prognosis, with 
2- to 10-year event free/overall survival (EFS/OS) rates in the 11–40% range, compared to 84–90% 
OS for all pediatric T-ALL in a similar time frame (1–3). However, patients in these cohorts were 
not treated on the most recent treatment protocols [e.g., 1992–2006 for the St. Jude cohort and 
2001–2006 for the AIEOP cohort (1)] and included only a small number of ETP-ALL patients: 17 
in the St Jude, 13 patients in the AEIOP (1), 5 in the Tokyo Children’s Cancer Study Group L99-15 
cohort (2), 12 in the Shanghai Children’s (3), and 7 (3 pediatric and 4 adult) treated at Columbia 
University (4). Poor outcomes were also reported for adult patients with immune-phenotypic ETP-
ALL or T-ALL with a gene expression profile characteristic of ETP-ALL (5–7).

eTP-ALL iN ReLATiON TO OTHeR DeFiNiTiONS OF 
iMMATURe T-ALL

Early T-cell precursor acute lymphoblastic leukemia is defined based on immunophenotyping 
(CD1a-negative, CD8-negative, weak CD5 expression with less than 75% positive blasts, and expres-
sion of one or more of the following myeloid or stem cell markers on at least 25% of lymphoblasts: 
CD117, CD34, HLA-DR, CD13, CD33, CD11b, and/or CD65). It is noteworthy that other definitions 
of very immature T-ALL subtypes have been proposed. In an important study, using array-based 
genome-wide expression profiling, Ferrando et al. found that T-ALL with LYL1 expression clusters 
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TABLe 1 | Overlap between different methods to classify immature 
T-lineage ALL [data from Ref. (13)].

There is excellent overlap between clustering and PAM based on a defined ETP-ALL 
signature. Stringent ETP-ALL criteria including CD5 low criterion exclude many samples 
classified as immature by gene expression profile. Relaxing the CD5 criterion (“near 
ETP”) includes a number of samples that do not display an ETP-ALL expression profile. 
PAM, prediction analysis of microarrays.
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separate from other T-ALL subtypes and show immunopheno-
typically immature features (8). The Meijerink-group identified 
an immature subgroup of T-ALL with high MEF2C expression, 
which based on expression profiling clustered separately from 
other T-ALL cases and was enriched for ETP-ALL cases (9). 
This same laboratory went on to further characterize the overlap 
between ETP-ALL defined by gene expression profile, ETP-ALL 
based on immunophenotyping, MEF2C-high T-ALL, and a third 
group of immature T-ALL originally described by Gutierrez et al. 
defined by absence of biallelic TCRgamma deletion (ABD) (10). 
Poor prognosis for T-ALL and T-lymphoblastic lymphoma with 
ABD was also found in two other studies (11, 12). Meijerink 
and colleagues systematically compared the different definitions 
of immature T-lineage ALL. There is excellent overlap between 
the immature cluster and ETP-ALL as defined by an ETP-ALL 
gene expression signature (13). There is less overlap between the 
immature cluster and ETP-ALL defined by immunophenotyping. 
Inclusion of the CD5 marker in flow-cytometry panel reduced 
the number of cases classified as phenotypic ETP-ALL. Omission 
of the CD5 marker improved the number of expression-based 
ETP-ALL cases that also were immunophenotypically defined 
as ETP-ALL. However, the less stringent flow criteria also led 
to the classification as immunophenotypic ETP-ALL of samples 
without an ETP-ALL expression profile. There is also imperfect 
overlap between samples with ABD and immature as well as 
transcriptionally defined ETP-ALL.

In summary, there are four potential classification meth-
ods for early/undifferentiated T-lineage ALL. (1) Immature 
expression profile cluster, (2) ETP-ALL expression profile, (3) 
ETP-ALL immunophenotype, and (4) ABD. A MEF2C-high 
immature cluster seems to mostly overlap with transcription-
ally defined ETP-ALL, and a case has been made that this is 
one biological entity (13). The ETP-ALL phenotype depends on 
complex criteria, and single features such as the CD5 strongly 
influence classification, limiting sensitivity and specificity of 
the flow panel. ABD seems to only partially overlap with the 
other subgroups based on the data reported in Ref. (10, 13). The 
overlap between the different diagnostic samples in Ref. (13) is 
shown in Table 1.

iMPROveD OUTCOMeS iN eTP-ALL iN 
MORe ReCeNT STUDieS

More recent studies from Europe and the US demonstrated a 
substantially better survival for patients with immature T-lineage 
ALL, compared to the reports referenced above. The Dutch 
group reported non-inferior survival of immature ALL in their 
study using all four definitions outlined above (13). Patrick et al. 
recently reported results for patients treated in England and 
Wales. In this series of patients, treated on protocol UKALL 2003 
between 2003 and 2011, results for patients with phenotypic ETP-
ALL were only slightly and non-significantly worse than results 
for cases with typical T-ALL phenotype (14). To address the 
outcome of different T-ALL subsets with contemporary therapy, 
the Children’s Oncology Group (COG) used a single central 
reference laboratory to classify 1144 T-ALL cases enrolled on 
the COG AALL0434 clinical trial between 2007 and 2014 as ETP 

[methodology harmonized with the approach used by Coustan-
Smith et  al. (1)], near ETP (ETP-ALL flow profile but positive 
CD5 staining), and not ETP. The five-year EFS/OS for 130 (11.3%) 
ETP-ALL cases was 87.0/93.0%, compared to 84.4/91.6% for 195 
(17.0%) near-ETP-ALL cases, and 86.9/92.0% for 819 (71.6%) 
not-ETP cases, showing that ETP-ALL is not associated with an 
inferior outcome with contemporary treatment regimens (15).

There are several possible reasons for these discrepant out-
comes. One obvious reason is that the flow-cytometric definition 
of this subtype of ALL is not straightforward. In theory, differ-
ences of how this patient population is defined could account 
for differences in outcome. For example, 69% of patients in the 
UKALL 2003 ETP-ALL cohort, which reported good outcomes 
for ETP-ALL, were classified as “probable ETP-ALL” (with CD5 
staining either positive or unavailable). Only 31% were classi-
fied as “definitive ETP-ALL,” again speaking to the difficulty of 
accurately defining this patient population. Outcomes showed 
a non-statistically significant trend toward lower EFS (76.7 vs. 
84.6%) and OS (82.4 vs. 90.9%) for the group of ETP-ALL (“prob-
able” + “definitive”), but the absolute number of definitive ETP-
ALL patients was small (11 patients) and outcomes for this group 
were not reported separately. However, it should be noted again 
that the recent US data were classified by the reference laboratory 
that initially reported ETP-ALL. In the Dutch study, outcomes 
were non-inferior to typical T-ALL using gene expression-based 
and immune-phenotypic classification criteria as well as ABD 
criteria.

A second possible reason may be that more recent treatment 
regimens are in fact superior to older regimens. An important 
aspect of more recent protocols is the implementation of MRD-
based, risk-adapted treatment strategies. Analysis of clinical and 
outcomes characteristics of ETP-ALL patients treated on the 
COG ALL0434 and UKALL 2003 showed that very few ETP-ALL 
patients fell into the low-MRD group, similar to what has been 
observed by other investigators. Importantly, MRD response at 
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TABLe 2 | Survival data from published studies in eTP-ALL and ABD-ALL.

Reference Cohort Year Age 
(years)

eFS (%) OS (%) years follow 
up

Classification

ETP-ALL (pediatric, initial reports)
(1) US/SJCRH 2009 0.5–18.9 19 22 10 FC

(1) Italy/AEIOP b 45 22 2 FC

(2) Japan/Tokyo Children’s Cancer Study 
Group L99-15

2012 1–18 40 ~70 4 FCa

(3) China/Shanghai Children’s Medical Center 2012 c 11 13 3 FC

(4) US/Columbia University 2013 7–49 14 86 5 FC

ABD

(10) US/COG, DFCI 2010 2–17 25 25 PCR

(11) Taiwan/TPOG 2012 c 43 46 10 PCR

(12) France/EuroLB02 2012 <20 0 0 3 PCR

ETP-ALL (pediatric, recent reports)

(13) Holland/DCOG 2014 1.5–17.8 70 c 5 multiple

(15) US/COG 2014 c 87 93 5 FC

(14) UK/UKALL2003 2014 1.0–24.9 77 82 5 FC

Adult data

(5) Germany/GMALL 2012 d c 35 10 FC

(6) Europe/E2993 ECOG 2013 d c 34 5 GEP

(7) US/MDACC 2016 13–79 f g 5 FC

(46) France/GRAALL 2016 e 25 31 5 FC

The study by Callens et al. describes four cases of lymphoblastic lymphoma with ABD.
ABD, absence of biallelic deletion of the gamma/delta T-cell receptor; FC, flow cytometry; GEP, Gene expression profiling.
aCustom score involving flow cytometry.
b62% 1–9 years, 38% >10 years.
cNot available.
dAdult patients, exact age range not available.
eMedian age 30.5.
fMedian OS = 17 months.
gMedian EFS = 20 months.
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end consolidation on newer trials is not clearly different from 
MRD response observed in other types of T-ALL, suggesting that 
some of the poor therapeutic response observed in ETP-ALL may 
be related to the specific drugs used during induction chemother-
apy. It is tempting to speculate that resistance to corticosteroids in 
particular may be important in the poor response of ETP-ALL to 
induction chemotherapy. Yet, early identification of these patients 
based on intermediate or high MRD, and increased intensity of 
therapy may have offset the higher-risk biology of ETP-ALL, 
resulting in the good outcomes in these two trials. In addition, 
differences in choice of agents may influence results. As pointed 
out by Zuurbier et al., COALL-97 includes high-dose Cytarabine 
(13). A subset of patients on COG ALL0434 was randomized to 
receive Nelarabine. The precise impact of including these drugs 
on outcome is presently not known. The outcomes for the differ-
ent cohorts are summarized in Table 2.

GeNeTiC HeTeROGeNeiTY AND 
OUTCOMe

A third potential reason lies in the genetic heterogeneity of ETP-
ALL. The seminal study by Zhang et al. (16) identified a very high 
rate of mutations in certain functional “clusters” of genes. These 
include signaling-associated genes (particularly Il7R, NRAS, 

KRAS, FLT3, JAK1, JAK3, and SH2B3), developmental genes 
(including genes encoding the transcription factors GATA3, 
RUNX1, ETV6, and IKZF1), and epigenetic modifiers [includ-
ing inactivating alterations in components of the Polycomb 
Repressive Complex 2 (PRC2)] (16). The frequencies for altera-
tions individual components among ETP-ALL were as follows: 
SUZ12 11/64 cases, EED 8/64 cases, EZH2 10/64 cases, any PRC2 
alteration 26/64 cases. Of note, three out of the ETP-ALL patients 
had lesions in two PRC2 member. Fifteen out of a total of 29 PRC2 
alterations in ETP-ALL were deletions, strongly suggesting they 
are inactivating. Similarly, 6 out of 6 PRC2-alterations found in 
42 cases of typical T-ALL were deletions. While the EZH2 muta-
tions found were not all individually functionally characterized 
in this study, based on computer modeling they are thought to be 
inactivating (16). This is in contrast to the activating mutations of 
EZH2 described in B-lineage lymphomas (17, 18). The discovery 
(whole genome sequencing) cohort in this study consisted of a 
limited number of 12 patients, with targeted sequencing only in 
the larger validation cohort. A larger cohort allowing for a more 
complete definition of the genomic landscape of ETP-ALL would 
be very informative. In multi-variant analysis, mutations in PRC2 
members were found to be an independent predictor of poor 
outcome. It is possible that outcomes differences between ETP-
ALL patient cohorts could read out differences in the underlying 
genomic landscape. The mutational landscape for the patients in 
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the study by Wood et al. (15) is currently being investigated (19). 
Preliminary analyses of patients in the UKALL2003 cohort sug-
gest ETP-ALL patients in this cohort showed some of the genetic 
characteristics of ETP-ALL (less frequent NOTCH1/FBXW7 
mutations, no LMO1/2 or TLX1 mutations, and increased rate 
of KMT2A translocations). However, alterations of PRC2 com-
ponents were not reported for this cohort. It is also noteworthy 
that in adult ETP-ALL, in contrast to pediatric cases, recurrent 
DNMT3A alterations were found in 16% (20) and 7.5% (6). 
This is in keeping with low proportions of DNMT3A mutations 
in pediatric acute leukemia (21, 22) and with high proportion 
of DNMT3A alterations in age-related clonal hematopoiesis of 
indeterminate potential (23).

A MURiNe MODeL TO STUDY THe 
ROLe OF PRC2 iN eTP-ALL

The association between survival and PRC2 alterations in the 
study by Zhang et al. (16) was noteworthy. PRC2 is a multipro-
tein complex with important roles in cancer and development. 
PRC2 consists of the core components EZH2, EED, and SUZ12 
(24). PRC2 di- and tri-methylates histone 3 on lysine 27, a 
genetic modification associated with low or no transcriptional 
output. Importantly, high-level expression of EZH2 has been 
linked to poor outcomes in solid tumors, but recent reports 
have cast doubt on H3K27me3 as the culprit (25, 26). PRC2-
independent roles for EZH2 have been reported, illustrating the 
complexity of PRC2 biology (25, 27, 28). Wild-type EZH2 and 
naturally occurring hyperactive mutants have been found to 
be important in the development of Germinal center B-lineage 
lymphomas, and EZH2 is a promising target for small molecule 
inhibition in this disease (17, 18). An epistatic relationship 
between PRC2 and the SWI/SNF chromatin remodeling com-
plex (also known as BAF complex) has been reported (29, 30). 
Given that approximately 20% of human cancer has alterations 
in SWI/SNF (31, 32), there is growing interest in EZH2 as a 
therapeutic target (29, 30, 32).

Despite these bona-fide oncogene credentials, recurrent 
inactivating alterations of PRC2 genes have been described in 
ETP-ALL (16) and other hematologic and non-hematologic 
malignancies (33–41), creating somewhat of a paradox: PRC2 can 
have oncogenic and tumor-suppressive roles in cancer depending 
on cellular context. How precisely EZH2/PRC2 exert their onco-
genic and tumor suppressor roles mechanistically is incompletely 
understood. A better understanding of the molecular details 
would likely aid in the development of targeted therapies.

To clarify the functional role of PRC2 in T-ALL, we recently 
generated a murine model of ETP-ALL that allows for the 
comparison of leukemias with and without genetic compromise 
in PRC2 function (42). Since RAS-activation occurs frequently 
in ETP-ALL, we overexpressed oncogenic mutant NRAS in 
immature hematopoietic cells. We used mice with homozygously 
floxed alleles for the PRC2 components Eed and Ezh2, allowing 
homozygous inactivation of either PRC2-member. The mice also 
contained homozygously deleted Cdkn2a alleles, to facilitate 
leukemogenesis [genetic Cdkn2a inactivation is very com-
mon in T-ALL, is not typical for human ETP-ALL (43), but is 

required for successful establishment of the model]. Cells were 
then differentiated toward a T-cell fate on stromal cells provid-
ing a Notch-signal, and injected into lethally irradiated mice. We 
found that 100% of mice developed leukemia/lymphoma that 
recapitulated some features of human ETP-ALL (e.g., lack of CD4 
and CD8 expression in most samples, low expression of CD5, 
and co-expression of myeloid markers). Inactivation of Ezh2 
or Eed in this model significantly shortened leukemia latency. 
The findings from our model are summarized in Figure 1. We 
noted that Ezh2 inactivation is associated with the expression of 
a stem cell gene expression program. This includes HoxA9, and 
genes correlated with HOXA9 in human leukemia. Interestingly, 
three recent reports suggest a prognostic role for HOXA9 in 
ETP-ALL: a subset of T-ALL patients enrolled in AALL00434 
was analyzed, and the authors concluded that patients with the 
combination of MLL-rearrangement, high HOXA9 expression, 
and ETP-ALL (by expression profiling) had a significantly worse 
outcome (44). Similarly, T-ALL patients with the CALM-AF10 
fusion, which is associated with high HOXA expression (45), had 
a worse prognosis if blasts showed an immature phenotype (46). 
In a French cohort, the combination of high HOXA expression 
and ETP-ALL immunophenotype showed significantly inferior 
outcomes. In this study, a number of the high HOXA expressors 
were explained by chromosomal translocations, but many were 
not. The PRC2 mutational status in this study was not investi-
gated (47). These data provide a good rationale for paying special 
attention to the combination of ETP-ALL and HOXA expression 
in future studies.

Our murine study also identified deregulation of growth 
and survival signaling as a direct consequence of loss or PRC2 
components. Similarly to what was reported by De Raedt et al. 
and others in NF1-associated sarcomas (36), we found that in 
a malignancy with activated RAS signaling, a RAS-downstream 
signature is further enriched by compromise in PRC2 function. 
In addition, we found deregulated expression of cytokines and 
their receptors in response to Ezh2-inactivation. Il6ra is a known 
PRC2 silencing target, and its derepression in our model was 
accompanied by exaggerated STAT3Y705 phosphorylation in 
response to IL6. The clinically approved JAK2 inhibitor ruxoli-
tinib inhibited growth in our model in vitro. Importantly, David 
Teachy’s group recently demonstrated pre-clinical efficacy of rux-
olitinib in human ETP-ALL samples (48). Our data suggest that 
even samples without obvious activating mutations in the JAK/
STAT signaling pathway may respond to JAK/STAT small mol-
ecule inhibitors. This was indeed the case for two patient samples 
without JAK/STAT pathway mutation, but with an inactivating 
PRC2 component mutation, in the xeongraft study by Maude et al 
(48). The incorporation of JAK-inhibitors in ETP-ALL should be 
evaluated in more detail in pre-clinical trials and possibly also in 
carefully designed clinical studies, with a thoughtful selection of 
patients most likely to benefit.

ADDiTiONAL GeNeTiC LeSiONS iN  
eTP-ALL

It is noteworthy that certain genetic lesions are inversely corre-
lated with PRC2 alterations. These include mutations in GATA3, 
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FiGURe 1 | Cellular consequences of compromised PRC2 function in eTP-ALL. Inactivation of PRC2 components in ETP-ALL results in cellular loss of global 
cellular H3K27me3, a chromatin mark associated with silent genes. A subset of these genes show increased transcription. Noteworthy groups of target genes with 
increased expression in Ras-transformed cells with compromised PRC2 function include transcription factors and epigenetic regulators associated with early 
hematopoiesis (e.g., HoxA, Gata2, and Bmi1) and growth factors and their receptors (e.g., Il6ra).
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which also carry a poor prognosis (16). It is tempting to speculate 
that GATA3 and PRC2 collaborate in T-cell development, and 
that their inactivation in ETP-ALL has some degree of functional 
redundancy. Furthermore, it is interesting to note that PRC2 
alterations and FLT3 alterations are mutually exclusive in the 
study by Zhang et al. (16). More experimental work and larger 
studies that interrogate these suggestive molecular findings and 
correlate molecular alterations with survival data seem warranted.

Based on the data available today, alterations in treatment are 
not warranted for children with an ETP-ALL immunophenotype 
detected at the time of initial diagnosis (and data in adults may 
be too sparse to draw definitive conclusions). However, there is a 
higher rate of poor early response, and overt induction failure in 
ETP-ALL, and most relapses that occur in ETP-ALL occur early 
in therapy. Thus, there is a subset of ETP-ALL patient (and/or 
those with an immature immunophenotype) who relapse quickly 
with extremely refractory disease, or never go into remission in 
the first place. This raises the following pressing questions for 
the field:

 1. Is flow cytometry plus early treatment response the best strat-
egy to identify high-risk patients, or is there a less equivocal 
marker (ETP-transcriptional signature? PRC2 mutation? 
Kinase signature?) that can identify the group of patients with 
ETP-ALL and a poor outcome?

 2. Assuming that ultra-high-risk patients can be identified at 
diagnosis or very early in therapy can advances in understand-
ing the biology of the disease pave the way toward targeted 
and more effective therapies?

A BROADeR ROLe FOR POLYCOMB 
GeNeS iN TUMOR BiOLOGY?

The combination of PRC2 inactivation and oncogenic RAS 
pathway activation now has been observed in several contexts: 
NF1-associated malignant peripheral nerve sheath tumors 
(MPNST) (36–38), juvenile myelomonocytic leukemia 
(JMML) (39, 40), megakaryocytic AML of Down syndrome 
(41), and ETP-ALL (16). In addition, mutations in genes other 
than EED, SUZ12, and EZH2 with a documented effect on 
canonical PRC2 function are inactivated in cancer (including 
hematologic neoplasms). This includes, e.g., Jarid2 (49–51) 
and Asxl1 (52). Finally, genes involved in Polycomb Repressive 
Complex 1 have shown tumor suppressor function in model 
systems (53, 54). In summary, these findings suggest com-
monalities between the roles of different Polycomb genes in 
cancer that may potentially be targetable. As an example, the 
chromatin-binding protein BRD4 has been suggested as such 
a therapeutic target (36). The careful study of patient material 
and genetic models holds great promise in this regard. We 
are optimistic that a deeper understanding of the molecular 
mechanisms underlying this collaboration will result in 
successful future clinical trials and ultimately in improved 
outcomes for patients.
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