

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Contents lists available at ScienceDirect

Clinical Nutrition

Letter to the Editor

Nutritional management and clinical outcome of critically ill patients with COVID-19: A retrospective study in a tertiary hospital

Keywords: COVID-19 SARS-CoV-2 Vit D Viral load

Dear Editor,

We review with interest and congratulate the study by Velasco et al. [1] for its relevance. It is about the nutritional management and clinical outcome of critically ill patients with coronavirus disease 2019 (COVID-2019). The study sought to describe the characteristics of patients treated at a tertiary hospital in Madrid.

Our attention was drawn to the fact that in their methods, Velasco et al. [1] did not specify the type of test performed for the diagnosis of COVID-19. The detection of viral nucleic acid from the reverse transcription polymerase chain reaction (RT-PCR), is considered the gold standard for the diagnosis of COVID-19. This technique is also used to obtain an indirect viral load value, which may be associated with clinical outcomes in hospitalized patients [2]. Furthermore, the quantification of viral load can be correlated with infectivity, disease phenotype, morbidity and mortality

[2]. Thus, the inclusion of this information can help in the patient's prognosis and in the conduct to be performed.

Regarding the laboratory variables collected, Velasco et al. [1] mention that the d-dimer levels presented one of the highest values during the first week of hospitalization in the intensive care unit (ICU). Evidence suggests that critically ill COVID-19 patients who have high viral loads may also have indicators of coagulation activation (D-dimer) and elevated pro-inflammatory cytokines [3,4]. Thus, the viral load associated with d-dimer levels can be another item used to identify the severity of these individuals [3,4].

In the structured form used by the authors, we noticed the absence of a relevant item, the investigation of nutritional supplementation prior to contamination, since this can increase the defense of the immune system, and interfere with the severity of the disease [5]. Regarding vitamin D (vit D), this is mentioned in Table 1 and brings the information that 67 patients had vitamin D deficiency, and among these, 21 died. Vit D deficiency is prevalent in COVID-19 patients and has been associated with an increase in ICU length of stay [6]. Thus, its monitoring and classification becomes important, which can be at three levels: insufficient, deficient and severe, significantly interfering with the patient's health status [6].

We confirm that the present study brings an important scientific and clinical contribution to the current moment. In times of a pandemic, it is essential to investigate the nutritional treatment

Table 1Influence of baseline characteristics, nutritional treatment and analytical data on mortality.

Variable	Overall	Survived	Died	P value
Number patients	176	112	64	
Age, (years) mean ± SD	60.1 ± 13.5	57.3 ± 14.4	66.1 ± 10.2	<0.001*
Male, n (%)	128 (72.7)	78 (69.6)	50 (78.1)	0.224
BMI, mean \pm SD	29.9 ± 5.4	29.9 ± 5.3	29.8 ± 5.6	0.613
Severityrowhead	23.3 ± 3.4	23.3 ± 3.3	23.0 ± 3.0	0.015
PaFi, median (IQR)	90 (42)	89.5 (43.5)	90 (40)	0.874
Charlson, median (IQR)	1(2)	1 (2)	2(3)	0.001*
APACHE, median (IQR)	15 (7)	14 (6)	16 (7.5)	0.023*
SOFA at admission,	5 (3)	4(3)	6 (4)	0.025
median (IQR)	3 (3)	4(3)	0 (4)	0.010
Comorbiditiesrowhead				
HTA, n (%)	85 (49.1)	45 (40.9)	40 (63.5)	0.004*
Obesity grade I, n (%)	40 (23.4)	31 (28.2)	9 (14.8)	0.047*
Diabetes mellitus, n (%)	35 (20.3)	17 (15.6)	18 (28.6)	0.042*
Dyslipidaemia, n (%)	71 (41.4)	43 (39.1)	29 (45.3)	0.422
COPD, n (%)	29 (17.1)	19 (17.6)	10 (16.1)	0.807
Oncological disease, n	16 (9.4)	10 (9.2)	6 (9.7)	0.914
(%)				
Inmunological disease, n (%)	6 (3.5)	2 (1.8)	4 (6.5)	0.115
Nutritional medical therapyrowhead				
Time to start (hours),	48 (48)	48 (24)	48 (48)	0.268
median (IQR)	40 (40)	40 (24)	40 (40)	0.200
At day 4throwhead				
% calories administered of estimated,	81.5 ± 34.4	79.9 ± 34.1	84.1 ± 34.9	0.244
mean \pm SD				
% protein administered	72.7 ± 30.2	71.3 ± 30.6	75 ± 29.6	0.435
of estimated,				
mean \pm SD				
At day 7throwhead				
% calories administered	89.7 ± 32.8	88.5 ± 34.3	91.8 ± 30.3	0.326
of estimated,				
mean \pm SD				
% protein administered	81.4 ± 31.6	80.1 ± 33.4	83.5 ± 28.5	0.553
of estimated,				
mean \pm SD				
Laboratory datarowhead				
D dimer, median (IQR)	3173 (7752)	2552 (5102)	5957 (9124)	<0.001*
Fibrinogen, median	845 (202)	851 (212)	832 (182)	0.530
(IQR)				
CRP, median (IQR)	23.3 (16.1)	23.6 (15.6)	23 (17.6)	0.564
Ferritin, median (IQR)	1387 (1933)	1409 (1997)	1347 (1914)	0.667
Mg, median (IQR)	2 (0.3)	2 (0.3)	1.9 (0.45)	0.544
P, median (IQR)	2.1 (1)	2.1 (1.1)	2(1)	0.741
Triglyceride, median (IQR)	309 (250)	304 (234)	325 (264)	0.590
Hypertriglyceridemia, n	119 (83.8)	74 (78.7)	45 (93.8)	0.022*
(%)	, ,	, ,	, ,	0.022
Hyperglycaemia, n (%)	137 (77.8)	77 (69)	60 (94)	<0.001*
Folate deficiency, n (%)	30 (27.3)	18 (23.4)	12 (36.4)	0.161
Vit D deficiency, n (%)	67 (72)	46 (67.6)	21 (84)	0.119
*n < 0.05 UTA: hyportongian COPD: chronic obstructive nulmonary disease				

^{*}p < 0.05, HTA: hypertension, COPD: chronic obstructive pulmonary disease.

used in critically ill patients with COVID-19, as this evidence contributes to the decision-making of the team involved in the treatment.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions

MERAS idealized the letter, writing of the manuscript. APSS, VONS and WMAB writing and revision of the manuscript. All authors read and approved the final version the manuscript.

Conflicts of interest

The authors have no conflicts of interest to report.

References

- Velasco C, Camblor M, Cede J, Arhip L, Motilla M, Carrascal ML, et al. Manejo nutricional e desfecho clínico de pacientes gravemente doentes com COVID-19: estudo retrospectivo em hospital terciário. Clin Nutr [Internet] 2021. https://doi.org/10.1016/j.clnu.2021.10.020.
- [2] Calle C De, Lalueza A, Mancheño-losa M, Calle GM, Lora-tamayo J, Arrieta E, et al. Impact of viral load at admission on the development of respiratory failure in hospitalized patients with SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021;Il. Available from: https://doi.org/10.1007/s10096-020-04150-w.
- [3] Atique M, Ghafoor A, Javed R, Fatima N, Yousaf A, Zahra S. Correlation of viral load with the clinical and biochemical profiles of COVID-19 patients. Cureus 2021;13(7). Available from: https://doi.org/10.7759/cureus.16655.
- [4] Chirmule N, Khare R, Nair P, Desai B, Nerurkar V, Gaur A, et al. Predicting the severity of disease progression in COVID-19 at the individual and population level: a mathematical model. Clin Exp Pharmacol 2021;11(5). Available from: https://doi.org/10.1101/2021.04.01.21254804.
- [5] Lordan R, Rando Cg H. Dietary supplements and nutraceuticals under investigation for. ASM Journals 2021;6(3):1–22. Available from: https://doi.org/10.1128/ mSystems.00122-21.
- [6] Pereira M, Damascena AD, Mirella L, Azevedo G. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr [Internet] 2022;62(5):1308-16. Available from: https://doi.org/10.1080/ 10408398.2020.1841090.

Maria Eduarda Rodrigues Alves dos Santos* Centro Universitário UNIFACOL - Centro Integrado de Tecnologias em Neurociência, Vitória de Santo Antão, PE, Brazil

Viviane de Oliveira Nogueira Souza Núcleo de Nutrição — Universidade Federal de Pernambuco, Centro Acadêmico de Vitória de Santo Antão, PE, Brazil

Ana Patrícia da Silva Souza

Programa de Pós Graduação em Neuropsiquiatria e Ciências Do Comportamento - Universidade Federal de Pernambuco, Recife, PE, Brazil

Waleska Maria Almeida Barros Centro Universitário UNIFACOL - Centro Integrado de Tecnologias em Neurociência - Vitória de Santo Antão, PE, Brazil

Programa de Pós Graduação em Neuropsiquiatria e Ciências Do Comportamento - Universidade Federal de Pernambuco, Recife, PE, Brazil

* Corresponding author. Centro Universitário Escritor Osman Da Costa Lins- UNIFACOL, Rua Pedro Ribeiro, 85- Universitário, Vitória de Santos Antão, PE, 55612-285, Brazil.

E-mail addresses: eduardaarodriguesz@gmail.com, eduardaarodriguesztcc@gmail.com (M.E.R.A. dos Santos).

14 April 2022