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THE BIGGER PICTURE Most knowledge generated through scientific enquiry in materials domain is pre-
sented in the form of unstructured data. Among the available sources such as online websites, digital
data, and publications, peer-reviewed journals serve as the undisputed source of reliable information
regarding materials synthesis, characterization, and properties. Despite the availability of large data, only
a limited fraction is compiled in the form of machine-readable databases, most of which are manually
curated. Here, applying natural language processing on a large corpus of journal publications on inorganic
glasses, we present a framework of information extraction from text and images, which answers queries
related to synthesis and characterization techniques, and even chemical elements used. The scalable
approach presented here can be applied to other domains for efficient information retrieval from scientific
literature.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Most of the knowledge in materials science literature is in the form of unstructured data such as text and im-
ages. Here, we present a framework employing natural language processing, which automates text and im-
age comprehension and precision knowledge extraction from inorganic glasses’ literature. The abstracts are
automatically categorized using latent Dirichlet allocation (LDA) to classify and search semantically linked
publications. Similarly, a comprehensive summary of images and plots is presented using the caption cluster
plot (CCP), providing direct access to images buried in the papers. Finally, we combine the LDA andCCPwith
chemical elements to present an elemental map, a topical and image-wise distribution of elements occurring
in the literature. Overall, the framework presented here can be a generic and powerful tool to extract and
disseminate material-specific information on composition–structure–processing–property dataspaces,
allowing insights into fundamental problems relevant to the materials science community and accelerated
materials discovery.
INTRODUCTION

The overwhelmingly large amount of knowledge generated

through scientific enquiry is mostly stored as unstructured data

in the form of texts and images. These range from expository ar-

chives, such as books, journals, and dissertations, to condensed

representations, such as handbooks andmanuals. Materials sci-

ence, being a highly interdisciplinary area, commands a large
This is an open access article und
repository of scientific publications. However, only a limited frac-

tion of this knowledge is collected and curated in the form of

structured data, for example, a database of composition–struc-

ture–property relationships. The information on material science

is increasingly siloed and simply too large for the efficient utiliza-

tion of any one individual or group. Just as in all other branches of

science, the materials community is afflicted by the curse of

knowledge incommensurate with the available information.1,2
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Thus, the accessibility to the vast majority of knowledge in the

literature is limited, as it (1) is time-consuming to manually read

and analyze texts and images, and (2) requires a domain expert

to understand, interpret, and summarize the information.

Recent advancements in natural language processing (NLP)

provide a promising solution to this problem through the automa-

tion of text comprehension, querying, and knowledge extraction

from scientific texts. NLP has been applied extensively to scien-

tific literature specifically in biological sciences for more than 2

decades.3–5 A biomedical-specific language model, namely,

BioBERT,4 which is used extensively for biomedical text mining,

stands as a testimony to the advances and contributions of NLP

in biological sciences. In contrast, the applications of NLP toma-

terials science remain sparse.6–8 Similar to biological sciences,

the study of materials present some unique challenges to the

direct application of NLP to mine text data due to the domain-

specific jargons and lack of uniform conventions in scientific

writing.6,9 Despite these challenges, recent studies have shown

that NLP can indeed be used to address some open challenges

in materials science such as novel materials discovery,7 unravel-

ing synthesis pathways,10 and extracting composition–property

databases.11

Cole et al12–14 have demonstrated the automated generation

of databases for magnetic15 and battery materials11 using

ChemDataExtractor,16 which has also been used in predicting

phase diagrams.17 Olivetti et al6,10,18 have used NLP together

with artificial neural networks to predict synthesis parameters

of inorganic oxides10,19,20 and in extracting the properties of ze-

olites21 and cementitious materials.22 Jain et al7 have demon-

strated the use of word vectors in converting semantic queries

to vector algebra and extended the method to the prediction of

thermoelectrics. Ceder et al10 have shown the extraction of auto-

mated synthesis recipes of inorganic oxides through a semi-su-

pervised approach. Recently, Matscholar9 has been introduced

as a comprehensive material science search and discovery en-

gine that is able to automatically identify materials, properties,

characterization methods, phase descriptors, synthesis

methods, and applications from a given text through a custom-

built named entity recognition (NER) system. These develop-

ments suggest that artificial intelligence approaches using NLP

can be a promising route to condense and represent knowledge

in materials science leading to novel materials discovery and

development.

Very few studies have, however, focused on extracting infor-

mation related to images and plots in literature.23,24 The adage,

‘‘a picture is worth a thousand words,’’ is even more relevant

to scientific literature, as images hold the most crucial informa-

tion related to scientific hypothesis and theories.25 Till date, there

has been no framework that allows direct search or compilation

of images presented in scientific literature. Further, the images of

a manuscript should be read in conjunction with the text to un-

derstand the context. While many of the applications of NLP in

material science have focused on extraction and processing of

textual information, no effort has been made thus far to connect

this textual information with the images and plots to allow knowl-

edge dissemination in a holistic manner.

Here, we demonstrate a comprehensive NLP framework that

extracts information from a large corpus of text and images to
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provide highly specific, nuanced, and automated exploration of

materials science literature. Specifically, we analyze the texts

and images from approximately 100,000 research articles in the

area of glasses, an archetypical disordered material. Glasses

are one of themost commonandwidely used among engineering

materials with uses spanning architectural, functional, and

biomedical applications.26,27 Recently, machine learning (ML)

approaches have been used to develop predictivemodels for op-

tical, electronic, and mechanical properties of glasses.26,28–38

Several recent works have shared composition–property data-

bases along with the trained ML models.28,30,36,39 For instance,

the software package, Python for Glass Genomics (PyGGi), has

a large composition–property database, ML models for predict-

ing nine key properties and an optimization framework for tar-

geted glass discovery.40 These models, however, have relied

on existing databases for their training and analysis,41 and hence

havebeen restricted toparameter predictions through regression

models. It is well known that the properties of glasses, a nonequi-

librium state, are not just a function of composition, but are also

fundamentally influenced by the processing history and testing

conditions.27,42–44

Through a combination of NLP algorithms, chemical entity

extraction protocols, and visualization tools, we show that the

answers to very specific questions on glass literature can be

answered. These include material/property specific questions

as well as broader community issues, such as the following:

1. What are the common microstructural characterizations

for glasses?

2. Are more of the papers published in glass science theoret-

ical as opposed to experimental?

3. Where is americium used in glasses?

4. What chemical elements have been used in LEDs?

5. Are there photoluminescence studies of bioactive glasses

that contain Fluorine?

6. Can we find papers on optical glasses that have been

manufactured using solid state synthesis?

Overall, the generic framework developed here allow highly

specific exploration of scientific literature using the abstracts,

text, and image captions of publications.
RESULTS

Topic modeling
To demonstrate the proposed approach, we downloaded more

than 600,000 research articles, full texts, and images related to

the keyword ‘‘oxide glasses’’ and ‘‘materials science’’ using

the CrossRef metadata query API45 and the Elsevier Science

Direct API.46 Following this, supervised learning was performed

on the abstracts of the manuscripts to filter them (see Methods

for details). Abstracts are the most information-dense organ of

a scientific paper, containing information on the material under

study, property being explored, and characterization/synthesis

methods being used in service of the investigation. As such,

they are unlikely to contain spurious information or refer to mate-

rials or properties not mentioned in the text. This specificity

makes an abstract the most useful part of a text, and it is there-

fore not surprising that many NLP studies on materials have only



LDA Cluster plot of 94207 Abstracts with 15 topics

Topic Label
1 Luminescence studies

2 Dielectric properties

3 Spectroscopic properties

4 Irradiation studies

5 Thin films

6 Methodological studies

7 Non-linear optical properties

8 Bioactive glasses

9 Electrical properties

10 Glass nanoparticles

11 Rare earth glasses

12 LEDs and Phosphors

13 Glass ceramics

14 Chemical properties

15 Miscellaneous

A B

C

Figure 1. LDA plot of the abstracts
(A) The LDA plot presents the clusters of vectorized abstracts colored based on topics identified by LDA.

(B) The number of abstracts on each topic as identified by LDA.

(C) The descriptive label assigned to LDA topics by a human expert.
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taken paper abstracts as the input.7 Based on the supervised

learning, approximately 100,000 research articles were classi-

fied as relevant to the topic ‘‘glass,’’ with precision, accuracy,

and recall of 92%, 86%, and 67%, respectively, on the test

set. Note that the model with the highest recall was selected to

include as many glass-related articles as possible. Although

not an exhaustive list, the total number of articles downloaded

are in the same range as the number of texts identified in other

comprehensive literature surveys on glass.47,48

An unsupervised NLP algorithm called the latent

Dirichlet allocation49 (LDA) was used to automatically classify

the corpus into 15 ‘‘topics,’’ where each topic is defined by the

set of words that have the highest probability of occurrencewithin

the topic. LDA allows a rapid and efficient organization of the text

corpuswithminimal humansupervision—acapabilityprovidedby

no other automated tool available today. The categories gener-

ated by LDA are visualized in the LDA plot in Figure 1A. Each ab-

stract in the corpus is vectorized using Term Frequency–Inverse

Document Frequency50 (TFIDF), which maps each document in

the corpus to a unique vector in a higher dimensional space. T-

distributed stochastic neighbor embedding (t-SNE) projects

these vectors to a 2-dimensional (2D) plane such that vectors

with the highest cosine similarity group together. The color of a

pixel is determined by the topic number assigned to it by LDA.

It is seen immediately from Figure 1A that the points with

similar color are grouped together. This suggests that the TFIDF

vectorization followed by t-SNE clustering is able to group the

abstracts with similar topics, as identified by LDA. The LDA

plot is a graphical representation of the entire field of glass liter-

ature and succinctly summarizes the details mentioned earlier.
Note that the descriptive label is assigned to these topics by a

human expert that maps the automatically generated lexical

probability distribution to established categories in glass litera-

ture. For example, the words with the highest probability of

occurrence in Topic 11 are ‘‘er,’’ ‘‘yb,’’ ‘‘emission,’’ ‘‘doped,’’

‘‘luminescence,’’ ‘‘nd,’’ and ‘‘tm.’’ Analysis of these high-fre-

quency words by human experts suggests that the topic is

related to the luminescence of glasses doped with rare earth

ions, and hence it is labeled as ‘‘Rare Earth glasses.’’ The

distribution of abstracts into the identified topics is shown

schematically in the histogram in Figure 1B. The descriptive la-

bels for all the other topics are similarly identified and listed in

Figure 1C.

Amere visual inspection confirms that Topic 5–thin films–is the

single largest group followed by topics 13 and 6. The most

common set of articles related to ‘‘Thin films’’ includes both

the luminescence properties of oxides such as ZnO on glass

substrates, as well as the studies of transparent glasses on a

thin film geometry. This is followed by ‘‘glass ceramics,’’ ‘‘meth-

odological studies’’ of glasses (including both theoretical and

modeling studies), and ‘‘nonlinear optical properties of glasses.’’

In general, the list is found to be comprehensive covering all fac-

ets of glass literature in terms of applications, properties, and

ingredients including bioactive glasses, dielectric glasses, nano-

materials, and chemical and electromagnetic properties. Other

categories, such as mechanical and failure studies of glasses,

are seen to be subsumed within these broad topics. Note that

a more detailed classification can be further performed to obtain

the subtopics by performing LDA recursively on each of the

topics separately (see Figure S1 and Table S1).
Patterns 2, 100290, July 9, 2021 3
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Figure 2. CCP
(A) The CCP presents the clusters of vectorized captions colored by preselected keywords.

(B) The labels with the highest number of counts in the caption database.

(C) A grayscale image of the plot showing the four ontological axes.
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Caption cluster plots
The corpus also contains a collection of 106,238 figures and their

captions. It is well known that the information content of scienti-

fic articles is expressed mostly through graphics. These images

and their corresponding captions, therefore, provide a technical

summary of the documents that they belong to. The caption

cluster plot25 (CCP) shown in Figure 2A is a graphical represen-

tation of the information contained in all the captions, grouped by

their semantic similarity using NLP. The captions are tokenized

and vectorized using TFIDF and t-SNE, as explained earlier for

the LDA plot. The pixels are colored based on categorical key-

words identified by a human expert as explained in the methods

section. Finally, these labels are positioned at the median (x,y)

positions of the corresponding pixels, with the size of the label

proportional to the number of images in that category.

Figure 2B shows the distribution of captions with respect to

the topics for each image type identified in the CCP. We

observe that ‘‘Anneal,’’ ‘‘X-ray Diffraction’’ (XRD), ‘‘Crystal,’’

‘‘Emission,’’ and ‘‘Crystallization temp’’ (Tc) are the most com-

mon types of images in glass literature, underlining the impor-

tance of thermal synthesis routines, microstructure, and optical

characterizationmethods in glass science. Captions represent-

ing similar types of images are found to cluster next to each

other. For example, microstructure measurements such as

scanning electronmicroscopy (SEM), XRD, atomic forcemicro-

scopy (AFM), energy dispersive X-ray spectroscopy (EDX), and

transmission electron microscopy (TEM) all cluster at the lower

half of the CCP while optical properties, such as emission, ab-

sorption, fluorescence, and luminescence, are found at the very

top. The use of TFIDF as the vectorization algorithm ensures

that labels, and hence the captions representing images, are
4 Patterns 2, 100290, July 9, 2021
found to group together organically, based on their semantic

similarity. The CCP of Figure 2 immediately informs us the

answer to the first question raised in the introduction: ‘‘what

are the most common characterization methods for glasses?’’

The answer is seen to be XRD and SEM. Also, most of the larger

tags in the image are experimental methods, as opposed to

modeling techniques like finite element methods or molecular

dynamics that are too small to be seen unaided. This in turn, in-

forms the second question: most of the papers in glass litera-

ture are clearly experimental.

Interestingly, the CCP is found to have four distinct axes that

capture complementary information on glass literature. These

are the Optical, Mechanical, Microstructural and Thermody-

namic axes, as shown in Figure 2C. Optical axis are represented

by images related to ‘‘emission,’’ ‘‘luminescence,’’ and ‘‘fluores-

cence,’’ to name a few. Images that study mechanical

properties, such as ‘‘crack,’’ ‘‘stress-strain,’’ ‘‘strength,’’ and

‘‘compressibility’’ are found closest to theMechanical axis, while

thermodynamic properties, such as glass transition tempera-

ture, activation energy, specific heat, differential scanning calo-

rimetry, and differential thermal analysis (DTA), to name a few, lie

along the Thermodynamic axis. Finally, the images related to

‘‘XRD,’’ ‘‘EDX,’’ ‘‘anneal,’’ and ‘‘Crystal’’ fall along the Micro-

structural axis. This observation can be formalized by computing

the Euclidean distance between caption labels and the four axes.

The thermodynamic properties are closest to the Thermody-

namic axis, while the optical properties are most proximate to

Optical axis, etc. This observation is a direct result of using the

t-SNE algorithm based on the cosine similarity of caption vec-

tors, which ensures that the Euclidean distance between pixels

is ameasure of the semantic similarity of the underlying captions.
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Figure 3. Elemental maps

The elemental maps of (A) Si, (C) Ca and Er, and (E) In and Am superimposed on the CCP showing the presence of the respective elements in the abstracts of the

manuscripts fromwhich the images are taken. The elemental maps of (B) Si, (D) Ca and Er, and (F) In and Am superimposed on the LDA plot showing the abstracts

where the elements have been identified to be present.
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Certain captions do not belong to any of the axes but are

found to be equally spaced from two or more of them. For

example, ‘‘Fracture’’ and ‘‘Interface’’ are located at nearly

equal distances from the Mechanical axis and Microstructural

axis. These terms represent microstructural features that are

critical determiners of mechanical properties. The captions

likely contain terms that relate equally to both axes categories,

justifying their position in the CCP. The position of cluster labels

is an indicator of their relative co-occurrence frequency,

thereby showing that ‘‘anneal’’ is strongly related to ‘‘Crystal’’

(and variations thereof including ‘‘crystalline’’ and ‘‘crystal

structure’’), while ‘‘PLE’’ is more related to ‘‘absorption’’ than

to ‘‘emission.’’ At the same time, the proximity of ‘‘bioactive’’

to the Mechanical axis suggests that many experiments on

bioactive materials pertain to the measurement of strength

and hardness thereby bringing the captions into semantic

convergence. Overall, we observe that the CCP provides

invaluable insights into the contents of these figures, which

when combined with a predefined ontology solve many of the

problems stated earlier. In particular, the analysis of captions

through CCP provides a visual tool that rapidly summarizes

the entire field of glass literature, allowing a user to quickly

comprehend the trends, themes, and common characterization

methods in the community.

Elemental maps
Next, the Python library, ChemDataExtractor, was used to

automatically extract chemical species—including names of

compounds, chemical formulae, and symbols—from the ab-
stracts. The chemicals that occur with the highest frequency

in the database are shown in Figure S2. The chemical names

and symbols were standardized following which chemical ele-

ments present in each compound were separately identified.

This creates a binary marker for each element such that if the

element is mentioned in the abstract, the marker assumes

the value 1 and 0 otherwise. The LDA plot is redrawn such

that only if the abstract contains the marker for an element is

the corresponding pixel colored. Similarly, if a caption is drawn

from a text wherein the element is contained in the abstract, the

pixel is marked with a color in the CCP. The results are the

elemental maps given in Figure 3, where the images at the

top are elements mapped to the CCP and the images at the

bottom are maps of LDA. The elemental maps provide a direct

visual representation of the distribution of elements in glass

literature. The juxtaposition of these maps with the caption

plot and the LDA provides a highly specific graphic tool to

analyze the intersection of selected chemistries with a topic

in glass science or a specific property/characterization

technique.

As a validation of this concept, it is seen easily from Figures 3A

and 3B that silicon is abundantly distributed among all topics,

properties, and characterization methods in glass literature. A

similar result can be seen for oxygen (see Figures S20 and S21

of supplemental information). This is hardly a surprise, as silicate

glasses are one of the most common family of inorganic glasses.

The map for calcium and erbium in Figures 3C and 3D is more

illustrative. Calcium is found to be less uniformly distributed

than silicon, with high concentration in the clusters identified
Patterns 2, 100290, July 9, 2021 5
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Figure 4. Knowledge extraction combining CCP, LDA, and elemental maps

(A) The bioactive glass cluster is identified from the LDA plot.

(B) The abstracts that contain F and Cl are marked on the plot in red. The area of overlap are abstracts on bioactive glasses that contain F and Cl.

(C) The SEM, EDX, XRD, and PLE images from journal articles belonging only to this parameter space aremarked by colored pixels in the CCP. Inset images (i–viii)

are arbitrarily selected examples of these images as identified by the plot.32,39,51–55
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as bioactive by LDA. This is a representation of the fact that cal-

cium is one of the major constituents of bioactive glasses. The

overlapping data for erbium in Figures 3C and 3D show that

this element is mostly present in the LDA topic ‘‘rare earth

glasses’’ and in the caption clusters ‘‘emission,’’ ‘‘PLE,’’ ‘‘band

structure,’’ and ‘‘energy diagrams.’’ The elemental map, there-

fore, provides a visual diagram of the presence of an element

in glass literature. Rare earth elements such as erbium, dyspro-

sium, and ytterbium are used largely for LEDs and laser applica-

tions, which is confirmed by the region of the LDA plot that is

highlighted by these elements (‘‘Rare earth glasses’’ and

‘‘LEDs and Phosphors’’), as well as by the image categories

where they predominate.

The third question in the introduction ‘‘Where is americium

used in glasses’’ is answered in Figures 3E and 3F. Only 25 arti-

cles were found with americium mentioned in the abstract. They

are seen to fall over regions identified as ‘‘glass ceramic’’ and

‘‘glass irradiation studies’’ from the LDA plot. Upon inspection,

it is indeed found that most of these abstracts relate to studies

of nuclear exposure and radiation on glass ceramics, demon-

strating a practical use of the concepts developed so far in

answering a question that is otherwise not reachable through

any other approach today. Similarly, indium is found to be

distributed in Figures 3E and 3F mostly in the section identified

as ‘‘Thin films’’ relating to the large body of work that has been

carried out on the transparent conducting indium tin oxide elec-

trodes on glass substrates and glass ceramics. The elemental

maps for all the 120 known elements overlapping with the LDA

and CCPs are presented in section 2 of supplemental informa-

tion (see Figures S6–S225).
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DISCUSSION

The LDA and CCPs provide a highly specific, detailed, and suc-

cinct graphical summary of the available corpus of glass litera-

ture. The knowledge extraction pipeline for obtaining these plots

has been shown in Figure 6 (see Methods). They provide an-

swers to some of the questions raised in the introduction. For

example, the CCP visually conveys the fact that themost studied

aspects of glasses in literature relate to their annealing behavior

and microstructure, and that studies on optical emission are

slightly more common than that of absorption. The database

generated through the CCP provides a useful source of special-

ized images—say SEMmicrostructural images or AFM images of

glasses—which can then be used for learning images through

artificial intelligence and ML algorithms such as convolutional

neural networks. These can be used to answer some of the

pressing problems in the field today such as identifying the

causes of fracture or dissolution by linking to other structure—

processing parameters.

Similarly, the LDA plot provides insights on the broad themes

within glass ontology into which the text is divided. It is seen

immediately through visual inspection that the amount of work

done on bioactive glasses is less than that on glass ceramics or

that irradiation studies on glasses occupy the bottom of glass hi-

erarchy in termsof the sheer number of publications. TheLDAplot

is a topological map of glass literature, where each text is as-

signed a unique position next to other works of similar nature,

content, and theme. This provides a way to efficiently search for

publications that are similar to a given paper—once the position

of the publication in the vector space is determined, the nearest
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neighbors are by default the ones that are the most semantically

similar. There are currently no other tools, even in established sci-

entific databases and search engines, that allow the detailed

exploration, analysis, and easy visual analysis offered by the

CCPs and the LDAplots. At the same time, combining the caption

cluster, LDA, and elemental plots results in the creation of a tool

that can query, explore, and analyze the information content in

glass literature with unprecedented detail and specificity.

An example toward such an attempt for knowledge extraction

and dissemination combining CCP, LDA, and elemental map is

presented in Figure 4. The LDA plot identifies abstracts in the

database that belong to the category of ‘‘bioactive glasses.’’

The elemental maps allow the selection of only those abstracts

among these that have been marked with the presence of fluo-

rine and chlorine. This is shown in Figure 4B where the red pixels

corresponding to the F and Cl containing abstracts are found to

overlap with the green pixels corresponding to abstracts on

bioactive glasses. The region of the greatest overlap is seen to

be the three islands on the LDA plot that are marked as bioactive

glasses, thereby confirming that among all fields of glass sci-

ence, F and Cl most commonly find their application within this

topic. This in itself is a remarkable capability—the identification

of only those scientific publications subject to the dual con-

straints of topical category and chemistry. It bears repeating

that there is no other method currently available that can do this.

Adding theCCP to this informationallowsevendeeper explora-

tion of literature by extracting a processing, characterization, or
property image from this parameter space. For example, Fig-

ure 4C shows the SEM, EDX, XRD, and PLE captions of figures

from abstracts that contain F and Cl on the topic of bioactive

glasses. Arbitrarily selected images from this parameter space

are displayed for reference in the inset of Figure 4C (i–viii). The

captions of these images confirm that the figures do correspond

to the selected image type, while their abstracts span a broad

topic range include appetites, glass microparticles, meso-

spheres, and bioactive scaffolds—all of which relate broadly to

the subset of bioactive glasses under consideration. This, in

turn, answers the fifth question: yes indeed, there are photolumi-

nescence studies of bioactive glasses that contain fluorine. Thus,

this method allows the rapid exploration of scientific data to ac-

cess extremely nuanced and specific information sets. Such a

method might be very useful for a researcher who wishes to ac-

cess the microstructure of chloride or fluoride glasses without

conducting an extensive literature survey—the only alternative

available today. Elemental tagging adds a chemical marker to im-

ages for computer vision tasks, as in the training of predictive al-

gorithms that link microstructure or property to composition.

The methods of systematic scientific exploration of literature

that have been developed so far can be generalized by querying

the abstract database for arbitrary search terms. Figure 5 pre-

sents an example where the application strings ‘‘optical glass’’

and ‘‘LED,’’ as well as the synthesis string ‘‘solid state’’ has

been used to identify all the abstracts in the document space

that contain the respective strings. This allows us to categorize
Patterns 2, 100290, July 9, 2021 7
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Figure 6. Knowledge extraction pipeline

summary

First, we search the CrossRef database for a search

query, followed by downloading the papers from

Elsevier Science Direct database. To obtain relevant

research papers, a supervised classification algo-

rithm is used. After obtaining the articles, we do

topic modeling and make CCPs followed by

elemental maps.
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the abstracts based on specific applications, synthesis

methods, characterizations, or properties. The Figure 5A shows

the LDA plot. In Figure 5B, all the abstracts relating to optical

glasses are identified from corpus and are visually represented

as green pixels in the LDA plot, where they are seen to overlap

with the topics identified as ‘‘LEDs and Phosphors,’’ ‘‘spectro-

scopic studies,’’ and ‘‘rare earth glasses.’’ The solution for the

final question in the introduction is seen in Figure 5C, which

shows all the abstracts that contain the search string ‘‘solid state

synthesis,’’ which is a common method for fabricating oxides

and oxide glasses. The overlap of the two sets of complementary

information are the set of abstracts on optical glasses synthe-

sized through solid state synthesis. This analysis can be carried

further by combining these data with the CCP, through which

specific image types such as the DTA or XRD of optical glasses

made through solid state synthesis can be extracted. While the

level of specificity offered by this approach is in itself useful to

a researcher who wishes to learn more about the solid state syn-

thesis of optical glasses, the method allows the use of any num-

ber of search strings—allowing for a detailed multidimensional

extraction of information from literature.

Similarly, the green points in Figure 5D represent abstracts

with the string ‘‘LED’’ in it. By mapping these data to the

elemental maps, the presence of abstracts with specific chemi-

cal compositions can be marked, such as in Figure 5E, which

highlights the elements europium, cerium, and samarium. These

are therefore LEDs that contain any of these elements or any

combination of them; this, in turn, answers the fourth question

raised in the introduction. This data allow the user to read

through these abstracts, and only these abstracts, to learn

more about the subject. The user is then able to look through

microstructural, luminescence, or thermodynamic data that are

linked to this dataset through the CCP.

Altogether, we demonstrate that the application of NLP to

glass literature enables the curation and selection of data sour-

ces sorted by specific applications, properties, characterization

methods, and chemistries. In turn, this allows for custom compo-

sition–processing–property databases to be compiled automat-
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ically, and in linking together parts of the in-

formation space in away that has so far not

been possible.

When used together, text vectorization,

LDA, and elemental maps solve many of

the challenging questions impeding the

accelerated discovery of glasses, some of

which are stated in the introduction. We

demonstrate this in the paper through six

questions that were raised in the introduc-
tion and subsequently solved in the results and discussion sec-

tions. NLP tools combined with curated glass databases accu-

rately show that most of the published work explored in the

analysis is experimental rather than theoretical and that XRD,

SEM, etc. are the most common characterization methods for

glasses. They also provide solutions to highly specific queries,

such as identifying papers on optical glasses that are manufac-

tured using solid state sintering, glass compositions that are

both bioactive and fluorine-containing, chemicals used in LED

glasses, etc. Many of these questions currently have no other

means of being answered, as demonstrated by identifying all

the glasses that contain americium.

The techniques and tools developed in this article can be

easily extended to other topics. We illustrate this with two

topical examples: metallic glasses and magnesium alloys

(see Figures S4 and S5). The relevant literature for each topic

is identified and the NLP pipeline is applied to extract the

CCP, LDA plots, and elemental maps for both topics. The

CCP for magnesium alloys show that ‘‘dissolution’’ is a major

topic of study in the field, underscoring the interest of the sci-

entific community in assessing the chemical stability of these

alloys. Similarly, the elemental maps for metallic glasses pro-

vide a quantities measure of the importance of various metals

in glass forming. By comparing the maps of copper and iron,

for example, we are able to see that they are used together in

many applications, while iron is preferable over copper for

other applications.

However, the major contribution of the present study is that it

opens a way to ask deeper and broader questions of topical liter-

ature, that can ultimately enrich the field by solving outstanding

problems–old and new. Thus, our study establishes the baseline

for extracting images from scientific literature related to specific

keywords and topics. Further, we have developed a web-based

platform making the knowledge accessible to wider community

throughPyGGiPictionaryaspartof thePython forGlassGenomics

Package (PyGGi, see: https://pyggi.iitd.ac.in/toolkits/pictionary).

At this point, it is worth mentioning some of the limitations in

the present approach.

https://pyggi.iitd.ac.in/toolkits/pictionary
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1. Classification of abstracts as glass and nonglass has a

relatively low recall. This leads to themissing of several ab-

stracts belonging to the topic in the final classified set.

2. The number of topics that can be identified using LDA is

quite small at present. Further, LDA being an unsupervised

approach requires an expert to understand the topic from

the keywords and manually label them.

3. The keyword list associated with the CCP is developed by

domain experts.

Theseproblemscanbe tackledbyalgorithms thatcouldpossibly

identify a larger number of categories and automatically label them.

In particular, the development of a glass-specific ontology, a

curated image repository, and anNER tool tailored for this commu-

nity can go a longway in enhancing themethods demonstrated for

the first time in this paper. Further, by combining these tools with a

natural language model, such as a ‘‘GlassBert,’’ can open the field

to many more advances in artificial intelligence and ML by making

available rapid, efficient, and tailored composition–processing–

property databases. The scalable methods demonstrated in this

studyarebroadlyapplicable toanyscientificfieldandconsequently

is of universal relevance in accelerating the scientific enquiry.
EXPERIMENTAL PROCEDURES
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Materials availability
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Data and code availability

All the data and codes used in the present work are available at: https://github.

com/m3rg-repo/machine_learning_glass/tree/master/

Looking_through_glass.
Methods

The workflow for information extraction is summarized in Figure 6. The Cross-

Ref metadata API was used to query existing literature databases using key-

words specific to the glass community. These include (1) descriptive applica-

tion identifiers, such as ‘‘chalcogenide glasses,’’ ‘‘bioactive glasses,’’ ‘‘laser

glasses,’’ ‘‘optical glasses,’’ etc.; (2) property/processing terms, such as ‘‘glass

transition temperature,’’ ‘‘oxide glasses,’’ ‘‘optical luminescence,’’ etc.; and (3)

conjugated keywords such as ‘‘glass mechanical properties,’’ ‘‘glass-dissolu-

tion,’’ ‘‘glass AND fracture,’’ etc. This query returned an initial list of more than 6

million DOIs out of which the full texts of 600,000 articles were downloaded us-

ing the Elsevier ScienceDirect API. A customXMLparserwaswritten to extract

specific sections of the article including themetadata, abstract, images, image

captions, and individual sections identified by their headings.

To understand the distribution of topics in the downloaded database, an

NLP algorithm, the LDA, was used to identify the number of distinct ‘‘topics’’

in the corpus where a topic is defined as the set of words with the highest prob-

ability of occurrence in a document belonging to the topic. The LDA plot for a

given sub-topic is presented in the supplemental information (see Figure S3

and Table S5). It is seen that while some topics are relevant to the scientific

literature on glass, many are from the intersection of glasses with peripheral

topics such as women’s health, economy, and environment. In fact, one topic

only includes non-English articles identified by the French vowels ‘‘un,’’ ‘‘es,’’

‘‘le,’’ etc. Note that the present work focuses only on the articles presented in

the English language. However, a similar approach can be extended to other

language literature as well. The full texts of articles belonging to topics of little

relevance to the materials science literature on glasses were removed, along

with editorial notes, commentaries, book reviews, retractions, and conference
proceedings. The use of LDA is thus demonstrated to greatly aid the curation

of topic-specific text databases, a nontrivial effort by any other means.

The remaining databasewas further refinedby the use of aMLclassifiermodel

that performed a binary classification of the article abstracts into ‘‘relevant’’ and

‘‘nonrelevant.’’ For this, 3,060 randomly selected abstracts were manually

tagged as being ‘‘glass’’ and ‘‘not-glass.’’ Using the PythonSciKit library, a logis-

tic regression classifier model was found to have an accuracy of 86% and a

recall of 67% on the test set for classification task. This model was found to

outperformother text classification algorithms suchas naive Bayes andRandom

Forests. The details of the model performance are given in the supplemental in-

formation (Tables S2–S4). Finally, the binary classifier categorized 94,207 arti-

cles as being relevant to thematerial science study of glasses. This list contained

articles published from 1 August 1997 to 10 June 2020. All further natural lan-

guage processing–driven analyses were done only on this text corpus. The

search query and the corresponding DOIs are shared in the GitHub repository:

https://github.com/m3rg-repo/machine_learning_glass/tree/master/

Looking_through_glass.

Caption cluster plot

The final corpus contains a total of 106,238 figures and their captions. With the

help of the Stanford NLTK56 package, the caption texts were tokenized after

removal ofpunctuations, numerals, andstopwords. These tokens,which include

words of the English language, chemical symbols, and abbreviations, form the

corpus dictionary of size (N) which determines the number of dimensions of the

vectorspace for thecaptionclusterplot. Eachcaption ismapped toauniquevec-

tor in this vector space by calculating the TFIDF of every word in the caption.

TFIDF is a statistical count that reflects the relevance of a word in a document

and isacommonvectorization technique for textminingand information retrieval.

For a term ‘‘t’’ appearing in ‘‘d’’ documents within a collection D:

TFIDF = tfidf ðt; d;DÞ = tf ðt; dÞ 3 idfðt;DÞ

where

tfðt; dÞ=
�
1; if t is present in D
0; otherwise

idf ðt;DÞ= log
N

jfd˛D : t˛dgj

The cosine distance of all the captions from each other is calculated and

used as the metric for t-SNE, which projects the vectors into a 2D plane so

that vectors with the highest cosine similarities group together. Finally, each

caption is assigned a unique label corresponding to the type of image it repre-

sents, such as SEM, XRD, TEM, Luminescence, Fracture, etc., through rule-

based string search. The color of the pixel in the t-SNE plot is determined by

its label. The TFIDF vectorization and the cosine metric ensure that the geo-

metric distance between pixels on the 2D plot correlate with the semantic sim-

ilarity of captions, and therefore that identical images cluster together.

Latent Dirichlet Allocation

LDA49 is one of the most commonly used unsupervised topic modeling ap-

proaches. LDA classifies the documents present in a corpus into different

topics based on the frequency distribution of the words occurring in the docu-

ment. The specific steps in the LDA algorithm are as follows:

1. Assume there are articles belonging to k topics in the glass corpus.

2. Randomly assign a topic ki to each word wi in all the documents.

3. Compute the probabilities of a word wi belonging to topic ki in docu-

ment di as p(ki|di) and probability of a document belonging to topic ki
due to the word wi as p(wi|ti).

4. Update the p(wi|ti) as p(ti|di)3p(wi|ti).

5. Repeat steps 1 to 4.

The 94,207 abstracts are further categorized using LDA. The optimumnumber

of topicswas found by the coherence plot, whichwas found to converge after 15

topics. After 500 passes, the LDA algorithm identified the topics listed in Fig-

ure 1C. Similar to the CCP, each abstract was tokenized, vectorized, and plotted

in 2D using t-SNE. The coloring of the pixels is based on the topic number
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identifiedby theLDA.Onceagain, thepixels are seen tocluster stronglybasedon

color, indicating that abstracts with similar lexical content have been grouped

together by the algorithm. All the hyper parameters for t-SNE, TFIDF, and LDA

are provided in section 1 of the supplemental information.

Extraction of chemical species

ChemDataExtractor was used to identify and extract the individual chemical

species from every abstract. This includes individual chemical elements and

compounds identified by their symbols, names, and chemical formulae. A

custom Python script is used to extract the individual chemical elements

from the most frequent of these compounds.

Elemental maps

If an element X is identified as being present in an abstract, the pixel corre-

sponding to the abstract in the LDA plot is given a different color. This allows

the mapping of elemental compositions as identified in the step above to the

information content present in the LDA plot. Similarly, the elemental informa-

tion and captions are correlated by merging the CCP and the LDA plot. A

caption pixel is given a different color if the abstract of the text that the caption

belongs to contains the element.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100290.
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