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Germline mutations in breast cancer susceptibility gene 1 or 2 (BRCA1 or BRCA2) signifi-

cantly increase cancer risk in hereditary breast and ovarian cancer syndrome (HBOC).

Both genes function in the homologous recombination (HR) pathway of the DNA dou-

ble-strand break (DSB) repair process. Therefore, the DNA-repair defect characteristic of

cancer cells brings about a therapeutic advantage for poly(ADP-ribose) polymerase

(PARP) inhibitor-induced synthetic lethality. PARP inhibitor-based therapeutics initially

cause cancer lethality but acquired resistance mechanisms have been found and need to

be elucidated. In particular, it is essential to understand in detail the mechanism of DNA

damage and repair to PARP inhibitor treatment. Further investigations have shown the

roles of BRCA1/2 and its associations to other molecules in the DSB repair system.

Notably, the repair pathway chosen in BRCA1-deficient cells could be entirely different

from that in BRCA2-deficient cells after PARP inhibitor treatment. The present review

describes synthetic lethality and acquired resistance mechanisms to PARP inhibitor

through the DSB repair pathway and subsequent repair process. In addition, recent

knowledge of resistance mechanisms is discussed. Our model should contribute to the

development of novel therapeutic strategies.
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1 | INTRODUCTION

Hereditary breast and ovarian cancer syndrome is caused by germ-

line mutations in BRCA1 or BRCA2 genes.1,2 Approximately 10% of

all breast cancer cases are inherited, and half of them are HBOC.3

These patients have elevated risks of developing ovarian, breast and

other cancers.

Breast cancer susceptibility gene 1 and 2 proteins function in a

DNA repair pathway for DSB by a process called HR.4,5 It uses

homologous DNA sequences of sister chromatids to ensure genomic

stability. In cancer cells, however, DNA repair function is often mod-

ulated. Many anticancer agents induce cell death by damaging DNA

and accumulating mutations. Therefore, cell death is rarely stimu-

lated in cancer cells with enhanced functions of DNA repair

(chemotherapy resistance).

Advances in BRCA1 and BRCA2 research have led to the devel-

opment of novel therapeutic regimens based on synthetic lethality
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such as PARP inhibitors. Synthetic lethality is frequently induced

in cells with reduced repair function (chemotherapy sensitivity).

Consequently, HBOC patients are highly sensitive to DNA-dama-

ging agents such as PARP inhibitor, platinum-based agents, and

topoisomerase inhibitors.6 In synthetic lethality theory, cells sur-

vive even if one of two specific genes involved in cell survival is

inhibited. However, cell death is induced when two genes are

simultaneously repressed. Poly(ADP-ribose) polymerase inhibitor

treatment is a novel therapy for HBOC patients that targets

BRCA1/2 mutations as well as PARP.7,8 This polymerase plays a

role in DNA single-strand break (SSB) repair. The inhibitor sup-

presses PARP’s SSB repair function during the S-phase of the cell

cycle resulting in unrepaired DNA and DSB formation. Notably,

this cell cycle-specific DSB requires HR for correct repair. There-

fore, although HR-proficient cells can repair DNA lesions, HBOC

patients have BRCA1 and BRCA2 mutations whose cancer cells

cannot repair DSB as a result of dysregulation of the HR repair

pathway and are sensitive to PARP inhibitors. Indeed, recent stud-

ies show that complicated molecular mechanisms affect DSB

repair.

Normal cells mainly repair DSB by two mechanisms during the

cell cycle: HR and NHEJ.9 Optimum pathway selection is necessary

for DSB repair under specific conditions. Although NHEJ repairs

DSB throughout the cell cycle, HR only functions in the S/G2 phase

following DNA replication.10-13 Many reports have investigated the

mechanism of “DSB repair pathway choice” in the S/G2 phase where

NHEJ overlaps with HR. Understanding of this pathway choice may

best explain how PARP inhibitor-induced DSB in S-phase is repaired

in several situations.

In the present review, we summarize our current knowledge on

the synthetic lethality between BRCA1/2 dysfunction and PARP

inhibitors focusing on the molecular mechanisms that regulate the

two major DSB repair pathways, molecular defects, and pathway

choice. We also discuss the synthetic lethal effect and acquired

resistance to PARP inhibitors.

2 | PARP INHIBITOR-INDUCED DNA
DAMAGE

Poly(ADP-ribose) polymerase-1 (PARP1) is a member of the PARP

family that plays a vital role in the repair process of SSB in base

excision repair (BER).14,15 Cells receive constitutive attacks by

endogenous and exogenous factors that lead to DNA damage. Base

lesions are mainly repaired by BER. At first, damaged sites cleaved

by glycosylase and APE create a single-strand DNA nick. Then,

PARP-1 recognizes it as a SSB and synthesizes PAR polymers cova-

lently at the site as PARylation.16,17 As a result, PARP1 interacts

with proteins such as DNA polymerase b (pol b), DNA ligase III, and

X-ray repair cross-complementing protein 1 (XRCC1), which are

recruited at the SSB site in the BER process. However, in the pres-

ence of a PARP inhibitor, PARylation is inhibited by PARP-1 activity

trapping.18 The unrepaired damaged DNA encounters the replication

fork during replication in S-phase. The collision causes the fork to

stall and makes a DSB.19 In general, DSB induced by DNA-damaging

agents has two DNA ends; however, DSB generated through replica-

tion fork stalling has only one DNA end, called seDSB (Figure 1).

Double-strand break could be a severe threat to genomic stability

and must be corrected. Moreover, unlike two-ended DSB, seDSB

needs to be repaired by a more limited pathway to avoid genomic

instability and cell lethality.

3 | DSB REPAIR PATHWAY CHOICE

Two principal pathways repair DSB: HR or NHEJ. Homologous

recombination error-free repair uses sister chromosomes as a homol-

ogous template. NHEJ error-prone repair directly ligates damaged

DNA ends. DSB repair is regulated in a cell cycle-dependent method

where HR functions in S/G2 and NHEJ in all phases in a competitive

way. When DSBs are generated, abundant Ku heterodimers (Ku70

and Ku80 subunits) bind to DSB ends with high affinity.20 Then,

F IGURE 1 Poly(ADP-ribose) polymerase (PARP) inhibitor-induced cell fate through double-strand break (DSB) repair pathway choice.
Single-ended DSB (seDSB) is generated after PARP inhibitor-induced DNA replication fork collapse during S phase. The DSB end protected by
the p53-binding protein 1/Rap1-interacting factor 1 (53BP1-RIF1) complex is repaired by error-prone non-homologous end joining (NHEJ)
pathway causing cell death. In contrast, the DSB end released by breast cancer susceptibility gene 1/C-terminal-binding protein interacting
protein (BRCA1-CtIP) interaction is resected, leading to the homologous recombination (HR) pathway, resulting in cell survival
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either the NHEJ process, recruitment of DNA-dependent protein

kinase catalytic subunit (DNA-PKcs), X-ray cross-complementation

group 4 (XRCC4), and DNA ligase IV (Lig4),21 starts, or DNA ends

are resected (DNA end resection) as an initiating step for HR. Molec-

ular mechanisms regulate each DSB repair pathway (Figure 1).

53BP1, RIF1, CtIP, and BRCA1 play key roles in pathway choice.

53BP1 rapidly participates in repair by surrounding DSB sites after

its generation and protects damaged ends from excessive end resec-

tion.22,23 Then, ataxia telangiectasia mutated kinase (ATM)-depen-

dent phosphorylation of 53BP1 recruits the 53BP1-binding factor

RIF124 and blocks CtIP-dependent DNA end resection.25 These steps

lead to the NHEJ pathway. By contrast, BRCA1 modulates DSB

repair pathway with its antagonistic relationship to 53BP1 and RIF1.

Several studies reported that cyclin-dependent kinase (CDK)-depen-

dent CtIP interaction with BRCA1 is important for promoting end

resection and suppression of 53BP1-RIF1 signaling.26-28 It was also

shown that BRCA1-induced dephosphorylation of 53BP1 causes

RIF1 release from the damaged site and repositioning of 53BP1.29 In

contrast, the mechanism of DNA end resection suppression by

53BP1-RIF1 activity is consistent with a report that loss of BRCA1

decelerates CtIP-dependent DNA end resection.30 Therefore, dys-

function of this process would allow MRE11-induced endonuclease

activity to be an initiation step31 such that CtIP-BRCA1 signaling

directs the repair pathway from NHEJ to HR.32,33 Also, the number

of replication protein A (RPA) foci resections is reduced in the

absence of BRCA1 but is still moderate compared to when CtIP is

depleted.29 These findings indicate that CtIP-dependent end resec-

tion is available even when BRCA1 is not present.34 Loss of BRCA1

directs repair to the NHEJ pathway but may not induce a strong

inhibition of end resection. In summary, CtIP-BRCA1 and 53BP1-

RIF1 regulate each pathway during S/G2 phases (Figure 2A) but the

detailed mechanisms need to be further investigated.

4 | PARP INHIBITOR-INDUCED
SYNTHETIC LETHALITY

Breast cancer susceptibility gene 1/2-mutated cancer cells respond

well to Poly(ADP-ribose) polymerase (PARP) inhibitors through syn-

thetic lethality.7,8 Poly(ADP-ribose) polymerase inhibitor-induced cell

cycle-dependent seDSB could be repaired by HR through the same

pathway selection mechanism in the S/G2 phase. Although cells

require NHEJ for two-ended DSB repair to survive,35 it causes chro-

mosomal aberration, genomic instability in PARP inhibitor-treated

cells, and cell death because seDSB has no other DNA end that can

be correctly ligated.36 Therefore, stalled replication fork-induced

F IGURE 2 Mechanisms of synthetic lethality to poly(ADP-ribose) polymerase (PARP) inhibitor in breast cancer susceptibility gene 1/2
(BRCA1/2)-deficient cells through double-strand break (DSB) repair and ensuing pathways during S/G2 phase. PARP inhibitor-induced cell fate
analyzed in (A) wild-type (WT), (B) BRCA1-deficient, and (C) BRCA2-deficient cells. 53BP1, p53-binding protein 1; CDK, cyclin-dependent
kinase; CtIP, C-terminal-binding protein interacting protein; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; HR, homologous
recombination; Lig4, DNA ligase IV; NHEJ, non-homologous end joining; RIF1, Rap1-interacting factor 1
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seDSB needs to be repaired by HR (Figures 1, 2A). Both BRCA1 and

BRCA2 are known to play critical roles in the HR pathway. Their

roles in synthetic lethality will be discussed in the context of other

molecules. In addition, the mechanism of synthetic lethality in

BRCA1/2-mutated cells based on the DSB repair pathway models

will be explained.

Breast cancer susceptibility gene 1, a key player in DSB repair,

directs HR with CtIP by promoting DNA end resection by suppres-

sion of the 53BP1-RIF1 pathway.29,32 The presence of BRCA1 leads

to dysfunctional NHEJ and functional HR in DSB repair. It could also

help maintain genomic stability by preventing error-prone repair of

accidentally generated seDSB.37 Conversely, loss of BRCA1-induced

53BP1-RIF1 signaling restoration directs the repair pathway to NHEJ

and causes RIF1-dependent partial suppression of end resection.

BRCA1 also recruits Rad51 onto the resected DNA strand by replac-

ing RPA and colocalizing with Rad51 and BRCA2 to activate HR38,39

such that it cannot function in BRCA1-deficient cells. Therefore,

impaired BRCA1 facilitates NHEJ and suppresses HR leading to gen-

ome instability. The dysfunctional HR-induced persistently unre-

paired DSB leads to senescence or apoptosis in cells40,41 and

promotion of NHEJ results in chromosome aberrations and cell

death. Thus, acceleration of NHEJ and suppression of HR could be a

promising target for PARP-inhibitor cancer treatment (Figure 2B).

Different situations arise in BRCA2- and BRCA1-mutated cells

because BRCA2 does not affect DSB repair selection but functions

downstream of the HR pathway. Functional BRCA1 suppresses the

53BP1-RIF1 signaling in the S/G2 cell cycle phase so that the HR

pathway is chosen for PARP inhibitor-induced seDSB repair in both

normal and BRCA2-mutated cells. Then, seDSB undergoes HR after

end resection. However, DSB repair will be stalled and BRCA2 loss

of function results in cell death (Figure 2C). Also, NHEJ inhibition

reduces error-prone repair, chromosome aberrations, and rescued

PARP inhibitor-induced cell lethality.42,43 This model shows that cells

harboring the BRCA1 mutation contain more gene variability and

response to PARP inhibitor than those with the BRCA2 mutation

because of NHEJ pathway predominance. Hence, BRCA1 and

BRCA2 have different mechanisms of cellular lethality. Furthermore,

Fanconi anemia-related tumor suppressors, including BRCA1 and

BRCA2, protect nascent DNA from MRE11-dependent nucleolytic

degradation in the replication fork and maintain genome stability.44

Consequently, impairment of replication fork protection as a result

of BRCA1 or BRCA2 dysfunction is considered to be an important

mechanism for synthetic lethality by PARP inhibition.45

Some investigations indicated that other molecules besides

BRCA1/2 could be potential targets of synthetic lethality. Loss of

CtIP sensitized tumors both in vitro and in vivo to PARP inhibi-

tor.46,47 This response may be a result of CtIP-dependent end resec-

tion suppression that promotes the NHEJ pathway. Interestingly,

dysfunction of Rad51 and other molecules involved in the HR path-

way also triggered a sensitive response, blocking HR as BRCA2

defective.48,49 Taken together, end resection and HR-related factors

(CtIP, BRCA1, MRE11, Rad51, BRCA2 etc.) are potential PARP inhi-

bitor targets for cancer treatment.

5 | PARP INHIBITOR RESISTANCE
MECHANISMS

Poly(ADP-ribose) polymerase inhibitor-induced seDSB requires HR

to be correctly repaired, and NHEJ is toxic to cells with seDSB. Con-

sequently, resistance to PARP inhibitor might be acquired when the

pathway choice shifts from NHEJ to HR. Here we present examples

of resistance mechanisms that include restoration of HR function

and avoidance of the NHEJ pathway.

5.1 | Secondary mutations in BRCA1/2

Cancer recurrence frequently occurs in HBOC patients despite the

targeted treatment of tumors with BRCA1/2 mutations with several

DNA damaging agents. Sakai et al50,51 (2008 and 2009) first eluci-

dated the in vitro mechanism by which the secondary mutations that

restored BRCA2 function recovered DNA repair capacity, and

became resistant to DNA-damaging agents such as cisplatin and

PARP inhibitor. Functional restoration in BRCA2 caused by addi-

tional mutations canceled the original mutation-induced frameshift

by reverting to an unimpaired C-terminal DNA-binding domain,

nuclear localization signal, and Rad51-binding domain.51,52 This type

of resistance mechanism was also found in BRCA1-mutated cancer

cells.53 Furthermore, clinical data showed that secondary mutations

restored not only BRCA1/2 but also Rad51 in recurrent and meta-

static tumors from several cancers.54-57 These findings indicate that

replication stress-induced DNA damage would mainly depend on the

HR pathway. Functional recovery of BRCA1/2-mediated HR would

induce a therapeutic window collapse in the clinical strategy that

uses DNA repair capacity differences between normal and cancer

cells. Consequently, functional restoration may be a major resistance

mechanism in PARP inhibitor-based therapy.

5.2 | Loss of 53BP1 in BRCA1-mutated cells

In BRCA1-mutated cells, PARP inhibitor effectively induces cell

death by promoting NHEJ by activation of the 53BP1-RIF1 pathway

and reducing HR efficiency through incomplete end resection and

Rad51 recruitment. Several groups discovered that the loss of

53BP1 function caused PARP inhibitor resistance in BRCA1-defec-

tive cells.25,58 Dysfunctional 53BP1 by frameshift mutation was also

identified in PARP inhibitor-resistant BRCA1-mutated tumors in

mice.59 Considering the preference for the DSB repair pathway, loss

of 53BP1 inactivates RIF1-dependent regulation of end resection in

the absence of BRCA1, resulting in the promotion of HR. Moreover,

loss of 53BP1 causes ring finger protein 8 (RNF8)-induced Rad51

recruitment even in the absence of BRCA1.60 This combined HR

pathway restoration of end resection and Rad51 recruitment func-

tions as a cell survival backup mechanism in BRCA1-mutated cells

treated with PARP inhibitor (Figure 3A). Markedly, 53BP1 rescues

proliferation defects in BRCA1 but not in BRCA2-deficient mouse

embryonic fibroblasts (MEF).58 Both BRCA1 and BRCA2 defects in

cells tend to induce spontaneous replication stress because of lower
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HR activity. However, BRCA2 is an indispensable factor in the HR

process after end resection. Therefore, the repair pathway shift

through 53BP1 loss may not affect cell survival in BRCA2-deficient

cells (Figure 3B).

5.3 | Additional resistance mechanisms to PARP
inhibitor therapy

To date, in addition to secondary mutation and loss of 53BP1 func-

tion, different mechanisms underlying PARP inhibitor resistance have

been described and resistance mechanisms can be divided into three

groups (Table 1). The first group, “restoration of homologous recom-

bination” includes demethylation of the BRCA1 promoter,61 the

aforementioned secondary mutation of BRCA1/2,50-57 and loss of

HR suppression factors such as 53BP1.58-60,62-64 The second con-

tains acquisition of replication fork protection.65-69 The third has the

P-glycoprotein (also known as multidrug resistance protein 1 [MDR

1] or ATP-binding cassette sub-family B member 1 [ABCB 1]).

Indeed, increased PARP inhibitor efflux by overexpression of this

transmembrane transporter has recently been reported.70,71

6 | CONCLUSIONS/FUTURE DIRECTIONS

Studies on PARP inhibitor-based clinical investigations are subject to

heated discussions not only for HBOC but also for other types of

cancer with DNA repair defects. The practical knowledge gained

from clinical data preceded detailed elucidation of the PARP inhibi-

tor-induced DNA damage mechanism and subsequent complicated

repair process. Here, we have discussed synthetic lethality and

potential resistance mechanisms to PARP inhibitor mainly in connec-

tion with DSB repair pathways. In particular, BRCA1, together with

several other molecules, has several roles as a mediator of the HR

pathway to sustain genome stability. Also, the factor-like loss of

53BP1 recovers the HR pathway even in the absence of BRCA1.

Therefore, the clinical strategies to overcome the acquired resistance

F IGURE 3 Loss of p53-binding protein
1 (53BP1)-induced resistance mechanism
to poly(ADP-ribose) polymerase (PARP)
inhibitor in breast cancer susceptibility
gene 1 (BRCA1)- and breast cancer
susceptibility gene 2 (BRCA2)-deficient
cells through double-strand break (DSB)
repair and ensuing pathways during the S/
G2 cell cycle phase were compared.
Pathway differences in PARP inhibitor
sensitivity with additional loss of 53BP1
were analyzed in (A) BRCA1-deficient and
(B) BRCA2-deficient cells. CDK, cyclin-
dependent kinase; CtIP, C-terminal-binding
protein interacting protein; DNA-PKcs,
DNA-dependent protein kinase catalytic
subunit; HR, homologous recombination;
Lig4, DNA ligase IV; NHEJ, non-
homologous end joining; RIF1, Rap1-
interacting factor 1

TABLE 1 PARP inhibitor resistance mechanisms in BRCA1/2-associated cancers

Resistant type HR defect PARP inhibitor resistance mechanism References

Restoration of homologous

recombination

BRCA1/2 mutation BRCA1/2 second mutation 50-57

Hypermethylation of

BRCA1 promoter

Demethylation of BRCA1 promoter 61

BRCA1 mutation Dysfunction of HR suppression factors

53BP1, REV7, JMJD1C, RIF1

25,58-60,

62-64

Protection of replication

forks

BRCA2 mutation Restoration of fork protection: Inhibition of molecules related with

degradation of stalled replication forks

65-69

Increased efflux of PARP

inhibitor

BRCA1/2 mutation Increased expression of P-glycoprotein (MDR1) 70,71

53BP1, p53-binding protein 1; BRCA1/2, breast cancer susceptibility gene 1/2; HR, homologous recombination; PARP, poly(ADP-ribose) polymerase;

RIF1, Rap1-interacting factor 1.
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to PARP inhibitor treatment for BRCA1- and BRCA2-mutated

tumors should be different. In addition, other DSB repair pathways

(microhomology-mediated end joining [MMEJ] and single-strand

annealing [SSA]) could be sensitized to PARP inhibitor, but this

hypothesis requires further investigation. The present review will

contribute to the future development of both fundamental and clini-

cal studies.
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