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Abstract
Proteins must adopt a defined three-dimensional structure in order to gain
functional activity, or must they? An ever-increasing number of intrinsically
disordered proteins and amyloid-forming polypeptides challenge this dogma.
While molecular chaperones and proteases are traditionally associated with
protein quality control inside the cell, it is now apparent that molecular
chaperones not only promote protein folding in the “forward” direction by
facilitating folding and preventing misfolding and aggregation, but also facilitate
protein unfolding and even disaggregation resulting in the recovery of functional
protein from aggregates. Here, we review our current understanding of
ATP-dependent molecular chaperones that harness the energy of ATP binding
and hydrolysis to fuel their chaperone functions. An emerging theme is that
most of these chaperones do not work alone, but instead function together with
other chaperone systems to maintain the proteome. Hence, molecular
chaperones are the major component of the proteostasis network that guards
and protects the proteome from damage. Furthermore, while a decline of this
network is detrimental to cell and organismal health, a controlled perturbation of
the proteostasis network may offer new therapeutic avenues against human
diseases.
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Introduction
The vast majority of proteins must fold correctly in order to 
gain functional activity. While the protein folding information is 
encoded within the nascent polypeptide chain, newly synthesized 
polypeptides (or those imported into organelles) are prone to mis-
folding, causing aggregation and formation of other toxic species1. 
Consequently, maintaining protein homeostasis (proteostasis) is 
essential for cell and organismal health2. To accomplish this, cells 
have evolved a sophisticated network of protein quality control 
machines, consisting of molecular chaperones and proteases, which 
monitor the folding of proteins and their assembly into functional 
complexes, and selectively remove excess and damaged proteins 
from the cell. Challenging the capacity of this proteostasis net-
work increases the risk of human diseases associated with protein 
misfolding and aggregation1.

While most proteins adopt a defined three-dimensional structure, 
several exceptions are known to exist. Notable examples include 
prions that can adopt multiple, distinct, three-dimensional struc-
tures3–5, and an ever-increasing number of intrinsically disordered 
proteins (IDPs), which feature large regions of random coil or 
lack a defined structure altogether6–8. At least in yeast, it is now 
widely accepted that molecular chaperones play an essential role in 
prion replication9,10 by governing the inheritance and maintenance 
of yeast prions, and in some cases their elimination by chaperone 
overexpression11–15. However, concrete evidence of an involve-
ment of molecular chaperones in mammalian prion replication, 
although proposed16, is missing, and whether molecular chaperones 
play a role in the stabilization and/or protection of IDPs remains 
uncertain.

What is a molecular chaperone? A molecular chaperone can be gen-
erally defined as any protein that assists other macromolecules in 
folding and/or assembling into higher order structures, without it 
being a component of these final structures17. Thus, while their main 
function inside the cell is to assist in the folding and maturation of 
unfolded or partially folded macromolecules and to prevent their 
misfolding and aggregation, it was widely assumed that molecu-
lar chaperones involved in de novo protein folding do not recover 
functional protein once aggregation has occurred. This concept was 
challenged by the discovery of a novel stress-inducible molecular 
chaperone known as Hsp10418, which functions as an ATP-dependent 
protein disaggregase that rescues stress-damaged proteins from a 
previously aggregated state19,20. The discovery of Hsp104 has since 
expanded our definition of molecular chaperones to include those 
that promote the forward folding or prevent the aggregation of pro-
teins on one hand, and those that recover functional protein from 
aggregates on the other hand.

At the molecular level, molecular chaperones come in diverse 
shapes and sizes, and can be broadly separated into two groups: 
those that depend on metabolic energy to fuel their chaperone 
activity, and those that do not21. Examples of the former include 
all ATP-dependent molecular chaperones22, while the latter include 
small heat shock proteins23, protein disulfide isomerase24, ribosome- 
associated chaperones such as trigger factor25, and conditionally 
activated chaperones26.

The focus of this review is on ATP-dependent molecular chaper-
ones that harness the energy from ATP binding and/or hydrolysis 
to assist protein folding and unfolding (i.e., disaggregation). Their 
cellular expression can be either constitutive in order to perform 
vital housekeeping functions, or inducible by short exposure to 
elevated temperatures or other forms of stress that cause protein 
denaturation. Those that are stress-inducible are also known as 
heat-shock proteins or HSPs, while those that are constitutively 
active are termed heat-shock cognates or HSCs. Different members 
of both groups are classified according to their molecular weight, 
for example, HSP of 60-kDa (Hsp60), 70-kDa (Hsp70), 90-kDa 
(Hsp90), and 100-kDa (Hsp100), although many are better known 
by their common name that is used to designate each chaperone 
homolog from eubacteria, for example, GroEL (Hsp60), DnaK 
(Hsp70), HtpG (Hsp90), and ClpB (Hsp100) (Figure 1). All of these 
aforementioned HSPs bind adenine nucleotide and hydrolyze ATP. 
Furthermore, another common feature is their cooperation with 
other proteins, termed co-chaperones, which regulate the ATPase 
and/or chaperone activity, or reset the functional cycle.

The Hsp60 family
Hsp60 chaperones are known as chaperonins27, and can be divided 
into two subgroups. Group I chaperonins are sevenfold symmet-
ric and assemble into a barrel-like structure composed of two rings 
of seven identical subunits28. Notable examples include bacterial 
GroEL and Hsp60 from mitochondria and chloroplasts. Each GroEL 
subunit consists of an equatorial, intermediate, and apical domain 
(Figure 1a)29–31. ATP binding triggers a conformational rearrange-
ment of the apical domains followed by GroES binding. The latter 
is a GroEL co-chaperone that assembles into a heptamer ring32, and 
caps one side of the GroEL barrel (the cis ring)33 to encapsulate the 
substrate34, and to promote protein folding35. The prevailing model 
suggests that GroEL-ES promotes folding through repetitive bind-
ing, encapsulation, and release of the substrate protein28,36. Group 
II chaperonins are homo- or hetero-oligomers forming an eightfold 
double barrel structure composed of sixteen subunits, and include 
the eukaryotic chaperonin containing TCP1 complex (CCT), also 
known as the TCP-1 Ring Complex (TRiC), and the thermosome 
and Methanococcus maripaludis chaperonin (Mm-Cpn) from 
Archaea37. Unlike Group I chaperonins, group II members do not 
function together with a GroES-like co-chaperone, but instead con-
tain a built-in lid that undergoes an iris-like motion to promote pro-
tein folding38.

Much of our current understanding of chaperonin function comes 
from seminal work on Escherichia coli GroEL. E. coli GroEL is 
essential since many vital proteins, including metabolic enzymes 
and components of the transcription-translation machinery, depend 
on the GroE system for folding39. While GroEL’s essential house-
keeping function is beginning to be understood, an emerging ques-
tion is the recent appreciation of multiple copies of GroEL in some 
bacterial genomes40, as seen in actinobacteria, which includes 
Mycobacterium tuberculosis, the causative agent of Tubercu-
losis (TB). TB accounts for ~2 million deaths annually and is a 
major public health problem exacerbated by the emergence and 
rapid spread of new multidrug-resistant M. tuberculosis strains. 
M. tuberculosis encodes two copies of groEL in its genome40. While 
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Figure 1. Molecular architecture and domain organization of ATP-dependent molecular chaperones. Protein is shown as ribbon diagram 
with the bound nucleotide as red CPK model. For each chaperone, the domains of one subunit are shown in different colors in order of green, 
orange, and blue from N- to C-termini. Bound co-chaperones are colored cyan. (a) Hsp60/GroEL: Architecture and domain organization 
of the E. coli GroEL tetradecamer bound to ADP with a GroES heptamer capping the GroEL cis ring (PDB: 1AON)33. (b) Hsp70/DnaK: 
Architecture and domain organization of the E. coli DnaK monomer in the ATP-bound state (PDB: 4JNE)54. (c) Hsp90/HtpG: Architecture and 
domain organization of the ATP-bound yeast Hsp90 dimer in the closed-state conformation, and its stabilization by p23/Sba1 (PDB: 2CG9)81. 
(d) Hsp104/ClpB: Architecture and domain organization of a yeast Hsp104 hexamer bound to ATP (PDB: 1QVR; EMD-1631)97,99. The Hsp104 
M-domain that mediates the species-specific interaction with Hsp70 is colored in magenta.
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M. tuberculosis GroEL2 is essential for viability, the function of the 
non-essential GroEL1 paralog remains less clear. The crystal struc-
tures of M. tuberculosis GroEL2 and a GroEL1 fragment showed 
that the apical domains have nearly identical three-dimensional 
structures41,42. While GroEL2 is believed to be the housekeeping 
chaperonin similar to E. coli GroEL, GroEL1 may function as a 
specialized chaperonin with a more limited substrate spectrum. 
Consistent with this notion, it has been proposed that mycobacte-
rial GroEL1 is a dedicated chaperone for biofilm formation43, which 
is presumed to confer the extraordinary starvation survival and 
resistance of M. tuberculosis to known antibiotics44.

The Hsp70 family
Members of the Hsp70 chaperone family are found in all three 
surviving domains of life45. At the molecular level, Hsp70 is a 
two-domain protein consisting of a nucleotide-binding domain 
connected by a long and flexible hydrophobic linker to the sub-
strate-binding domain that can be subdivided into a β-sandwich 
domain and an α-helical domain (Figure 1b). Furthermore, cytosolic 
eukaryotic Hsp70s feature a Glu-Glu-Val-Asp or “EEVD” motif at 
the extreme C-terminus, which is required for the interaction with 
Hsp70 co-chaperones that regulate the Hsp70 ATPase activity and 
its ability to bind substrate46. It has been shown that bacterial Hsp70 
recognizes diverse polypeptides mostly in an unfolded or partially 
unfolded form by binding to a four to five residue stretch of hydro-
phobic amino acids flanked by regions enriched in basic amino 
acids47, which occur on average every 30–40 residues in most pro-
teins. Since Hsp70 binding motifs are typically buried within the 
correctly folded protein, it provides a means to selectively seek 
out and bind proteins that are in a non-native conformation. How-
ever, Hsp70 chaperones rarely, if ever, function on their own and 
require the assistance of co-chaperones, which include nucleotide 
exchange factors, such as bacterial GrpE and eukaryotic Hsp110, 
and the large family of J-domain-containing Hsp40 co-chaperones,  
which accelerate ATP hydrolysis, serve as substrate targeting 
factors, and stabilize Hsp70-substrate interaction21.

Over the last decade, high-resolution structural information on full-
length Hsp70 chaperones has become available48–54, providing new 
insight into the Hsp70 conformational cycle and its allosteric regu-
lation by nucleotide55. Hsp70 function is controlled by nucleotide 
binding with ATP, promoting an open-conformation with low sub-
strate-binding affinity, and ADP, promoting a closed-conformation 
required for tight binding of substrates21.

In addition to Hsp70’s known role in protein folding, Hsp70 also has 
other non-chaperone functions. For instance, it was recently shown 
that Hsp70 functions as an activator of the ring-forming Hsp104 
protein disaggregase and is required to unleash the potent protein 
disaggregating activity56,57. While no Hsp104 homolog is known to 
exist in metazoans, the discovery of a mammalian protein disaggre-
gase, composed of Hsp70, Hsp110, and Hsp40, is exciting and sup-
ports functional conservation of a protein disaggregating activity in 
animal cells58–61. However, despite its nomenclature, Hsp110 is not 
an Hsp100 homolog, but instead belongs to an Hsp70 subfamily 
that is activated by nucleotide62, shares structural49,63,64 and perhaps 
functional conservation with Hsp7065, and functions as an Hsp70 
nucleotide exchange factor66,67.

The Hsp90 family
Hsp90 belongs to a conserved group of ATP-dependent molecu-
lar chaperones68–70 which, together with Hsp70 and a cohort of 
co-chaperones, facilitates the late-stage folding and maturation of 
proteins71,72. Since Hsp90 substrates are mostly substantially folded 
proteins, they are known as “client proteins”68 to distinguish them 
from other chaperone substrates that lack a defined structure. More 
than 400 different clients are known to depend on Hsp90 for fold-
ing or maturation, and include protein kinases, transcription fac-
tors, and E3 ubiquitin ligases73. The large number of signaling and 
tumor promoting proteins amongst Hsp90 clients has made Hsp90 
a promising drug target74.

Apart from Hsp90 chaperones in the eukaryotic cytosol, Hsp90 
homologs are found in bacteria (HtpG) and eukaryotic organelles, 
including the endoplasmic reticulum (Grp94), mitochondrion 
(TRAP1), and chloroplast75. Interestingly, Hsp90-like domains 
with chaperone activity have also been found in Sacsin, a 521-kDa 
protein associated with an autosomal recessive form of spastic 
ataxia76,77. However, an Hsp90 homolog has not been found in 
Archaea.

Hsp90 chaperones share a similar domain structure consisting 
of an N-terminal (N-) nucleotide-binding domain, a middle (M-) 
domain, and a C-terminal (C-) dimerization domain (Figure 1c). 
The N-domain is connected to the M-domain via a flexible linker 
that is often highly charged and, in human Hsp90, is over 60 resi-
dues in length. While important to cytosolic eukaryotic Hsp90 
function78–80, the charged-linker is not universally conserved and 
is essentially absent in both bacterial and mitochondrial Hsp90s. 
Crystal structures are now available for full-length members of all 
Hsp90 subfamilies mostly with bound nucleotide81–84, including the 
recent structure of an asymmetric TRAP1 dimer in the ATP-bound 
state84. The latter lends supports for a sequential ATP hydrolysis 
mechanism85,86, although asymmetric binding of nucleotide was 
not observed84. Consistent with the prevailing notion, the available 
structures confirmed that all Hsp90 chaperones form homodim-
ers with the N-domain mediating nucleotide binding. Strikingly, 
however, apo Hsp90 forms a wide-open, V-shaped dimer with the 
N-domains separated by over 100 Å82, while Hsp90 in the ATP-
bound state adopts an intertwined, N-terminally closed dimer81,84. 
Since the N-domains are too far apart in the open-state to signal the 
nucleotide status between neighboring subunits, how ATP-binding 
induces the closed-state conformation remains an open question. 
One model suggests that Hsp90 chaperones sample different three-
dimensional conformations with different adenine nucleotides 
stabilizing distinct Hsp90 dimer conformations87–89. While not 
mutually exclusive, the crystal structures of intact Grp94, which 
were determined in the ATP- and ADP-bound state, revealed a very 
similar Hsp90 dimer conformation irrespective of the nature of 
the bound nucleotide83. Hence, further in vitro and in vivo studies 
are needed to address the exact roles of ATP and ADP for Hsp90 
chaperone function.

The Hsp100 family
Members of the Hsp100 family were first discovered as the 
protein-activated ATPase components of the protease Ti from 
E. coli90,91, now better known as the ClpAP protease. Members of 
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the Hsp100/Clp family belong to the large superfamily of ATPases 
Associated with diverse cellular Activities (AAA+)92,93. Hsp100/Clp 
members form a hexameric ring structure and function as the protein- 
unfolding component of chambered proteases94,95. The discovery of 
yeast Hsp104 that facilitates protein disaggregation19, as opposed 
to targeting proteins for degradation, established Hsp104 as the 
founding member of a new family of ATP-dependent molecular 
chaperones. In addition to yeast Hsp104, Hsp104 homologs were 
found subsequently in bacteria (ClpB), plants (Hsp101), and most 
recently in Dictyostelium discoideum (Hsp101)96.

Like all Hsp100/Clp proteins, Hsp104 forms an oligomer, with 
the homohexamer being the functionally active form97–100. Hsp104 
features two canonical Walker-type ATP-binding domains, known 
as AAA domains, in addition to several other structural elements 
that define members of the AAA+ superfamily and include the 
so-called arginine-finger and the sensor 1 and 2 motifs101–106. While 
the Hsp104 hexamer is stabilized by nucleotide and is an active 
ATPase in vitro107,108, it requires the cooperation of the cognate 
Hsp70 chaperone system, consisting of Hsp70 and Hsp40 in yeast20 
and DnaK, DnaJ, and GrpE in eubacteria109–111, to recover functional 
protein from aggregates.

At the molecular level, Hsp104 consists of an N-terminal domain, 
and two tandem AAA+ domains, termed AAA-1 and AAA-2 
(Figure 1d)97,103. The AAA-1 domain features an 85-Å long coiled-
coil insertion, known as the M-domain, which is located on the 
outside of the hexamer99,100,112 and distinguishes Hsp104 mem-
bers from other Hsp100/Clp ATPases. The M-domain is essential 
for protein disaggregation by mediating the interaction between 
Hsp104 and Hsp70113–115, and may function as a molecular toggle 
to allosterically control the ATPase and mechanical activities of the 
Hsp104 motor116.

How Hsp104 facilitates protein disaggregation has been revealed 
by the combined efforts of several groups117. It is now widely 
accepted that, inside the cell, the Hsp70 system targets the Hsp104 
motor to both amorphous and ordered aggregates15,118, from which 
Hsp104 extracts polypeptides using an ATP-driven power stroke 
involving pore loops present in the AAA-1 and AAA-2 domains119, 
and threading the polypeptide through the central channel of the 
Hsp104 hexamer120,121.

While we are beginning to understand the function of the M- and 
AAA domains, the role of the N-domain is less clear. It was shown 
that the N-domain is dispensable for Hsp104 function in vitro 
and in vivo15,103,122–125. However, others found that the N-domain 
is essential for bacterial Hsp104126,127 and mediates substrate 
interaction126,128–131. Consistently, the N-domain of yeast Hsp104 
enhances protein disaggregation in vitro114, mediates prion interac-
tion in yeast132, and is essential for yeast prion dissolution112 and 
curing by Hsp104 overexpression124.

In addition to Hsp104’s role in yeast stress responses and yeast 
prion replication, new roles are emerging, including the asym-
metric distribution of oxidative damaged proteins133,134, facilitating 
the sorting of tail-anchored proteins to the endoplasmic reticulum 
membrane135, and septin folding and assembly136. Hence, future 
studies will provide a more complete picture as to the extent of 
Hsp104’s cellular function.

Future perspectives
It is now widely appreciated that molecular chaperones are inti-
mately linked to proteostasis maintenance and are essential to cell 
and organismal health. Perturbation of the proteostasis network, for 
instance by “chaperone overload”137 or polyglutamine expansion138, 
invariably disrupts the balance of the protein folding landscape 
triggering protein misfolding and the formation of aggregates that 
are hallmarks of neurodegenerative diseases, prion-mediated infec-
tions, and amyloidosis. At the same time, a controlled perturbation 
of the functional interaction between molecular chaperones and 
proteases could provide new avenues for therapeutic intervention. 
This could be achieved by using small molecule compounds, or by 
RNA interference, or restoring the proteostasis network in disease 
states, for instance with chemical chaperones or by induced chap-
erone expression139,140.
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