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Abstract

Background—We evaluated: 1) associations of prenatal manganese (Mn) levels with child 

neurodevelopment at 4 – 6 years; 2) effect modification by maternal anemia and iron deficiency; 

and 3) sex-specific effects.

Methods—We measured blood Mn, hemoglobin, and serum ferritin in mothers at the 2nd 

trimester, 3rd trimester, and at birth, and in cord blood from a prospective birth cohort in Mexico 

City (n=571). McCarthy Scales of Children’s Abilities were measured at 4 – 6 years. Using linear 

regression, we estimated associations between prenatal Mn and neurodevelopment, examined 

anemia and iron deficiency as effect modifiers, and analyzed associations by child sex.

Results—No direct associations were observed between Mn, anemia, or iron deficiency and 

McCarthy scales. Second trimester iron deficiency and 3rd trimester anemia modified the effect of 

Mn on child neurodevelopment. For instance, 2nd trimester Mn was positively associated child 

memory scores in mother’s with normal ferritin (1.85 (0.02, 3.45), but negatively associated in 

mother’s with low ferritin (−2.41 (−5.28, 0.47), interaction p value = 0.01), a pattern observed 

across scales. No effect modification at birth or in cord blood was observed.
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Conclusions—Anemia/iron deficiency during pregnancy may modify Mn impacts on child 

neurodevelopment, particularly in boys.

Introduction

Manganese (Mn) is an essential nutrient with a critical role in many cellular processes, 

including as calcium homeostasis, inflammatory response, and protein / energy metabolism 

(1). It is particularly important as a cofactor in the enzyme superoxide dismutase (SOD), 

which is crucial for protection against oxidative stress (1). Despite its contribution to brain 

development (2), high environmental Mn exposures have been implicated in developmental 

neurotoxicity, when Mn itself can induce oxidative stress. Mn is actively transferred across 

the placenta (3) and across the developing blood brain barrier to accumulate the neonate 

brain (4). Several studies have reported inverted U-shaped response curves for the effects of 

Mn on child mental and psychomotor development between 6 and 36 months of age, 

suggesting that both deficient and excess Mn can be neurotoxic (5–7). Others have observed 

inverse linear associations between prenatal Mn with child behavior in grade school (8). 

However, Mn levels in teeth were positively associated with memory, cognitive, and motor 

skills from 7 to 10.5 years (8). Thus, more research is necessary to determine the long term 

effects of prenatal Mn on child cognition.

Mn also interacts with other metals to increase oxidative stress and neurotoxicity, including 

physiological interactions with iron. Mn accumulates during iron deficiency due to increased 

levels of shared transporters (6), which may increase Mn toxicity in the brain (9). In 

addition, particularly in situations of low iron stores, Mn can replace iron in the Fenton 

reaction to generate free radicals. This is notable as iron deficiency is a global public health 

issue and a major cause of anemia. The burden of iron deficiency is high in low and middle 

income countries, and is associated with many factors including education, socioeconomic 

status, infection, diet, and obesity (10–12). It is especially prevalent among pregnant women, 

since iron requirements triple during pregnancy (10). Prenatal iron deficiency anemia can 

decrease cognitive performance, growth, and energy in infants and children (10). Prenatal 

Mn was negatively associated with mental and psychomotor development in girls born to 

anemic mothers (5), suggesting that these two factors may interact to induce adverse 

neurodevelopmental effects.

Although studies have adjusted for hemoglobin or ferritin status as a covariate to isolate 

effects of prenatal Mn on child neurodevelopment and cognition (13,14), to our knowledge 

only one has examined the interactions between prenatal Mn and anemic status on child 

neurodevelopment up to 24 months (5). We hypothesized that prenatal anemia and/or iron 

deficiency would synergistically increase the neurotoxic effects of prenatal Mn in early 

childhood. Fetal development is a complex process that is particularly sensitive in 

comparison to later life stages. Furthermore, maternal Mn, hemoglobin, and iron levels vary 

substantially throughout pregnancy and at birth (10,15). Thus, our objective was to identify 

subpopulations of individuals that may have increased susceptibility to Mn-induced 

neurotoxicity and to address the role of critical exposure windows by examining the 

association of Mn measured in maternal blood from the 2nd trimester, 3rd trimester, and at 

birth, as well as Mn in cord blood, with child cognition and verbal, motor, perceptual-
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performance, quantitative, and memory skills at four years of age using the McCarthy Scales 

of Children’s Abilities. We examine the effect modification of this relationship by maternal 

anemia and iron deficiency. Finally, we examine the sex-specificity of these interactions. By 

interrogating effect modification of Mn by both serum ferritin and hemoglobin at multiple 

times throughout pregnancy, and incorporating the McCarthy Scales as a later 

neurodevelopmental indicator, we are able to advance the field beyond previous research (5) 

and provide meaningful information on the complex interactions between prenatal Mn and 

anemia on child neurodevelopment.

Methods

Study Population

The Programming Research in Obesity, Growth Environment and Social Stress 

(PROGRESS) study is an ongoing, prospective, birth cohort in Mexico City, Mexico. We 

enrolled women receiving prenatal care from the Mexican Social Security Institute clinics 

before 20 weeks gestation as previously described (16,17), and 948 mother-child pairs were 

followed after birth. Smoking in pregnancy is uncommon in this population, but as it is 

associated with anemia (18) and poorer neurodevelopment (19), six women reporting 

smoking during pregnancy were excluded. There were no differences between 

characteristics of the participants in this analysis with the whole study population. 

Procedures were approved by institutional review boards at the Harvard School of Public 

Health, Icahn School of Medicine at Mount Sinai, and the Mexican National Institute of 

Public Health. Women provided written informed consent.

Manganese Measurement

Maternal blood was collected by trained research staff at the 2nd trimester visit (12 – 34 

weeks; n = 894), 3rd trimester visit (26 – 38 weeks; n = 745), and at birth (maternal n = 732; 

cord n = 515) and stored at −20°C. Mn was analyzed by inductively coupled plasma-mass 

spectrometry (ICP-MS/MS) as previously described for Pb with the appropriate quality 

controls (20). In brief, blood was digested in HNO3 and 30% H2O2 and analyzed via ICP-

MS/MS on an Agilent 8800 ICP Triple Quad (ICP-QQQ) instrument (Agilent technologies, 

Inc., Delaware, USA) with Indium as the internal standard. The quantitation limit of 

detection (LOD) was 0.02 – 0.08 μg/dL with no values below the LOD.

Blood Parameter Measurement

Hemoglobin was measured as part of a standard complete blood count (CBC) by trained 

research staff in blood from the 2nd trimester visit, 3rd trimester visit, in mothers at birth, and 

in cord blood. Serum was collected by centrifugation and ferritin was measured using an 

ELISA chemiluminescence assay on an Immulite 100 (Siemens, Munich, Germany). Third 

trimester ferritin was measured on 586 of 702 the mothers with extra blood available as it 

was an addition to the standard CBC.

McCarthy’s Scales of Children’s Abilities

At the 4 – 6 year visit, the McCarthy’s Scales of Children’s Abilities examination was 

administered by a trained psychologist in Spanish (21) at the Department of Developmental 
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Neurobiology, National Institute of Perinatology, in Mexico City. The McCarthy Scales 

assess five key cognitive outcomes: memory, motor, perceptual-performance (hereafter 

called “perception”), quantitative and verbal skills. The perception, quantitative, and verbal 

scales were summed to create a General Cognitive Index (GCI). Raw values were 

standardized by child age. Subscales were scaled to a mean of 50 with standard deviation 10 

and GCI was scaled to mean of 100 with standard deviation 15.

Food Frequency Questionnaires for Vitamin/Supplement Intake

Food frequency questionnaires (FFQs) validated for a Mexican population (22) were 

administered to all participants at the 3rd trimester and at birth for the previous 3 months 

(representing 2nd and 3rd trimester) in Spanish by trained research staff as previously 

described (23). Daily folate equivalents, iron intake, vitamin B12, thiamine, supplemental 

Mn (mg/day), calcium, and daily beta carotene were estimated from FFQ supplement 

questionnaires as previously described in mg/day (23,24).

Statistics

Mn values were trimmed to ± 6 standard deviations to remove two extreme values from the 

3rd trimester. Hemoglobin levels are positively correlated with geographic elevation due to 

atmospheric oxygen tension. Thus we corrected our values to reflect the high elevation of 

Mexico City (2,250 m above sea level) by subtracting 1.3 g/dL from each measurement (25). 

We determined anemia status according to the World Health Organization guidelines for 

pregnancy for maternal measurements: 11 g/dL hemoglobin (10). Low ferritin/iron 

deficiency was considered less than 15 μg/L (10). Hemoglobin levels are highest at birth and 

fall to more typical levels following conversion of fetal hemoglobin to adult hemoglobin. 

There are currently no guidelines for anemia or iron deficiency in cord blood, so cord 

hemoglobin and iron were dichotomized at their respective medians for analysis. We 

determined differences between participant characteristics at each measurement time with 

mixed effects models and calculated intra-class correlation coefficients (ICCs) for Mn, 

hemoglobin and ferritin values at all measurements and only in maternal measurements. We 

then used chi-squared, Fisher’s exact, or t-tests to determine differences in participant 

characteristics stratified by each effect modifier.

We collected covariate information from 2nd trimester baseline questionnaires. Covariates 

were selected for the model if they had a significant association with one of the cognitive 

outcomes or resulted in a change in the effect estimate of interest by >10% in the mutually 

adjusted models. Covariates considered for inclusion in the model were: maternal age, 

education, socioeconomic status (SES), marital status, parity, child age, sex, environmental 

tobacco smoke (estimate of secondhand smoke exposure as presence or absence of smokers 

at home), and date of visit (Supplemental Table S1 (online)). SES was calculated based on 

the AMAI rule 13×6 (26) then collapsed into a three level index of low, medium, and high 

for this analysis. Although SES was associated with outcomes in univariate models, when 

education was also included, it did not alter the effect estimates of Mn. Thus, to preserve 

degrees of freedom in subpopulations with small sample sizes, SES was not included in our 

final adjusted models. Covariates included in adjusted models were: maternal education 
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(<high school, high school and >high school), maternal age, parity (primiparous or 

multiparous), child age, and sex.

We first assessed all associations between exposures and outcomes with generalized additive 

models to determine nonlinearity, which indicated linear associations (data not shown). 

Hence, we generated three linear regression models for the association between blood Mn at 

each measurement and scores on the McCarthy Scales: 1) Models adjusted for hemoglobin 

or ferritin as covariates (Full); 2) Models stratified by effect modifier status (low or normal 

hemoglobin/ferritin); and 3) Models with an interaction between Mn and hemoglobin or 

ferritin. All associations were assessed in unadjusted models and models adjusted for all 

covariates. Effect estimates of the associations between Mn and child cognition can be 

interpreted as the change in McCarthy Scale per 1 μg/dL increase in Mn blood levels when 

Mn is measured in: all individuals, individuals with low ferritin/hemoglobin, or individuals 

with normal ferritin/hemoglobin. Effect estimates for the associations of effect modifier 

status on child cognition can be interpreted as the change in McCarthy Scale when the 

population changes from normal ferritin/hemoglobin to low ferritin/hemoglobin.

We also tested a three-way interaction between Mn, hemoglobin/ferritin, and child sex at 

each measurement time with child GCI. We fit three types of linear models: 1) Models 

adjusted for hemoglobin or ferritin as a covariate and stratified by sex; 2) Models stratified 

both by hemoglobin/ferritin and by sex; and 3) Models containing a 3-way interaction 

between Mn, hemoglobin or ferritin and sex.

Finally, the use of daily vitamins may confound the relationships between Mn, anemia and 

iron deficiency with neurodevelopment (23). We performed a sensitivity analysis including 

supplement use, stratifying all variables by their medians: daily folate equivalents (<850 mg/

day, ≥850 mg/day), daily iron (<40 mg/day, ≥40 mg/day), vitamin B12 (None, >0), thiamine 

(None, >0); calcium (None, >0), and beta carotene supplementation (0, >600 mg/day) as 

covariates in our primary adjusted models. Separate models were specified for thiamine due 

to low numbers of participants taking thiamine supplements. The α-level for statistical tests 

of significance was set at 5%. We performed all statistical analyses in R version 3.5.0 (27).

Results

Population Characteristics

Mothers in this study were primarily partnered (80.91%), multiparous (61.30%), and on 

average 27.57 years of age (Table 1). The majority were of low SES (51.66%), with 40.63% 

having less than a high school education. Children were split evenly between males and 

females. At the time of examination, children were on average 4.8 years old.

Whole blood Mn concentrations increased from the 2nd trimester to birth (Table 2). Serum 

ferritin levels decreased between the 2nd and 3rd trimesters, but returned to 2nd trimester 

levels in mothers at birth. Maternal hemoglobin remained relatively constant from the 2nd 

trimester to birth (Table 2). Mn, ferritin, and hemoglobin levels were greatest in cord blood. 

Reproducibility for Mn, ferritin, and hemoglobin measurements was null, however, when 

only maternal measurements were included, reproducibility was moderate (Table 2).
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In the 2nd trimester, 21% of mothers were anemic and 17% were iron deficient. In the 3rd 

trimester, 23% of mothers were anemic and 54.4% were iron deficient. Finally, at birth, 33% 

of mothers were anemic and 21% were iron deficient. Among women with both hemoglobin 

and serum ferritin measured at the same time point, the majority of individuals had both high 

hemoglobin and ferritin (40% – 67%) depending on the trimester of measurement, while less 

than 20% had both values as low, and the remaining had either one low and one high 

measurement (28% – 42%) (Supplemental Table S2 (online)). Average Mn concentrations 

were higher in individuals with low ferritin at all measurements (Supplemental Table S3 

(online)). When stratified by hemoglobin status, Mn concentrations were greater in the non-

anemic population at the 2nd trimester and in cord blood. The age of mothers with iron 

deficiency or with anemia in the 3rd trimester was greater than mothers with normal iron or 

hemoglobin levels (approximately 28 years and 26 years, respectively). Mothers who were 

anemic in the 2nd trimester tended to have lower BMI than non-anemic mothers (25.3 and 

26.6 kg/m2, respectively), while mothers who were anemic at birth tended to have greater 

BMI than non-anemic mothers (26.03 and 27.07 kg/m2, respectively). Finally, boys had 

higher hemoglobin than girls in cord blood. No other covariates differed between low and 

normal populations (Data not shown).

Associations of Prenatal Anemia and Iron Deficiency with Child Cognition

Neither low ferritin nor low hemoglobin were associated with child cognition, except 2nd 

trimester low ferritin was positively associated with child motor scores in adjusted models 

(Figure 1A). Mn was not independently associated with any of the McCarthy scales in the 

full study population (un-stratified by hemoglobin or ferritin status) at any measurement 

(Circles in Figures 2 & 3). No differences were detected between adjusted and unadjusted 

models (Supplemental Figure S1 (online)).

Associations of Prenatal Manganese with Child Cognition when Stratified by Serum 
Ferritin

Second trimester Mn in mothers with normal ferritin was positively associated with child 

memory scores and quantitative scores (Figure 2A). In contrast, in women with low ferritin, 

2nd trimester Mn exposure trended toward a negative association with GCI, memory, motor, 

quantitative, and verbal scores in children. Hence, ferritin status significantly modified the 

effect of 2nd trimester maternal blood Mn on child memory scores (βnormalFe = 1.85 (95% 

CI: 2.02, 3.45); βlow = −2.41 (−5.28, 0.47); Adjusted Interaction P (int. p) = 0.01) (Figure 

2A) and quantitative scores (βnormalFe = 1.91 (0.12, 3.69); βlow = −2.13 (−5.51, 1.25); int. p 

= 0.05) (Figure 2A). A similar trend of negative associations between Mn levels and 

cognition in low ferritin subgroups, and positive associations between Mn and cognitive 

outcomes in normal ferritin subgroups was present for children’s GCI, motor, and verbal 

scores (Figure 2). When the sample was stratified by maternal ferritin status, no associations 

were observed between child cognition and blood Mn measured in the 3rd trimester, in 

mothers at birth, or in cord blood (Figure 2B–D). No differences were detected between 

adjusted and unadjusted models (Supplemental Figure S2 (online))
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Associations of Prenatal Manganese with Child Cognition when Stratified by Hemoglobin

When the sample was stratified by hemoglobin status, Mn in 3rd trimester blood of mothers 

who were not anemic was positively associated with child memory scores at 4 years of age 

(Figure 3B). Among anemic women, 3rd trimester Mn levels trended toward inverse 

associations with child GCI, memory, motor, quantitative, and verbal scores. Anemia status 

in the 3rd trimester significantly modified the effect of Mn on child’s GCI score (βnormalHb = 

1.64 (−0.19, 3.47); βlow = −2.68 (−6.77, 1.41); int. p = 0.05), child memory score (βnormalHb 

= 1.34 (−0.17, 2.50); βlow = −1.38 (−4.05, 1.30); int. p = 0.05), and child verbal score 

(βnormalHb = 1.17 (−0.07, 2.41); βlow = −1.51 (−4.21, 1.18); int. p = 0.05) (Figure 3B). 

Furthermore, a trend toward this interaction was present for child motor and quantitative 

scores (Figure 3B). No associations between Mn and child McCarthy scores were detected 

when Mn was measured in the 2nd trimester, mothers at birth, or cord blood in samples 

stratified by anemic status (Figure 3A, C, and D). No differences were detected between 

adjusted and unadjusted models (Supplemental Figure S3 (online)).

Sex-specific Effects of Prenatal Manganese, Anemia and Iron Deficiency on Child GCI

When the sample was stratified by child sex, no sex-specific associations of Mn with child 

GCI were detected or when the population was stratified by ferritin/hemoglobin in the 2nd 

trimester, in cord blood, or in maternal blood at birth (Figure 4).

In the 3rd trimester, no sex-specific associations between Mn and GCI were detected when 

the population was stratified by iron deficiency (Figure 4B). However, a significant 3-way 

interaction between 3rd trimester anemia, Mn, and sex was observed for child GCI (int. p = 

0.02). This effect was strongly observed in boys – 3rd trimester maternal Mn from anemic 

mothers was inversely associated with GCI, but positively associated with GCI in non-

anemic mothers (βnormalHb boys = 2.50 (−0.25, 5.24); βlow boys = −5.55 (−12.33, 1.22)) 

(Figure 4B). To evaluate the generalizability of our results, we ran these models with the 

remaining McCarthy scales. A significant association was observed for child memory 

(Supplemental Figure S4B (online)) and verbal scores (Supplemental Figure S8B (online)), 

with similar trend for quantitative scores (Supplemental Figure S7B (online)).

Sensitivity Analysis: Adjustment for 2nd and 3rd Trimester Supplement Use

Generally, supplement use differed between low and normal populations of hemoglobin tin 

the 2nd trimester and between low and normal populations of serum ferritin in the 3rd 

trimester (Supplemental Table S4 (online)). Adjustment of 2nd and 3rd trimester models for 

any vitamins or supplements did not change the associations of anemic factors or of Mn with 

child McCarthy scales (Supplemental Figure S9 and S10 (online)).

Discussion

We examined the associations between Mn measured throughout pregnancy with child 

cognition and assessed effect modification by concurrent anemia and iron deficiency. 

Although we detected no direct effect of Mn or anemia/iron deficiency measured at any time 

point on child neurodevelopment outcomes in the full, un-stratified, population, we observed 

significant interactions for 2nd trimester maternal blood Mn by 2nd trimester ferritin status, 
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and of 3rd trimester maternal Mn by 3rd trimester hemoglobin status on child GCI, memory, 

motor, quantitative, and verbal scores. Our results were consistent with the nutritional 

properties of both elements – Mn was beneficial when iron status was within normal limits, 

but associated with lower McCarthy scale scores in the setting of anemia or iron deficiency. 

We also observed a effect modification by 3rd trimester anemic status in boys on GCI status. 

These results suggest that iron and manganese status may act in tandem on the developing 

nervous system and that deficiency in one of the elements can impact the benefits of the 

other.

Research suggests that high prenatal Mn exposure adversely effects child neurodevelopment. 

In an analysis in this cohort at 24 months, researchers observed a significant association of 

3rd trimester and cord blood Mn with decreased cognitive, language, and motor development 

(7). Furthermore, in other cohorts, prenatal Mn exposure was adversely associated with 

cognitive and language scores at 2 years (28) and cord blood Mn levels were negatively 

associated with three McCarthy scores at 3 years, but not at 6 years (29). Other studies have 

found associations of prenatal Mn with child behavioral problems (8).

The primary mechanisms of Mn neurotoxicity are not well understood, but may involve 

increased oxidative damage to neuronal cells with targeting of glutaminergic and 

dopaminergic systems impacting executive function and attention (30). The adverse effects 

of iron deficiency are also mediated in part by dopaminergic neurons, as iron deficiency 

anemia increases spontaneous dopamine release in the nucleus accumbens among other 

effects on dopamine pathways (31), as well as glutaminergic systems and myelination (32). 

Glutamate and dopamine are essential to learning and behavioral development, suggesting 

that the combination of higher Mn and lower iron status may be operating via dopaminergic/

glutaminergic pathways that are shared by iron and Mn. In this population, 2nd and 3rd 

trimester Mn trended towards being inversely associated with child cognition in mothers 

with low 2nd or 3rd trimester ferritin or hemoglobin. In contrast, 2nd and 3rd trimester Mn in 

mothers with normal ferritin and hemoglobin was positively associated with child cognition.

Interestingly, effect modification of the association between Mn and child cognition by iron 

deficiency was observed in the 2nd trimester and effect modification by anemia was observed 

in the 3rd trimester. These results suggest that earlier development is more susceptible to the 

interactions between Mn and anemia or iron deficiency. Research demonstrates that fetal 

development is more vulnerable than postnatal development to toxicant exposure. This may 

be due to differing physiological requirements for Mn or iron by developmental stage, or by 

changing pharmacokinetics throughout development, particularly in terms of drug 

metabolizing enzymes, and hepatic and renal clearance systems (33). Additionally, although 

Mn can cross the blood-brain barrier, it has been suggested that incomplete blood-brain 

barrier development may increase Mn uptake earlier in pregnancy (4). Furthermore, the 

transferrin receptor is expressed early in development throughout the brain, possibly 

explaining increased iron uptake (4). Mn is also able to bind to transferrin for transport via 

neuronal divalent metal transporter (4), suggesting that in situations of low iron, Mn uptake 

may increase due to decreased binding competition. When measured in the 3rd trimester, the 

effects of Mn were modified only by anemia and not iron deficiency. However, 

approximately 75% of cases of anemia during pregnancy are due to iron deficiency (34). In 
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this instance, it is possible that the anemic state measured during the 3rd trimester is a better 

reflection of iron deficiency anemia than the serum ferritin measurement. Thus, effect 

modification similar to 2nd trimester Mn and iron deficiency is now detectable as an 

interaction between 3rd trimester Mn and anemia.

We also observed effect modification by sex and 3rd trimester hemoglobin on Mn and child 

GCI scores, which was also apparent in memory, quantitative, and verbal scores. A negative 

relationship between Mn and neurodevelopment was detected in boys born to mothers with 

low 3rd trimester hemoglobin. To date, only one other study has investigated a three-way 

interaction between Mn, hemoglobin, and cognition. In 6-month old infants, Gunier et al. 

observed that girls born to mothers with low hemoglobin had lower mental and psychomotor 

development indexes than those born to mothers with higher hemoglobin (5). They observed 

no effects in boys. Previous studies have reported that girls tend to have higher Mn blood 

levels than boys (5,8), and cross-sectional analyses in children have reported adverse effects 

on neurodevelopment in girls (35). In contrast, we observed no effect modification in girls. 

However, another study found a negative association between cord blood Mn and hand skills 

in boys, but not in girls (29).

The Mn levels measured in this study were lower than previously assessed in maternal whole 

blood in the US (36), approximately equal to concentrations in South Africa (37), but higher 

than those in France (38). However, the timing of the Mn measurements during pregnancy 

may differ across studies, complicating direct comparisons. We observed an increase in Mn 

in maternal blood between the 2nd trimester, 3rd trimester, and at birth (ICC = 0.27), which is 

expected, as Mn concentrates during pregnancy to provide the fetus with adequate supply 

(15). Population average Mn measured in cord blood was approximately double Mn 

measured in maternal blood at birth, which is comparable to previous research (15,36,37). 

However, ICCs including cord blood were null, and low correlations between maternal Mn 

at birth and cord blood Mn have been reported previously.

Approximately 20% of women in our population were anemic during pregnancy, which is 

expected within the Mexican population (39). Ferritin levels in this population decreased by 

half between the 2nd and 3rd trimesters, as nutritional iron requirements triple through 

pregnancy (10). However, serum ferritin levels in mothers at birth were similar to those 

measured during the 2nd trimester, which may be due to iron supplementation during 

pregnancy. Mn levels were significantly higher in iron deficient mothers, which is consistent 

with well-established interactions between Mn and Fe (6,40).

We also observed differences in maternal BMI by anemic status and by trimester. Women 

that were anemic in the 2nd trimester tended to have lower BMI, whereas women who were 

anemic at birth tended to have higher BMI than women with normal hemoglobin. Previous 

research suggests that obesity contributes to iron deficiency in pregnancy (11). It is possible 

that the effect of obesity on anemia may be small early in pregnancy, but as physiological 

iron requirements increase, the effects of obesity on iron deficiency become apparent. While 

we were unable to test this hypothesis, this pattern deserves future investigation.
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This study has several limitations. First, Mn measured in blood does not indicate chronic 

exposure, however, whole blood Mn is regarded as a useful biomarker of exposure and 

multiple studies report associations between prenatal blood Mn and neurodevelopment. 

Second, maternal Mn levels may underestimate prenatal child exposures because Mn is 

known to concentrate in the developing fetus (3). Finally, the small sample size for serum 

ferritin measurements limits our ability to detect 3-way interactions with Mn, ferritin, and 

child sex through the lack of statistical power or potential increase in bias.

Nonetheless, our analysis also had several strengths, including prospective follow-up with 

high retention and multiple measurements of Mn during pregnancy. Moreover, we analyzed 

both ferritin and hemoglobin as effect modifiers. Although serum ferritin is also increased 

during inflammation, it is a more stable indicator of iron status than blood iron levels. We 

also demonstrated the robustness of our results by including use of several supplements 

relevant for anemia and neurodevelopment as covariates in our sensitivity analyses. This 

study is one of few to examine prenatal Mn in relation to neurodevelopment in children over 

36 months of age (8) and to examine the McCarthy Scales of Children’s Abilities as the 

outcome. Future studies would benefit from longitudinal analysis of child neurodevelopment 

and exploration of the relationship between childhood Mn and anemia.

Conclusion

In this population, we observed effect modification of the association between prenatal Mn 

and child neurodevelopment at 4 – 6 years by maternal anemia and iron deficiency. 

Specifically, positive associations were observed between Mn and child cognition, verbal, 

memory, motor, and quantitative scores among children whose mothers had normal 

hemoglobin or ferritin in the 2nd and 3rd trimesters. In contrast, associations between 

neurodevelopment and Mn were negative in children born to mothers that were anemic in 

the 3rd trimester or iron deficient in the 2nd trimester. This effect was most pronounced in 

boys with mothers that were anemic in the 3rd trimester of pregnancy. No associations were 

observed when Mn and hemoglobin/ferritin were measured in maternal blood at birth or in 

cord blood. Additional research on the timing of exposure in relation to the central nervous 

system is needed to fully elucidate these effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors would like to thank the American British Cowdray Hospital in Mexico City for providing research 
facilities.

Financial Support: Work was supported by NIH grants: R01ES014930; R01ES013744; R01ES021357, 
P30ES009089, P30ES023515, and R24ES028522. Co-Investigators at the INSP received partial funding from the 
National Institute of Public Health/Ministry of Health of Mexico.

Kupsco et al. Page 10

Pediatr Res. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Freeland-Graves JH, Mousa TY, Sanjeevi N. Chapter 2:Nutritional Requirements for Manganese 
[Internet]. In: Manganese in Health and Disease. 2014 [cited 2018 Jun 14]. p. 34–75.Available from: 
http://pubs.rsc.org/en/content/chapter/bk9781849739436-00034/978-1-84973-943-6

2. Hurley LS. The Role of Trace Elements in Foetal and Neonatal Development. Philosophical 
Transactions of the Royal Society of London Series B, Biological Sciences 1981;294:145–52. 
[PubMed: 6118892] 

3. Shaw JC. Trace metal requirements of preterm infants. Acta Paediatr Scand Suppl 1982;296:93–
100. [PubMed: 6961754] 

4. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and 
Neurotoxicology. NeuroToxicology 2012;33:586–604. [PubMed: 22198708] 

5. Gunier RB, et al. Manganese in Teeth and Neurodevelopment in Young Mexican-American 
Children. Environ Res 2015;142:688–95. [PubMed: 26381693] 

6. Henn BC, et al. Early Postnatal Blood Manganese Levels and Children’s Neurodevelopment. 
Epidemiology 2010;21:433–9.

7. Muñoz-Rocha TV, et al. Prenatal co-exposure to manganese and depression and 24-months 
neurodevelopment. NeuroToxicology [Internet] 2017 [cited 2018 Feb 1];Available from: http://
www.sciencedirect.com/science/article/pii/S0161813X17301201

8. Mora AM, et al. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 
10.5years in the CHAMACOS cohort. Environment International 2015;84:39–54. [PubMed: 
26209874] 

9. Seo YA, Li Y, Wessling-Resnick M. Iron depletion increases manganese uptake and potentiates 
apoptosis through ER stress. Neurotoxicology 2013;38:67–73. [PubMed: 23764342] 

10. World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention, and Control: A 
Guide For Programme Managers. Geneva, Switzerland: WHO; 2001.

11. Garcia-Valdes L, et al. The impact of maternal obesity on iron status, placental transferrin receptor 
expression and hepcidin expression in human pregnancy. Int J Obes 2015;39:571–8.

12. Balarajan Y, Ramakrishnan U, Özaltin E, Shankar AH, Subramanian SV. Anaemia in low-income 
and middle-income countries. The Lancet 2011;378:2123–35.

13. Claus Henn B, et al. Maternal and Cord Blood Manganese Concentrations and Early Childhood 
Neurodevelopment among Residents near a Mining-Impacted Superfund Site. Environ Health 
Perspect [Internet] 2017 [cited 2018 Jul 10];125. Available from: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC5743453/

14. Henn BC, et al. Associations of Early Childhood Manganese and Lead Coexposure with 
Neurodevelopment. Environ Health Perspect 2012;120:126–31. [PubMed: 21885384] 

15. Krachler M, Rossipal E, Micetic-Turk D. Trace element transfer from the mother to the newborn 
— investigations on triplets of colostrum, maternal and umbilical cord sera. European Journal of 
Clinical Nutrition 1999;53:486–94. [PubMed: 10403586] 

16. Braun JM, et al. Relationships between lead biomarkers and diurnal salivary cortisol indices in 
pregnant women from Mexico City: a cross-sectional study. Environ Health 2014;13:50. [PubMed: 
24916609] 

17. Burris HH, et al. Association between birth weight and DNA methylation of IGF2, glucocorticoid 
receptor and repetitive elements LINE-1 and Alu. Epigenomics 2013;5:271–81. [PubMed: 
23750643] 

18. Leifert JA. Anaemia and cigarette smoking. International Journal of Laboratory Hematology 
2008;30:177–84. [PubMed: 18479294] 

19. Wehby GL, Prater K, McCarthy AM, Castilla EE, Murray JC. The Impact of Maternal Smoking 
during Pregnancy on Early Child Neurodevelopment. J Hum Cap 2011;5:207–54. [PubMed: 
22272363] 

20. Renzetti S, et al. The association of lead exposure during pregnancy and childhood anthropometry 
in the Mexican PROGRESS cohort. Environmental Research 2017;152:226–32. [PubMed: 
27810680] 

Kupsco et al. Page 11

Pediatr Res. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.rsc.org/en/content/chapter/bk9781849739436-00034/978-1-84973-943-6
http://www.sciencedirect.com/science/article/pii/S0161813X17301201
http://www.sciencedirect.com/science/article/pii/S0161813X17301201
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743453/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743453/


21. McCarthy D Manual for the McCarthy Scales of Children’s Abilities. Spanish, User’s Guide [in 
Spanish]. Madrid, Spain: 1991.

22. Hernández-Avila M, et al. Validity and reproducibility of a food frequency questionnaire to assess 
dietary intake of women living in Mexico City. Salud Publica Mex 1998;40:133–40. [PubMed: 
9617194] 

23. Malin AJ, et al. Quality of Prenatal and Childhood Diet Predicts Neurodevelopmental Outcomes 
among Children in Mexico City. Nutrients [Internet] 2018 [cited 2019 Jun 6];10. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115750/

24. Rodríguez-Ramírez S, Mundo-Rosas V, Jiménez-Aguilar A, Shamah-Levy T. Methodology for the 
analysis of dietary data from the Mexican National Health and Nutrition Survey 2006. Salud 
Publica Mex 2009;51 Suppl 4:S523–529.

25. Dirren H, Logman MH, Barclay DV, Freire WB. Altitude correction for hemoglobin. Eur J Clin 
Nutr 1994;48:625–32. [PubMed: 8001519] 

26. Carrasco AV. The AMAI system of classifying households by socio-economic level: ESOMAR; 
2002. 2002.

27. R Core Team. R: A language and environment for statistical computing. [Internet]. Vienna, 
Austria: R Foundation for Statistical Computing; 2018 Available from: https://www.R-project.org/

28. Lin C-C, et al. In utero exposure to environmental lead and manganese and neurodevelopment at 2 
years of age. Environmental Research 2013;123:52–7. [PubMed: 23578827] 

29. Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G. Manganese, Monoamine Metabolite Levels 
at Birth, and Child Psychomotor Development. NeuroToxicology 2003;24:667–74. [PubMed: 
12900080] 

30. Aschner M, Aschner JL. Manganese neurotoxicity: Cellular effects and blood-brain barrier 
transport. Neuroscience & Biobehavioral Reviews 1991;15:333–40.

31. Nelson C, Erikson K, Piñero DJ, Beard JL. In vivo dopamine metabolism is altered in iron-
deficient anemic rats. J Nutr 1997;127:2282–8. [PubMed: 9405575] 

32. Kim J, Wessling-Resnick M. Iron and Mechanisms of Emotional Behavior. J Nutr Biochem 
2014;25:1101–7. [PubMed: 25154570] 

33. Alcorn J, McNamara PJ. Ontogeny of Hepatic and Renal Systemic Clearance Pathways in Infants 
Part I. Clin Pharmacokinet 2002;41:959–98. [PubMed: 12222995] 

34. Di Renzo GC, et al. Iron Deficiency Anemia in Pregnancy. Womens Health (Lond Engl) 
2015;11:891–900. [PubMed: 26472066] 

35. Menezes-Filho JA, et al. Elevated manganese exposure and school-aged children’s behavior: A 
gender-stratified analysis. NeuroToxicology 2014;45:293–300. [PubMed: 24121006] 

36. Zota AR, et al. Maternal Blood Manganese Levels and Infant Birth Weight. Epidemiology 
2009;20:367–73. [PubMed: 19289966] 

37. Rudge CV, et al. The placenta as a barrier for toxic and essential elements in paired maternal and 
cord blood samples of South African delivering women. J Environ Monit 2009;11:1322–30. 
[PubMed: 20449220] 

38. Abdelouahab N, et al. Monoamine oxidase activity in placenta in relation to manganese, cadmium, 
lead, and mercury at delivery. Neurotoxicology and Teratology 2010;32:256–61. [PubMed: 
19744554] 

39. Shamah-Levy T, et al. Tendencia en la prevalencia de anemia entre mujeres mexicanas en edad 
reproductiva 2006–2016. Ensanut MC 2016. Salud Pública de Méx 2018;60.

40. Finley JW. Manganese absorption and retention by young women is associated with serum ferritin 
concentration. Am J Clin Nutr 1999;70:37–43. [PubMed: 10393136] 

Kupsco et al. Page 12

Pediatr Res. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115750/
https://www.R-project.org/


Figure 1. 
Effect estimates with 95% confidence intervals of low ferritin (circle) and hemoglobin 

(triangle) measured in (A) 2nd trimester, (B) 3rd trimester, (C) cord blood, and (D) maternal 

blood at birth on child McCarthy Scales at 4 – 6 years in adjusted models.
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Figure 2. 
Effect modification of iron deficiency on the association between Mn measured in (A) 2nd 

trimester, (B) 3rd trimester, (C) cord blood, and (D) maternal blood at birth and McCarthy 

Scales in children at 4 – 6 years in adjusted models. Effect estimates with 95% confidence 

intervals (95% CI) are provided for the full population with ferritin status as a covariate 

(circle), in the subpopulation with low serum ferritin values (triangle), and the subpopulation 

with normal serum ferritin values (square). Plots are labeled with the interaction P-value 

from adjusted models and statistically significant (p ≤ 0.05) interactions are indicated with 

an asterisk.

Kupsco et al. Page 14

Pediatr Res. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Effect modification of anemia on the association between Mn measured in (A) 2nd trimester, 

(B) 3rd trimester, (C) cord blood, and (D) maternal blood at birth and McCarthy Scales in 

children at 4 – 6 years in adjusted models. Effect estimates with 95% confidence intervals 

(95% CI) are provided for the full population with hemoglobin status as a covariate (circle), 

in the subpopulation with low hemoglobin values (triangle), and the subpopulation with 

normal hemoglobin values (square). Plots are labeled with the interaction P-value from 

adjusted models and statistically significant (p ≤ 0.05) interactions are indicated with an 

asterisk.
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Figure 4. 
Sex-specific effects on the interaction between Mn and ferritin or hemoglobin measured in 

(A) 2nd trimester, (B) 3rd trimester, (C) cord blood, and (D) maternal blood at birth and the 

General Cognitive Index (GCI) in boys (circles) and girls (triangles) at 4 – 6 years in 

adjusted models. Effect estimates with 95% confidence intervals (95% CI) are provided for 

the full population, the subpopulation with low values, and the subpopulation with normal 

values. Plots are labeled with the 3-way interaction P-value from adjusted models and 

statistically significant (p ≤ 0.05) interactions are indicated with an asterisk.
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Table 1.

Population characteristics of children at birth and at 4–6 years and mothers at enrollment in the 2nd trimester.

Children’s Characteristics N Mean ± SD
a
 (%) Median (10th, 90th percentile)

General Cognitive Index (GCI) score 571 99.82 ± 13.12 101 (84, 116)

Memory score 571 47.29 ± 8.3 48 (37, 58)

Motor score 571 44.49 ± 8.63 45 (34, 55)

Perception score 571 51.82 ± 7.95 52 (41, 62)

Quantitative score 571 46.09 ± 9.44 46 (34, 58)

Verbal score 571 49.95 ± 8.94 50 (39, 61)

Child age at 4–6 years visit (years) 571 4.8 ± 0.56 4.77 (4.11, 5.48)

Hemoglobin at 48mo (g/dL) 408 12.32 ± 0.88 12.25 (11.21, 13.39)

Gestational age at 2nd Trimester Visit (weeks) 571 18.38 ± 1.53 19 (17, 20)

Gestational age at 3rd Trimester Visit (weeks) 499 31.67 ± 1.29 32 (30, 33)

Gestational age at birth (weeks) 571 38.33 ± 1.74 39 (36, 40)

Birth weight (kg) 571 3.06 ± 0.44 3.07 (2.55, 3.6)

Breastfeeding

 Breastfed at 6 mo 279 68.38

 Not breastfed at 6 mo 129 31.62

Sex

 Male 285 49.91

 Female 286 50.09

Maternal Characteristics N Mean ± SD (%) Median (10th, 90th percentile)

Maternal age (years) 571 27.57 ± 5.58 27.17 (20.43, 35.68)

Pre-pregnancy BMI (kg/m2) 571 26.32 ± 4.15 25.75 (21.35, 31.62)

Maternal education

 Less than high school 232 40.63

 High school 205 35.90

More than high school 134 23.47

Socioeconomic status
b

 Low 295 51.66

 Medium 217 38.01

 High 59 10.33

Parity

 Primiparous 221 38.70

 Multiparous 350 61.30

Marital status

 Single 109 19.09

 Partnered 462 80.91

Environmental tobacco smoke
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 No ETS
C 400 70.05

 ETS 168 29.95

a
SD: Standard Deviation

b
A three level index based on the AMAI indicator (Carrasco, 2002)

c
ETS: Environmental Tobacco Smoke
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Table 2.

Exposure summary of Manganese (μg/dL), serum ferritin (ng/mL) and hemoglobin (g/dL) values. Intraclass-

correlation coefficients were determined by mixed effects models.

Manganese Ferritin Hemoglobin

Measurement N Mean ± SD
a N Mean ± SD N Mean ± SD

2nd Trimester 571 1.45 ± 0.50 555 36.68 ± 31.49 571 11.64 ± 0.87

3rd Trimester 498 1.93 ± 0.68 261 18.03 ± 15.68 498 11.55 ± 0.96

Mother at Birth 480 2.51 ± 1.08 456 38.8 ± 74.21 454 11.33 ± 1.61

Cord Blood 366 4.75 ± 2.07 342 217.2 ± 150.2 321 14.43 ± 1.84

ICC
b
 (maternal measurements)

600 0.27 593 0.33 601 0.37

ICC (All measurements) 601 0.05 595 −0.08 600 0.024

a
SD: Standard Deviation

b
ICC: Intraclass-correlation coefficients. Determined by mixed effects models.
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