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Abstract

Motivation: The availability of human genomic data, together with the enhanced capacity to process them, is lead-
ing to transformative technological advances in biomedical science and engineering. However, the public dissemin-
ation of such data has been difficult due to privacy concerns. Specifically, it has been shown that the presence of a
human subject in a case group can be inferred from the shared summary statistics of the group, e.g. the allele fre-
quencies, or even the presence/absence of genetic variants (e.g. shared by the Beacon project) in the group. These
methods rely on the availability of the target’s genome, i.e. the DNA profile of a target human subject, and thus are
often referred to as the membership inference method.

Results: In this article, we demonstrate the haplotypes, i.e. the sequence of single nucleotide variations (SNVs)
showing strong genetic linkages in human genome databases, may be inferred from the summary of genomic data
without using a target’s genome. Furthermore, novel haplotypes that did not appear in the database may be recon-
structed solely from the allele frequencies from genomic datasets. These reconstructed haplotypes can be used for a
haplotype-based membership inference algorithm to identify target subjects in a case group with greater power
than existing methods based on SNVs.

Availability and implementation: The implementation of the membership inference algorithms is available at

https://github.com/diybu/Haplotype-based-membership-inferences.

Contact: hatang@indiana.edu

1 Introduction

Fueled by the rapid advance of the genome sequencing technologies
(Shendure et al., 2017)and their applications, human genome data
have been extensively collected and disseminated to facilitate human
genome studies (HGS) (Ansorge, 2016). In particular, an increasing
number of projects [e.g. the 1000 genomes project
(GenomeAsial00K Consortium, 2015), the personal genome project
(Church, 2005), the UK Biobank project (Bycroft et al., 2017) and
the GenomeAsia 100K Project (GenomeAsial00K Consortium,
2019)] aim to collect the genomic sequences along with phenotypic
and health-related information from a large cohort (up to a million)
of disease patients and healthy human subjects, providing invaluable
resources for biomedical research, such as genome-wide association
study (GWAS) of human diseases and clinical conditions. However,
the access and sharing such data are sometimes limited due to priv-
acy concerns [e.g. as guided by the National Institutes of Health
(NIH) Genomic Data Sharing (GDS) Policy (National Institutes of
Health Genomic Data Sharing Governance Committees, 2014)], be-
cause it is well known that human genomic data contain personal
identifiable information that may impose potential privacy threats
to the confidentiality of participants of HGS, especially when the
genomic data are linked to participants’ clinical records.

More striking results come from the previous studies referred to
as the membership inference or re-identification attack (Erlich and
Narayanan, 2014), which demonstrate that the presence of a human
subject in a large human genome database could be inferred from
the summary statistics of genomic variations in the database that are
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often shared in GWAS research, if the genetic profile of the target
was known. For instances, Homer et al. (2008) shows even when
the database contains thousands of human genomes, a human sub-
ject in the database can be re-identified with high confidence from
the allele frequencies on thousands of SNVs. Follow-up researches
also show the improved statistical methods for membership infer-
ence (Sankararaman et al., 2009), as well as the re-identification
risks in other types of summary statistics in genomic studies (e.g.
linkage equilibrium, gene expression levels, etc.), particularly when
they are linked with other phenotypic and clinical data (Deznabi et
al., 2018; Gymrek et al., 2013; Harmanci and Gerstein, 2016;
Humbert et al., 2013; Lippert et al., 2017; Wang et al., 2009).
Notably, membership inference can succeed even by simply using
the presence/absence (instead of the allele frequencies) of genetic
variants through the query to a genome database as enabled by a
Beacon service (Cupak, 2016). The Global Alliance for Genomics
and Health (GA4GH), which serves as a global platform for respon-
sible genomic and health data sharing with consistent policy, stand-
ards and protocols (Page et al., 2016), initiates the Beacon project
(Cupak, 2016) for disseminating human genomic data by allowing
users (i.e. biomedical researchers) to query if a specific genetic vari-
ant is present in a set of human genome database, each operated by
an independent institute, through a unified web service platform.
The queries accepted by the Beacon services follow the forms like
‘Do you have any genomes with nucleotide A at position 123 457
on chromosome 2?’, while the responses from Beacon would be
‘Yes’ or ‘No’ (True/False answer). The users can therefore collect the
information: if the queried variant can be found in any database
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registered at Beacon. None of additional statistics (such as actual
counts of variants) is exposed to the users. Only very limited sum-
mary of genomics data is shared by Beacon for privacy protection
purpose, while still informative for researchers: they can contact the
respective data owners to request full access to genome databases
that contain the genomes carrying the variants of their interests
(Cupak, 2016). However, Shringarpure and Bustamante
(Shringarpure and Bustamante, 2015) devise a likelihood-ratio test
(LRT) that can re-identify a target human subject in a Beacon data-
base based on merely the presence/absence information of single-nu-
cleotide variants (SNVs) through repeatedly Beacon queries and the
known genomic profile of the subject. Further researches show that
by utilizing additional information from public data, the member-
ship inference can be improved through Beacon queries, e.g. by
using the optimal attack introduced by Raisaro et al. (2017) that
considers the queries of the minor allele frequencies (MAFs). On the
other hand, the defense strategies techniques (Al Aziz et al., 2017;
Ayoz et al., 2020b; Bu et al., 2018; Raisaro et al., 2017; Wan et al.,
2017) are also proposed against the membership inference attacks
on Beacon services, e.g. by rejecting a proportion of queries if their
answers were considered to leak sufficient information of a potential
target in the database (Al Aziz et al., 2017; Bu et al., 2018; Raisaro
et al., 2017; Wan et al., 2017) or by including the genomes of rela-
tives in the database (Ayoz et al., 2020b).

Thus far, most of the membership inference methods on human
genome database are based on SNVs, and assume different SNVs
are independent. Wang et al. (2009) propose several methods to en-
hance Homer’s SNV-based approach (Homer et al., 2008) by taking
as input the linkage disequilibrium (LD) among SNVs in addition to
the frequency table. Exploiting the information in LDs and the cor-
relations among SNVs, new test statistics are introduced with a
higher power than the Homer’s method. Deznabi ez al. (2018) devel-
ops a Markov chain-based recombination model between haplo-
blocks, along with the phenotype and kinship information, to infer
the hidden part of an individual’s genomes from the publicly shared
partial genomic sequences. Von Thenen et al. (2019) applies the
Markov chain model and LD to infer the membership and the hid-
den part of the target’s genome from Beacon tables. More recently,
Ayoz et al. (2020a) shows that a target’s genome can be recon-
structed through the differential analyses of the shared Beacon tables
before and after the target’s genome is added to an existing private
genome database.

One limitation of the current membership inference methods is
that they require a target’s genome, i.e. the known genetic profile of
the target human subject. From the privacy protection perspective,
one may argue that obtaining the target’s genome is already a priv-
acy breaching of the target human subject, which may impose much
more severe harm to the target human subject than a membership in-
ference attack. In practice, it is not straightforward to obtain the tar-
get’s genome, and thus the actual risk of the membership inference
attack is considerably low. As a balance between the benefit and
risk of human genomic data sharing, NIH has updated its GWAS
data sharing policy in 2019, which now allows the summary results
from most HGS (except those ‘sensitive studies’) to be shared
broadly.

In this article, we present a novel membership inference ap-
proach, aiming to infer the presence of a haplotype, i.e. a sequence
of strongly linked genetic variants in a human genome database
based solely on the summary statistics (e.g. allele frequencies or the
presence/absence of individual variants) without using a target’s
genome. We demonstrate that the haplotype-based membership in-
ference can:

* be performed without the knowledge of the target’s genome,
which is required by previous approaches (Al Aziz et al., 2017;
Bu et al., 2018; Homer et al., 2008; Raisaro et al., 2017,
Shringarpure and Bustamante, 2015; von Thenen et al., 2019;
Wan et al., 2017; Wang et al., 2017).

* achieve high confidence of the presence of rare haplotypes in a
database, i.e. with the very low frequency in the general

population (Note that for those relatively common haplotype,
their probability to be present in a reasonable size genome data-
base is high even without membership inference. However, this
does not provide much identifiable information about the indi-
viduals in the database because a substantial fraction of general
population carry this haplotype anyway. On the other hand, the
rare haplotypes, which we aim at in this article, have very low
frequency in the general population, and thus each of them is al-
most sufficient to identify a human subject (or her close biologic-
al relatives) in a target human genome database.).

* improve the power of the membership inference using the
inferred haplotypes when a target’s genome is indeed available.

* reconstruct novel haplotypes in a genome database based on its
summary statistics that have not been observed in advance (e.g.
in public human genome database).

We consider the applications of the haplotype-based membership
inference method to two forms of summary statistics as input, of
which each is viewed as a set of returned answers of the queries to a
(private) human genome database, i.e. when a user queries a particu-
lar target allele at a specific variation site in the human genome, the
database will answer

* the frequency of the target allele (herein denoted as frequency
table); or

* whether the target allele is present in the database (herein
denoted as Beacon table).
Apparently, the frequency table is a more general form and con-

tains more information than the Beacon table.

2 Materials and methods

Most existing membership inference methods combine the weak
statistical power provided by thousands of individual SNVs through
the differential analysis of summary statistics from the genome data-
base containing a target human subject versus those from the data-
base without the target. Our approach, instead, starts from the
haplotypes, as a sequence of strongly linked SNVs. Because of the
LD structure, the human genome, can be partitioned into consecu-
tive segments, i.e. haploblocks, so that the SNVs within the same
haploblock show the strong linkage while the SNVs across the hap-
loblock are only weakly linked. Each haploblock may contain doz-
ens to hundreds of SNVs depending on the threshold of LD to
determine their boundaries. Because of the strong correlation among
SNVs with the haploblocks, only a small number (e.g. < 100) out of
2L allelic sequences over the L SNVs in a haploblock can be
observed, each with a different frequency in the human population.
Therefore, the haplotype-based membership inference has two
advantages comparing with the SNV-based inference (Fig. 1): (i) the
statistical power of a haplotype is stronger than the combined power
of the individual SN'Vs in haplotype, and thus the haplotype-based
inference may achieve a higher power than the SN'V-based inference
given the same frequency or Beacon table; and (ii) we may estimate
the probability of each haplotype to be present in a genome database
based on the frequency table or the Beacon table from the database,
which does not require the knowledge of a target’s genome. Finally,
the haploblock structure in human genome has been well established
based on the human genomes from population genomics project
such as the 1000 Genomes project (GenomeAsial00K Consortium,
2015). The haplotypes in these haploblocks can be retrieved using
the software tools such as HaploView (Barrett et al., 2005), which
can be used in the haploblock-based inference as described below.
Given a frequency or Beacon table over the SNVs in a private
genome database, the haplotype-based membership inference
attempts to evaluate if a haplotype retrieved is carried by any gen-
ome in the database. We devise the haplotype-based inference meth-
ods for three scenarios depending on the input data (frequency
versus Beacon table) and the assumption of the haplotype (known
versus novel). In the first two scenarios, we consider the haplotype
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Fig. 1. The workflow of haplotype-based membership inferences. Similarly with the SNV-based inferences, the inference is performed on either the frequency table (by KHF-in-
ference) or the Beacon table (by KHB-inference), both of which are derived from a private genome database comprising N genomes (2 N haplotypes) and may be published or

shared through queries to the database. However, in both cases, the haplotype-based inferences do not rely on the target’s genome. Instead, they aim to detect a target haplo-
type that is rare (with low frequency) in the general population. The target haplotypes are selected based on a public human genome database. When the frequency table is
available, the NHF-inference algorithm is introduced to reconstruct a novel haplotype that was not even observed in the public database. Notably, all three haplotype-based
algorithms presented here consider the constraints on the counts of all putative ¢ haplotypes (observed in the public database) within the target haploblock (illustrated table at
the center of the figure), imposed by the frequencies or the presence/absence of the minor allele at each variation site (see texts for details)

to be tested is known (and can be retrieved from public genomes).
We build two inference algorithms for the input of frequency table
(denoted as KHF-inference, representing the Known Haplotype
Inference on frequency table) and the Beacon table (denoted as
KHB-inference, representing Known Haplotype Inference on
Beacon database), respectively (Fig. 1). In the third scenario, we aim
to reconstruct a novel haplotype (i.e. that is not observed in public
genomes) present in the genome database from the frequency table
(NHF-Inference).

2.1 Known haplotypes inference

We devise a LRT to evaluate if a target haplotype is present in the
genome database. Here, we consider the null hypothesis (Hy) and al-
ternative hypothesis (H) are:

* Hy: The target haplotype is not in the database.
* Hj: The target haplotype is in the database.

If we can confidently reject the null hypothesis with the P-value
smaller than a threshold (e.g. 0.05), we may conclude that the target
haplotype is present in the private database. i.e. the haplotype is re-
identified successfully in the database.

In fact, for a known haplotype A (i.e. observed in public human
genomes), we can estimate the prior probability (without any query
to the database) of its presence in a database DB containing N
genomes (or 2 N haplotypes) based on the frequency f(A) of the
haplotype in the population,

P(A € DB) =1— (1 - f(A))™" (1)
and
P(A ¢DB)=1—P(A cDB) = (1—f(A)*™N. 2)

Apparently, for a common haplotype (e.g. f(A) > 0.1), the prior
probability may already be high (close to 1.0), indicating for a data-
base of a reasonable size, there is a high probability of at least one
genome carries the haplotype. For a minor haplotype, however, the
prior probability may not be close to 1.0; the goal of the haplotype-
based inference is to increase the confidence using the frequency or

Beacon table, if the minor haplotype is indeed present in the
database.

Formally, KHF-inference computes the likelihood ratio between
the posterior probability (P(Hp)) of a target haplotype present in the
genome database and the probability (P(H1)) of the haplotype not
present in the database, both under the condition of the given fre-
quency table of SNVs in the haplotype from the database, thus
P(Hy) = P(A € DB|Q) and P(H;) = P(A ¢ DB|Q). Both probabil-
ities can be estimated from the size of the genome database (N), the
population frequency of the target haplotype (f), and the minor al-
lele frequencies in the frequency table or the presence/absence infor-
mation of the minor alleles in the Beacon table using the Bayes’
theorem

P(A € DB|Q) =

P(Q|A € DB) x P(A € DB)
P(Q/A € DB) x P(A € DB) + P(Q|A ¢ DB) x P(A ¢ DB)

P(A ¢ DB|Q) = 1 — P(A € DB|Q)

where QO represents the frequency or the Beacon table on the SNVs
in the haploblock that is either disseminated by the data owner or
through beacon queries to the database, P(A € DB) is the prior
probability of the target haplotype A being present in the database
and P(A ¢ DB) is the prior probability of the target not being pre-
sent. The test statistic A, i.e. the likelihood ratio, can then be com-
puted by,

A _ PAZDBQ)

" P(A €DB|Q) (3)

_ P(Q|A ¢ DB) x P(A ¢ DB)
" P(Q|JA € DB) x P(A € DB)

(4)

_ P(QAZDB) x (1—f(A)™
P(QIA € DB) x (1 — (1 - f(A))*™N)
Because the distribution of the test statistic A is unknown, we

build the null distribution of A by simulating a cohort of human
genomes (the null cobort) that are not in the genome database to

(5)
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compute the P-value and the power of the test. We note that in prac-
tice, the null cohort can be constructed by querying the variants in
each non-target haplotype observed in public genomes: if any vari-
ant in the haplotype is not in the database, this haplotype can be
included in the null cobort.

The computation of P(Q|A ¢ DB) and P(Q|A € DB) is depend-
ent on the information embedded in the summary statistics. Below,
we will present algorithms to compute these two conditional proba-
bilities using the frequency table and the Beacon table as input (Q),
respectively.

2.1.1 KHF-inference

The input frequency table provides the frequencies (or equivalently
the counts) of the minor (or major) allele at each variation site of the
haploblock in the database, which imposes the constraints of the
haplotypes that may be present in the database. Assuming a haplo-
block contains a total of ¢ known haplotypes (derived from public
human genome dataset), our goal is to estimate the frequency of
each haplotype x; in a target private genome database (denoted as

f(x:)). Apparently,
> fx) =1 (6)
i1

We note that the frequencies of some known haplotypes in the
target database may be 0, i.e. no genome in the database carries
these haplotypes. We denote b;; € {0,1} as the allele at the jth vari-
ation site in the ith haplotype: b;; = 0 indicates it is a major allele,
while b;; = 1 indicates it is a minor allele. Then we have,

> by x fx) = f(y) (7)
i=1

where f(y;) is the minor allele frequency at the jth variation site in
the database, known as the jth (j = 1, ..., L, where L is the length of
the haploblock) element in the frequency table for the haploblock.
The L equations in 7 and Equation 6 represent the linear constraints
on the frequencies of haplotypes (f(x;)) in the database.

Figure 2 illustrates the linear constraints using a toy example.
Consider a haploblock containing L =4 variation sites (yi, ¥, ¥3
and y4) and #=3 known haplotypes (x, x> and x3). Assuming the
haplotype x; contains the minor alleles at y;, y; and y4, we get
by =1, b1 =0, by3 =1 and by4 = 1. Similarly, we also know the
values of by1, ..., b34, as shown in Figure 2a. Because the haplotype
x1 and x, contain the minor allele at y;, we can derive the linear
equation 7 as f(x1) + f(x2) = f(y1), which represents the constraint
of the frequencies of x; and x,, given the known minor allele fre-
quency f(y1) from the frequency table. Similarly, we can derive a
linear constraint for each variation site y,, y3 and y4. In summary,
we obtain all the linear constraints of the haplotype frequencies as
below,

fx1) +£f(x2) =f(1)
f(x3) =£(y2)
fx1) =£(y3)
f(x1) +£(x2) =f(y4)

These constraints of the linear equations may result in three dif-
ferent outcomes:

* No solution. If no solution of f(x;) (fori=1,2,...,t) can satisfy
all linear equations (in particular when L > #), we consider a
novel haplotype (i.e. that have not been observed in the public
genome database) to be present in the target database. We will

attempt to reconstruct the sequence (z1,2,...,21) of the novel

haplotype using the NHF-inference algorithm presented in
Section 2.2.

* Unique solution. If there exists a unique solution of f(x;) (for
i=1,2,...,1) satisfying all linear equations, we then successfully
reconstructed the haplotypes of this haploblock in the target
database given the input frequency table. A haplotype A is pre-
sent if and only if fA) > 0, and thus P(A € DB|Q) =1,
P(QO|A € DB) =1 and P(Q|A ¢ DB) = 0. Otherwise, the haplo-
type A is not present in the target database, i.e.
P(A ¢ DB|Q) = 1, P(Q|A € DB) = 0, P(Q|A ¢ DB) = 1.

*  Multiple solutions. If multiple solutions exist in the linear equa-
tions, the probability of observing the frequency table under the
condition that a haplotype A is present in the database
(P(QJA € DB)) can be computed by the sum of the probabilities
of all solutions containing the haplotype A, whereas the prob-
ability of observing the frequency table under the condition that
the haplotype A is not present in the database (P(Q|A ¢ DB))
can be computed as the sum of the probabilities of all solutions
not containing the haplotype A. Here, a solution of the linear
equations gives the frequencies of all ¢ known haplotypes, f(x;)
fori=1,2,...,t. Therefore, we have

rer e = kZ:bk @T)fk(“‘)"k“ — AT (®)

m

P(Q|A ¢ DB) = (1 - by)(1 - f*(A)™ (&)

where m is the number of solllitil)ns of the linear equations, f*(A) is
the frequency of the haplotype A in the kth solution, 7, is the count
of haplotype A in the kth solution, i.e. n, = 2Nf*(A), and
b, € {0,1}: b, = 1 when nj, > 0, and b, = 0 when 7, = 0.

In practice, we use the python package sympy.solve (Meurer et
al., 2017) to solve the linear equations derived from the frequency
table, and compute the likelihoods and the test statistic accordingly.

2.1.2 KHB-inference

We use a similar LRT for the membership inference given the
Beacon table from a target genome database. Intuitively, the Beacon
table offers the information if a minor allele is present or absent in
the database, from which we may define a set of logical constraints
about the presence/absence of a haplotype in the database. For
examples, if a minor allele b is reported to be present in the
database:

1. if only one haplotype in the haploblock contains the minor allele
b, this haplotype must be present in the database.

2. if two or more haplotypes contain b, at least one of these haplo-
types must be present in the database.

3. no constraint is imposed on the other haplotypes not containing

On the other hand, if a minor allele b is not present in the data-
base, then

1. all haplotypes containing b cannot be present in the database.
2. no constraint is imposed on the other haplotypes not containing

R-is obvious the logical constraints are not as stringent as the lin-
ear equations derived from the frequency table as presented above.
However, they also improve the posterior probability estimation of
the haplotypes to be present in the database.

Figure 2b illustrates the logical constraints using a toy example.
Similar to Figure 2a, we consider a haploblock containing L =4
variation sites and =3 haplotypes. Assume we know the minor al-
lele at the variation site y; is present in the database. It implies that
at least one of the haplotypes x; and x, must be present in the data-
base, whereas the haplotype x3 may or may not be present. If we fur-
ther know that the minor allele at the site y, is present in the
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Fig. 2. The toy examples of haplotype-based inferences. Three haplotype-based inference algorithms are illustrated by toy examples, including the input tables of allele frequen-
cies (a and ¢) or presence/absence (b) of the minor alleles at each variation site in a target haploblock, and the linear (a and c) or logical (b) constraints derived from the respect-

ive input table

database, then we deduce the haplotype x3 must be in the database.
Finally, if we also know that the minor allele at the site y3 is not pre-
sent in the database, then the haplotype x| cannot be present in the
database. At yy4, haplotype x; and x, have the minor allele, which is
the same situation as of site y;. Thus, the presence of y4 does not
provide additional linear constraint to haplotypes x1,x,x3. Taking
these constraints together, we can conclude the haplotypes x, and x;3
must be present in the database, while x; is not present.

The haploblock structure in the human genome is more complex
than the toy example shown above. In practice, even though the
presence of some haplotypes may not be fully determined based on
the logical constraints, we may still get a better estimate of the prob-
ability for them to be present in the database. In this case, similar to
the approach adopted in KHF-inference algorithm, we aim to esti-
mate P(Q|A € DB) based on the putative haplotype compositions
satisfying the logical constraints. Consider a haploblock containing
a total of ¢ putative haplotypes. The counts of different haplotypes
in the database then follow a multinomial distribution with the sum
of counts = 2N. When logical constraints are applied, we may ap-
proximate P(Q|A € DB) using the cumulative density function (cdf)
of the multinomial distribution . For example, in a haploblock con-
taining 3 haplotypes (x1, x5 and x3), based on the logical constraints,
we know that at least one of x; and x, are present in the database,
while no constraint is applied to x3. As a result, P(O|A € DB) can
be computed as,

P(Ql|x1 € DB) =p(n; > 1,n, < 2N,n3 < 2N)
P(Qlx1 ¢ DB) = p(n1 = 0,m > 1,135 < 2N)
P(Qlxy € DB) = p(m < 2N,m, > 1,m3 < 2N)
P(Olxy ¢ DB) = p(my > 1,n, =0,n3 < 2N)
P(Qlx; € DB) = p(m < 2N,my < 2N,n3 > 1)

—p(ny =0,m =0,n3 > 1)
P(Qlx3 ¢ DB) = p(my < 2N,my < 2N,n3 =0)
—p(n1 =0,m = 0,13 =0)

where p represents the cdf of multinomial distribution with the
counts of three haplotypes as ny, 7, and 3, respectively, and
ny +ny +n3 = 2N.

In practice, because the computation of the cdf of multinomial
distribution is quite tedious, we approximate the value of multi-
nomial cdfs by sampling the multinomial distribution according to
the estimated frequency (from public resource) of each known
haplotype. The python solver numpy.random.multinomial (Harris,
2020) is applied to build the multinomial sample sets (5000 data
points in each sample set). This approximation method significantly

accelerates the computation of the cdf of the multinomial distribu-
tion, which takes only a few seconds to compute one cdf in a single
CPU.

2.2 Reconstruction of novel haplotypes and NNF-

inference

As discussed in Section 2.1.1, when no solution can satisfy all linear
equations imposed by the input frequency table, we hypothesize one
or more novel haplotype are present in the target database. A novel
haplotype is the one that is not observed in the public genome data-
base, and thus is not considered among the ¢ haplotypes when we
devise the constraints.

Here, we attempt to reconstruct the novel haplotype (i.e. the al-
lele at each variation site in the haploblock) using an integer linear
programming (ILP) approach. Below, we incorporate d types of
novel haplotypes denoted as x{“,...,x’ in addition to the ¢
known haplotypes into the linear constraints:

t d
Dby} ) + 3G x am = f ) (10)
i=1 m=1
t d
Do)+ ) =1 (11)
=1 m=1
) = 20 me 1, (12)
m - 2N7 )
where x;,i = 1,2,...,t represent the # known haplotypes, z,,; repre-

sents the (unknown) allele at the jth site of the mth novel haplotype,
i.e. 2,,; = 0 if x7* has a major allele at the jth site, and z,,, = 1,
otherwise, and f(x2¢V) is frequency of the mth novel haplotype. k,,
is the count of the mth novel haplotype. The other notations follow
those used in Section 2.1.1. However, different from the goal in the
KHF-inference, here we want to solve the unknown variables z,,,; in
addition to the haplotype frequencies (f(x2%) and f(x;)) using these
linear constraints.

We may extend the example used in Section 2.1.1 to illustrate
NHF-inference algorithm. Here, we assume d novel haplotype var-
iants x{, ..., x/** with unknown alleles in addition to the 3 known
haplotype variants x1,x2,x3 are potentially present in the database,
as shown in Figure 2c. Intuitively, because the novel haplotypes are
not observed in the public genome database, it is likely a rare com-
bination of alleles, but should still contain a majority of major
alleles. Henge, we set the objective function of the ILP problem as to

minimize Y > %, (i.e. to minimize the total number of minor
m=1j=1
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alleles in all d novel haplotype variants), subject to the linear con-
straints imposed by the frequency table. Initially, we set the number
novel haplotype variants as 1 (i.e. d=1).

I—4
P (1) fo2) es) £200) s rs D _R1j S
=1

fer) +f(x2) + F(x7) x 21 = f(y1)
f(x3) +F(x7) x 22 = f(y2)
1) + F(x7) x 23 = f(y3)
foer) +fx2) + F(x7%) x 24 = f(y4)

In practice, we run multiple times of the pulp. LpProblem ILP
solver (Mitchell et al., 2011), each time with the increasing ky, i.e.
the count of the novel haplotype in the database, from 1 to 2 N. For
the smallest k; value leading to a solution (note that when k; = 0,
there is no solution) of the ILP problem, we will consider the corre-
sponding z1, 2> and z3 as the alleles of the putative novel haplotype,
and f (x{*) as its frequency in the target database.

Once the novel haplotype variants x”* are reconstructed, we
further perform the KHF-inference algorithm to compute the confi-
dence of the haplotype variants to be present in the database based
on the LRT (see Section 2.1.1 for details). Starting from d = 1, we in-
crease the value of d (i.e. the number of types of novel haplotype
variants) by 1 if no solution found and perform ILP again until d is
greater than a threshold (e.g. 2). The complexity of this algorithm is
O((2N)%), which is feasible for only small d.

3 Experiments and results

We implement the three haplotype-based membership inference
algorithms in Python 2.7 (Van Rossum and Drake, 1995) [utilizing
the packages sympy.solve (Meurer et al., 2017) and pulp.
LpProblem (Mitchell et al., 2011)], and evaluate them using an arti-
ficially created target genome database comprising 500 randomly
selected human genomes (i.e. 1000 haplotypes) from the 1000
Genomes Project data (GenomeAsial00K Consortium, 2015). We
consider the entire set of 2147 genomes in the 1000 Genomes
Project (GenomeAsial00K Consortium, 20135) as the public genome
database, from which we derive the haploblocks as well as haplo-
types in each block in the chromosome 10 in human genome using
HaploView (Barrett et al., 2005). Afterwards, we use each minor
haplotype, i.e. with a low frequency in the public database such that
its prior probability of being present in the target database is <0.1
(even though it is present), as a target haplotype, and attempt to test
if it is present in the database. When evaluating the KHF-inference
and the KHB-inference algorithms, we consider all haplotypes in the
target haploblock (i.e. the same halpoblock as the target haplotype)
that are derived from the public database as the known haplotypes.
To evaluate the performance of the NHF-inference algorithm, we
exclude one (or two) haplotype in the target haploblock, and at-
tempt to reconstruct it using the frequency table computed from the
target genome database. We note that even though the experiments
are successful for many testing cases, for some target haplotypes, the
inference algorithms (especially for the KHB-inference algorithm)
cannot finish in a reasonable amount of time, and thus are termi-
nated (see below for details). It may be due to several different rea-
sons: the solver for the linear equations is slow for KHF-inference,
or the pulp. LpProblem ILP solver cannot reach a solution for NHF-
inference.

3.1 Construction of haploblocks and haplotypes

We use Haploview (Barrett ez al., 2005) to derive the haploblocks as
well as the haplotypes in each block from the chromosome 10 of the
2147 human genomes in the public database (i.e. from the 1000
Genomes project). Because we want to enhance the confidence of
the presence of a rare haplotype in a target genome database, we se-
lect only the haplotypes that are rare in the pubilc database (i.e.
those with small prior probability P(A € DB) < 0.1), and contain
50 or more variation sites (i.e. L > 50) as the putative target haplo-
types. In total, we select 1350 target haplotypes on 100 haploblocks
based on the above criteria. Each target haploblock contains up to
187 variation sites and 55 haplotypes. We perform KHF-interence
and KHB-inference algorithms on these haplotypes.

In addition, we select another 484 haploblocks (which may be
overlapped with the above 665 haploblocks) from the chromosome
10 that contain at least one haplotype with the frequency smaller
than 0.02 to evaluate the NHF-inference algorithm, in which we
first remove the least frequent haplotype and then attempt to recon-
struct it.

3.2 Re-identification of known haplotypes

To perform the KHF-inference and KHB-inference algorithms, we
first compute the empirical distribution of the LRT test statistic A
under the null hypothesis. We construct a dataset containing 276
haplotypes on the chromosome 3 of 100 genomes from the 1000
Genomes Project (GenomeAsial00K Consortium, 2015), and then
compute the test statistic A on this dataset, which is used as the em-
pirical null distribution of A, when evaluating the confidences in the
KHF-inference and KHB-inference algorithms.

Next we attempt to test if each of the 1350 target haplotypes is
present in the target database using KHF-inference and KHB-infer-
ence algorithms, respectively. The P-value of the LRT is calculated
based on the test statistic A and its null distribution. We compare
the power of the haplotype-based inference with the SNV-based in-
ference methods: the KHF-inference is compared with the LRT, an
improved SNV-based inference method than the test statistic pro-
posed by Homer et al. (2008) and is shown to be near-optimal
(Sankararaman et al., 2009; Wang et al., 2009), while the KHB-in-
ference is compared with the optimal attack (Raisaro et al., 2017),
which shows better performance than the original method proposed
by Shringarpure and Bustamante on Beacon tables (Shringarpure
and Bustamante, 2015). The SNV-based inference methods are per-
formed by using the allele at each variation site of the target haplo-
type in the respective test statistics. The powers of both the
haplotype-based and the SNV-based inference methods are meas-
ured by using the fraction of haplotypes in each haploblock can be
detected with high confidence (i.e. P-value < 0.05).

We first show that the posterior probability of the target haplo-
types to be present in the target database (P(A € DB|Q)) computed
by the KHF-inference and KHB-inference algorithms are significant-
ly higher than the corresponding prior probabilities (P(A € DB)) of
the same haplotypes, which demonstrates the Bayesian methods in-
deed retrieve the information leaked in the frequency table and
Beacon table. Figure 3 compares the prior and posterior probabil-
ities of all the haplotypes that complete the LRT (each represented
by one dot in the figure) by using the KHF-inference (Fig. 3a) and
KHB-inference (Fig. 3b). The lines in the figure show the diagonal,
indicating equal values of prior and posterior probabilities. Note
that all of the tested haplotypes are present in the target database.
As a result, we observe that the posterior probabilities of all tested
haplotypes are much higher than their prior probabilities; 486
(36.4%) haplotypes receive the posterior probabilities above 0.9 in
the KHF-inference, although their prior probabilities are all below
0.1. Specifically, we receive a unique solution from the linear equa-
tions on 475 haplotypes from 32 haploblocks, which implies that
the posterior probabilities of these haplotypes reach 1.0 according
to Section 2.1.1. The improvement of the KHB-inference algorithm
is also considerable, even though the Beacon table is considered to
leak less information. The posterior probabilities of some haplotypes
are substantially improved, including 520 (38.5%) haplotypes re-
ceive the posterior probabilities above 0.9, indicating the logical
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constraints imposed by the presence/absence of specific allele may
lead the re-identification of these haplotypes. In addition, we further
construct 297 hapblotypes that are not in the target database with
prior probability < 0.1 from chromosome 2. The KHF-inference
and KHB-inference methods report 29 and 28 haplotypes, respect-
ively, to be in the target database (with P-value < 0.05), indicating
the false positive rate is about 10% as expected. The haplotype-
based inference algorithms show greater power than conventional
SNV-based inference methods, as demonstrated below.

3.2.1 KHF-inference

The KHF-inference algorithm successfully finishes on 503 (37.3%)
out of 1350 target haplotypes over 89 haploblocks, among which
503 haplotypes (100%) receive P-value (estimated by the null-distri-
bution) smaller than 0.05.

Compared to the LRT test statistic for SNV-based inference
(Wang et al., 2009), the KHF-inference is significantly more power-
ful on the same target haploblocks. Figure 4a shows the log ratio be-
tween the power of these two inference methods: the power of KHF-
inference is greater than that of SN'V-based inference on 82 out of
100 target haploblocks (82% experiment cases), each represented
by one point in the figure sorted based on the log ratio between their
power. The maximum log ratio between the power of KHF-attack
and that of the SNV-based inference is 13.82, i.e. the power of
KHF-attack is 100% (successfully infer all the target haplotypes in a
block) while the power of near-optimal SNV-based inference is ap-
proximately 0.0% (fail to infer any target haplotype in a block).

3.2.2 KHB-inference

The KHB-inference algorithm successfully finishes on 1350 (100%)
out of 1350 target haplotypes over 100 haploblocks. Among these
target haplotypes, 644 haplotypes (47.7%) receive P-values smaller
than 0.05.

Compared to the optimal attack (Raisaro et al., 2017), KHB-in-
ference is much more powerful on the same haploblock. Figure 4b
shows the log ratio between the power of these two inference meth-
ods: the power of KHB-inference is greater than that of the optimal
attack (Raisaro et al., 2017) on 89 out of 100 haploblocks (89% ex-
periment cases), each represented by one point in the figure sorted
based on the log ratio between their power. The maximum log ratio
between the power of KHB-inference over the optimal attack is
13.82, i.e. the power of KHB-inference is 100% (successfully infer
all the target haplotypes in a block) while the power of the optimal
attack on the Beacon database is approximately 0.0% (fail to infer
any target haplotype in a block).

3.3 Reconstruction of novel haplotypes
We evaluate the NHF-inference on the frequency table from the tar-
get database on each of 484 haploblocks that contains at least
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Fig. 3. The comparison between the posterior (y-axis) and the prior (x-axis) proba-
bilities of target haplotypes before and after applying the KHF-inference on the fre-
quency table (left) and the KHB-inference on the Beacon table (right). Each target
haplotype is represented by a dot, and the red dashed lines represent the diagonal,
indicating equal values of the posterior and prior probabilities. Particularly, in
KHF-inference, we obtain the posterior probability equals 1.0 on 475 haplotypes,
which is the outcome of a unique solution received from the linear equations

haplotype with frequency smaller than 0.02. The workflow of the
experiment is as following:

1. Pre-process the database by removing the genomes that contain
the haplotype with smallest frequency in each haploblock (i.e.
considered as the novel haplotype.

2. Perform the NHF-inference algorithm on the processed data-
base, and discard the haploblocks from which the removed
(novel) haplotypes cannot be reconstructed.

3. Perform KHF-inference algorithm on the reconstructed novel
haplotypes from Step 2 and report the ones with P-value smaller
Ithan 0.05

n ‘our ‘experiment, we successfully reconstruct 406 (out of 484)
novel haplotypes by NHF-inference, among which 161 (33.3%) are
reported to be present in the target database by the KHF-inference
algorithm (with P-value < 0.05). Comparing the the ground truth
(the original haplotypes removed in the Step 1), all the 161 (100%)
reconstructed novel haplotypes are completely correct, implying the
objective of the ILP formulation that minimizes the number of minor
alleles in the novel haplotype is reasonable. The average length of
these correctly reconstructed haplotypes is 24.2. Their lengths vary
significantly (standard deviation = 25.5), which implies that the
length of the novel haplotype seems not to affect the success rate of
the reconstruction algorithm. On the other hand, the average count
of the correctly reconstructed novel haplotypes in the database is 10
(standard deviation = 1), the same as the average count of all 484
novel haplotypes, which indicates that some novel haplotypes with
low frequencies can be successfully constructed. Similarly, we per-
form NHF-inference algorithm on 448 haploblocks by removing
two (novel) haplotypes. We are able to reconstruct both of the two
novel haplotypes on 353 hapbloblocks by using NHF-inference. By
applying the KHF-inference algorithm, on 124 (27.7%) haplo-
blocks, both of novel haplotype variants are reported as in the target
database (with P-value < 0.05), among which 124 (100%) cases are
correctly reconstructed. We note that it becomes more difficult to re-
construct the novel haplotypes if the target database contains more
than one novel haplotype variants. However, the power of this
method will increase with more human genomes become available
in public, in which more haplotype variants will be covered.

4 Conclusions and discussions

In this article, we propose three haplotype-based membership infer-
ence algorithms for inferring the presence of rare haplotypes (with
very low frequency in the general population) in a target private gen-
ome database using the allele frequencies or the presence/absence of
minor alleles that are shared by the data owners. These methods do
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Fig. 4. The comparison of the statistical power, i.e. the fraction of confidently identi-
fied target haplotypes (with P-value < 0.05 based on the likelihood ratio test) be-
tween the haplotype-based inference methods and SNV-based inference methods.
Left: the log ratio between the power of the KHF-inference and that of the SNV-
based likelihood ratio test on the frequency tables; and right: the log ratio between
the KHB-inference and the optimal attack on the Beacon tables. The power is eval-
uated on each tested haploblock, represented by one point in the figure, sorted based
on the log ratio of the two powers. The red dashed lines indicate the cases when the
haplotype-based and SNV-based inferences achieved the same re-identification
power.)
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not require the target’s genome, and thus may represent a new kind
of privacy risk in genomic data sharing. The re-construction of a
rare haplotype may achieve much stronger power than one or more
rare individual SNPs. Specifically, we can reconstruct a rare haplo-
type variant consisting of 50 or more SNPs (with the estimated fre-
quency smaller than 0.02 in the general population) using the NHF-
inference algorithm. Such a rare haplotype variant alone is almost
sufficient to identify a human subject (or its close blood relatives) in
the cohort.

Based on these results, several linking attacks can be imple-
mented to infer private information about participants in genomic
studies without the access of any genetic data from the red target.
For examples, if one or more rare haplotype variant is constructed
from two different genomic databases, one may infer the same
human subject (or two close relatives) participated in these two cor-
responding cohorts. Furthermore, with appropriate statistical analy-
ses, it may even be inferred that the rare haplotype variants shared
by the two datasets are likely from a single human subject, thus es-
tablish a powerful linkage among rare haplotype variants. In add-
ition, the reconstructed rare haplotype variant may be known to be
associated with a rare phenotype [e.g. a Denisovan haplotype was
recently discovered to be associated with the lip thickness (Bonfante
et al., 2021)], in which case the phenotypes (e.g. the facial appear-
ance) of the human subject can be inferred. Finally, the recon-
structed rare haplotype variants may be used to infer the ethnic or
even family origin of a target human subject because sharing a rare,
long haplotype often indicate the likelihood of common ancestor
(Kong et al., 2008).

On the other hand, we show that, when the target’s genome is
available, the haplotype-based inference algorithms achieve greater
re-identification power compared to the SNV-based inference meth-
ods. These results suggest the current defense strategies that are
mostly focused on mitigating the SNV-based inference methods
(Ayoz et al., 2020b; Bu et al., 2018; Raisaro et al., 2017) may not be
sufficient to fully eliminate the risks in genomic data sharing. In the
future, we plan to develop novel defense methods to reduce the priv-
acy risks in human genomic data sharing due to haplotype-based
membership inference, while maintaining the utility of shared data
from human genome databases.

We note that our current problem formulation does not consider
de novo mutations or sequencing errors that may occur at the SNV
sites in the target private database. Even though the chance is ex-
tremely low, their occurrences will result in novel haplotype var-
iants, which may be reconstructed by using the NHF-inference
method. Afterwards, the mutation or sequencing error can be easily
detected, because these artificial variants differ from a common
haplotype at only one SNV. Manual inspection of the raw sequenc-
ing data is then needed in order to determine if it is indeed a de novo
mutation.
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