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ABSTRACT

Multiple methods have recently been developed
to reconstruct full-length B-cell receptors (BCRs)
from single-cell RNA sequencing (scRNA-seq) data.
This need emerged from the expansion of scRNA-
seq techniques, the increasing interest in antibody-
based drug development and the importance of BCR
repertoire changes in cancer and autoimmune dis-
ease progression. However, a comprehensive as-
sessment of performance-influencing factors such
as the sequencing depth, read length or number of
somatic hypermutations (SHMs) as well as guidance
regarding the choice of methodology is still lacking.
In this work, we evaluated the ability of six avail-
able methods to reconstruct full-length BCRs us-
ing one simulated and three experimental SMART-
seq datasets. In addition, we validated that the
BCRs assembled in silico recognize their intended
targets when expressed as monoclonal antibodies.
We observed that methods such as BALDR, BA-
SIC and BRACER showed the best overall perfor-
mance across the tested datasets and conditions,
whereas only BASIC demonstrated acceptable re-
sults on very short read libraries. Furthermore, the de
novo assembly-based methods BRACER and BALDR
were the most accurate in reconstructing BCRs har-
boring different degrees of SHMs in the variable do-
main, while TRUST4, MiXCR and BASIC were the
fastest. Finally, we propose guidelines to select the
best method based on the given data characteristics.

INTRODUCTION

The recent development of single-cell RNA sequencing
(scRNA-seq) techniques has enabled the quantification of
genes expressed in individual cells. This has contributed
to the identification of different cell types characterizing
tissues and to the discovery of previously unknown cell
populations, in which the underlying gene expression pro-
grams were found to be critical for embryonic development,
autoimmune disease pathogenesis and an in-depth under-
standing of the tumor microenvironment (1–4). Similarly,
following the increasing evidence of the importance of B
lymphocytes in health and disease, single-cell technologies
have been applied to quantify the expression levels of genes,
coding for heavy and light chains (HC and LC) of a B-cell
receptor (BCR) and thus the BCRs/antibodies these cells
produce.

Human BCRs consist of a pair of independent HC
and LC that are interconnected by disulfide bonds, each
of which contains both constant (C) and variable (V)
regions, genetically encoded in three different loci. The
immunoglobulin heavy chain locus (IGH) on chromo-
some 14 contains gene segments for the immunoglobulin
HC, whereas LC genes are encoded by two loci: the im-
munoglobulin kappa (�) chain locus (IGK) on chromosome
2 and the immunoglobulin lambda (�) chain locus (IGL)
on chromosome 22. During the HC somatic recombination,
one of the diversity (D) gene segments is joined to one of the
joining (J) gene segments in an event called the D–J recom-
bination (5). Afterward, the D–J segment binds one of the
variable segments and all constant regions are retained at
the end of the mRNA to produce a functional HC. Since
LC does not have a D segment, only the V–J recombina-
tion occurs. During these processes, random nucleotides are
added into the V(–D–)J joining regions, resulting in a higher
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number of HC and LC than it would be possible by simply
joining gene segments available at each HC and LC gene’s
locus. This process, in fact, can generate an immunoglob-
ulin repertoire of >5 × 1013 different antigen specificities
(5). The introduction of these new nucleotides is particu-
larly challenging for BCR assembly algorithms because of
the randomness of such introductions and their absence in
the reference genome and in immunoglobulin annotation
databases.

The characterization of BCR repertoires from scRNA-
seq data has been instrumental in the investigation of
groups of B cells sharing a common ancestor, called clono-
types. An overrepresentation of pathogenic clonotypes was
noticed in different diseases such as breast cancer (6), mul-
tiple sclerosis (MS) (7) and acute myeloid leukemia (AML)
(8). In these studies, the presence of repertoires with ex-
panded clonotypes defined different tumor microenviron-
ments in breast cancer, was associated with increased in-
flammation in MS and could be used to stratify AML
patients. In addition, BCRs are known to acquire so-
matic hypermutations (SHMs) in their variable domain
[defined as four framework regions (FWRs) and three
complementarity-determining regions (CDRs)] after acti-
vation of the B cell by an antigen. In the process of affin-
ity maturation, the affinity for a given antigen can be en-
hanced by introducing somatic mutations predominantly in
the CDRs. For this reason, BCRs of memory B cells dis-
play SHMs that are not germline encoded when compared
to naı̈ve B cells. As memory B cells represent the cell popu-
lation that has been triggered by a given antigen and hence
are mostly connected to processes studied in e.g. autoimmu-
nity or infectious diseases, these cells often gain most inter-
est in studies investigating BCR composition. For example,
an increasing number of SHMs in anti-citrullinated protein
antibodies during rheumatoid arthritis (RA) development
(9) have been described together with a high frequency of
defined sequences called N-glycosylation sites that can po-
tentially be used as a predictor of RA progression (10). Fur-
thermore, BCRs of patients with diffuse large B-cell lym-
phoma harbor variable levels of SHMs in the variable re-
gions of IGH and IGL/IGK genes. Here, high levels of
clonal IGHV SHMs were associated with a prolonged over-
all survival of patients, whereas an increased CDR3 length
of HC and the presence of IGHV ongoing SHM were asso-
ciated with poor prognosis (11). Overall, these studies show
the importance of patients’ BCRs in the pathogenesis of
multiple diseases and the potential usage of their charac-
terization as a proxy in personalized medicine.

Previous sequencing techniques targeting the im-
munoglobulin genes, such as Ig-seq (12), allowed the
quantification of the entire set of genes belonging to the
HC and LC in the total population of B cells (also called
BCR repertoire), giving a snapshot of the repertoire com-
position. However, the inability to obtain full-length BCRs
consisting of the variable domain of an HC–LC pair set
in an individual cell has been a limiting factor of such ap-
proaches. Nowadays, there are several different scRNA-seq
technologies available. These can be plate based, which are
generally low throughput but can be used to sequence full-
length transcripts, or droplet based, allowing to sequence
thousands of cells at the same time. Two plate-based ap-

proaches, namely SMART-seq (13,14) and a modification
of it named SPEC-seq (15), have been instrumental in BCR
sequencing and full-length BCR reconstruction due to
their ability to obtain full-length transcripts of HC and LC
genes allowing the reconstruction of the variable domain
of an HC–LC pair set in a single cell. The droplet-based
10x Genomics Chromium Single Cell Immune Profiling
Solution [CG000148 10x Technical Note(ctfassets.net)]
also enables sequencing of the V–D–J genes of a B cell
to obtain paired HC and LC. However, this comes with
the cost of losing the full-length BCR information for a
considerable number of single cells (16).

Although it is not feasible to determine a pair of HC and
LC constituting a BCR of a cell using bulk RNA-seq tech-
niques, several methods have been proposed to delineate
BCR composition from complex datasets. Methods such
as ImRep (17), V’DJer (18), TRUST (19–21) and Imonitor
(22) are only suitable for the reconstruction of CDR3 of the
variable domain of HC and LC. Therefore, BCRs, recon-
structed using the above methods, miss CDR1 and CDR2
regions and the four FWRs. Nonetheless, these regions con-
siderably contribute to the antigen recognition and bind-
ing and aid in maintaining the overall structure of an anti-
body (23). For this reason, the analysis of BCR repertoires
from scRNA-seq data required the development of algo-
rithms capable of dealing with highly mutated sequences,
dissimilar to the reference genome in order to reconstruct
the full variable domain of HC–LC pair of a B cell. Recently,
several open-access methods have been proposed for pre-
processing of raw SMART-seq and Chromium data to re-
construct BCRs (Table 1). The first developed method was
MiXCR (24), which consists of a collection of algorithms
based on a proprietary aligner that perform clustering to
accomplish BCR reconstruction and annotation. BASIC, a
semi de novo algorithm (25), was the second method that
was made available with the advantage of being able to pro-
cess libraries as short as 25 bp. Lately, several algorithms
based on a de novo assembly but using different approaches
to map reads and assign V–D–J genes such as BRACER
(26), BALDR (27), VDJPuzzle (28) and TRUST4 (29) have
emerged, increasing the choice but also the difficulty in se-
lecting the best tool for a given dataset. Importantly, BASIC
(25), MiXCR (24), VDJPuzzle (28) and TRUST4 (29) can
be used for both BCR and T-cell receptor (TCR) assembly,
making them suitable for more elaborate immune repertoire
studies.

Given the methodological differences in the algorithms
(see Supplementary Data), they can report different results
under certain experimental setups. Conditions such as dif-
ferent sequencing technologies, read library properties and
the number of SHMs expected within the variable domains
of the BCRs can influence the output of the tools. Thus, it
is essential to assess the performance of each algorithm and
quantitatively understand how sensitive it is in reconstruct-
ing BCRs when compared to the ‘ground truth’ (defined as
the original variable domain sequence obtained by classical
Sanger sequencing). In addition, given varying numbers of
SHMs within the variable domains of BCRs, and the ob-
servation of B cells with high SHM counts in several dis-
eases such as follicular lymphoma (30), RA (9) and diffuse
large B-cell lymphoma (11), as well as in anti-HIV antibod-
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Table 1. Description of the computational methods for BCR reconstruction from scRNA-seq data evaluated in this benchmark

Method Availability Language Type of algorithm Annotation Species Sequencing Publication

MiXCR https://github.com/milaboratory/mixcr Java Proprietary aligner
using k-mers and
assembler

IMGT Human,
mouse

SMART-seq2 Bolotin et al.
(24)

BASIC https://github.com/akds/BASIC Python Semi de novo with
anchors and k-mers

IMGT Human,
mouse

SMART-seq2 Canzar et al.
(25)

BRACER https://github.com/Teichlab/bracer Python/R De novo IMGT, combinatorial
recombinome

Human,
mousea

SMART-seq2 Lindeman
et al. (26)

BALDR https://github.com/BosingerLab/BALDR Perl De novo IMGT, combinatorial
recombinome

Human,
rhesus
macaque

SMART-seq2 Upadhyay
et al. (27)

VDJPuzzle https://github.com/simone-rizzetto/VDJPuzzle Roff/Shell De novo IMGT Human,
mouse

SMART-seq2 Rizzetto
et al. (28)

TRUST4 https://github.com/liulab-dfci/TRUST4
C++/Python

De novo with k-mers IMGT Human,
mouse

SMART-seq2 + 10x Song et al.
(29)

aPossibility to obtain other species.

ies (31–33), it is crucial to assess the number of SHMs the
algorithms can tolerate while still accurately reconstructing
BCRs. Finally, the comparison of these methods using sev-
eral datasets will reveal the stability of their performance
across different library preparations.

To address these questions, we designed a comprehensive
analysis framework (Figure 1). First, we selected two pub-
licly available BCR sequencing datasets of plasmablast ori-
gin with the available ground truth (25,27) and generated an
additional dataset with the ground truth, named ‘Leiden’,
using sorted isotype-switched memory B cells that either
recognize tetanus toxoid (TT) or have an unknown anti-
gen specificity. Second, using random sampling, we created
multiple libraries with different levels of coverage and read
length using the above-mentioned experimental datasets.
Third, we simulated a fully synthetic dataset (see the ‘Ma-
terials and Methods’ section) in which HC and LC harbor
different amounts of SHMs. Subsequently, we used these
datasets to test six available BCR reconstruction methods.
We evaluated their abilities to obtain productive HC and
LC, defined by the absence of stop codons or out-of-frame
V–J junctions (see the ‘Materials and Methods’ section).
This was carried out using the sensitivity as a metric for the
experimental data and accuracy as a metric for the synthetic
data (see the ‘Materials and Methods’ section). In addition,
we experimentally validated the benchmarked methods by
determining that antibodies, generated using the productive
sequences, can recognize their intended antigens. Moreover,
we measured the time needed to run these algorithms to pro-
vide information on time and scalability. Finally, we pro-
pose a final performance score for each method by aggre-
gating the results of all the experiments and provide recom-
mendations for the selection of the method that best suits a
given dataset and scientific question.

MATERIALS AND METHODS

Experimental datasets

Leiden dataset (SMART-seq2).

Cell sorting, cDNA synthesis, ARTISAN PCR and Sanger
sequencing. TT-specific B cells and B cells with un-
known specificity were isolated as described before (9). In
short, peripheral blood mononuclear cells were isolated
by Ficoll-Paque gradient centrifugation and stained with
Fixable Violet (405 nm) Dead Cell Stain Kit (Thermo

Fisher), CD3 Pacific Blue (clone UCHT1, BD Pharmin-
gen), CD14 Pacific Blue (clone M5E2, BD Pharmin-
gen), CD19 APC-Cy7 (clone SJ25C1, BD Pharmingen),
CD20 AlexaFluor 700 (clone 2H7, BD Pharmingen),
CD27 PE-Cy7 (clone M-T271, BD Pharmingen), IgG
BV510 (clone G18-145, BD Horizon), IgD FITC (clone
IA6-2, BD Pharmingen) and APC- and PE-labeled TT.
CD19+CD20+CD27+IgG+IgD− B cells were considered
TT-specific if they stained double positive for fluorescently
labeled TT with two different fluorochromes: TT-APC and
TT-PE. Cells negative for two labeled antigens were con-
sidered as ‘cells with unknown specificity’. Cells were single
cell sorted on a FACS ARIA sorter and mRNA was lysed
directly in lysis mix: 0.2% Triton X-100 (Sigma) in ddH2O,
RNase inhibitor (25 U, TaKaRa), oligo-dT30VN (10 pmol,
IDT) and dNTPs (10 nmol, Thermo Fisher). cDNA synthe-
sis and subsequent preamplification and purification were
performed according to the SMART-seq2 protocol (14).
Anchoring Reverse Transcription of Immunoglobulin Se-
quences and Amplification by Nested (ARTISAN) PCR
was performed using purified cDNA.

The ground truth ARTISAN Sanger sequencing of each
single cell was performed on an Applied Biosystems 96-
capillary (ABI3730xl) sequencer. After counting the HC
and the LC of the sequenced 72 single cells, 56 HC, 56 kappa
light chains (LcK) and 27 lambda light chains (LcL) were
defined as assembled. These were HC and LC that did not
contain a stop codon in variable and constant regions as
defined by IgBLAST and Change-O (34). Furthermore, 38
HC, 48 LcK, 8 LcL and 27 paired HC + LC (K or L) were
classified as productive. IgBLAST and Change-O (34) define
a chain productive if it is an assembled chain with in-frame
V–J junctions. These 27 single cells with paired HC + LC
were used as the ground truth to compute the sensitivity of
each method for this dataset (Supplementary Figure S1A
and Supplementary Table S3).

Canzar dataset (SPEC-seq). We retrieved the dataset
included in the publication of BASIC (25) from
GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE116500). Out of 295 single plasmablast cells pub-
lished in this dataset, we selected 190 that were sequenced
using a 50-bp paired-end mode. We further filtered for 113
samples that had at least 1.25 million reads. Besides the
fastq files, we obtained fasta sequences generated using
Sanger sequencing, which we used as the ground truth

https://github.com/milaboratory/mixcr
https://github.com/akds/BASIC
https://github.com/Teichlab/bracer
https://github.com/BosingerLab/BALDR
https://github.com/simone-rizzetto/VDJPuzzle
https://github.com/liulab-dfci/TRUST4
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
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Figure 1. Benchmark framework. (A) Available datasets with ground truth (25,27) consisting of plasmablasts with unknown antigen specificity were
obtained from the corresponding publications. In addition, an scRNA-seq dataset including TT-specific B cells and B cells with unknown antigen specificity
was generated in this work (Leiden). All the datasets were downsampled to achieve different read coverages and lengths. (B) An additional dataset was
simulated to investigate the effects of different levels of SHMs in the variable domains of BCRs on the performance of each method. Sensitivity and
accuracy were used as metrics to evaluate each method depending on the type of used data. Antibodies were produced using a subset of clonotype-forming
patient-specific BCRs and their specificity was experimentally validated. Finally, the execution time was investigated, and a final score was calculated to
give a final recommendation on the method choice.

for this dataset. Afterward, we ran the Immcantation
framework v4.0 (34) to assess the number of assembled and
productive HC and LC (K or L) in each single cell and to
determine germline genes in each sequence. As a result,
we assembled 113 HC, 62 LcK and 57 LcL, including 102
cells having complete HC + LC pairs. After the assembly,
68 HC, 48 LcK and 46 LcL, including 45 paired HC + LC
(complete BCRs), were labeled as productive. Hence,
we used these 45 single cells with full-length paired and
productive HC and LC to compute the sensitivity of each
method for this dataset (Supplementary Figure S1B).

Upadhyay dataset (SMART-seq2). We retrieved the hu-
man AW1 plasmablast dataset included in the BALDR
publication (27) from SRA (https://www.ncbi.nlm.nih.gov/
sra/?term=SRP126429). This dataset, consisting of 51 sin-
gle cells, was first investigated for the read quality using
fastQC v0.11.9 (Babraham Bioinformatics; FastQC: a qual-
ity control tool for high-throughput sequence data). Dur-
ing this quality control step, we observed that libraries con-
tained duplicated reads, overrepresented sequences and k-
mers despite the quality of the reads being adequate at
3′ and 5′ ends (Supplementary Data S1 and Supplemen-
tary Figure S3). After downloading fastq files and fasta se-
quences of the ground truth that were generated using the

Sanger method, we ran the Immcantation framework v4.0
(34) to assess the number of assembled and productive HC
and LC in each single cell and to determine germline genes
in each sequence. As a result, we reconstructed 34 HC, 19
LcK and 22 LcL, including 23 paired HC + LC that were
termed as assembled. Out of these, 34 HC, 19 LcK and 21
LcL were labeled productive, including 23 HC + LC pairs
(BCRs). Consequently, we used these 23 single cells with
full-length paired and productive HC and LC to compute
the sensitivity of each method for this dataset (Supplemen-
tary Figure S1C).

Simulation of experimental datasets with different read
lengths and coverages

We used seqtk [lh3/seqtk: toolkit for processing sequences
in FASTA/Q formats (github.com)] version 1.3-r106 with
the option ‘-s100’ to perform random sampling without
reintroduction of additional reads to generate libraries with
different levels (from 50 000 up to 1.25 million reads) of
coverage. Afterward, the sampled reads were trimmed us-
ing seqtk with the option ‘trimfq’ to obtain final libraries
with read lengths ranging from 25 up to 50 nucleotides for
the Canzar dataset (25), and from 25 up to 100 nucleotides
for the Upadhyay dataset (27) and for the Leiden dataset.

https://www.ncbi.nlm.nih.gov/sra/?term
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In total, we simulated 70 distinct libraries covering different
read lengths, coverages, types of B cells (memory and plas-
mablasts) and plate-based techniques (SMART-seq2 versus
SPEC-seq).

Simulation of synthetic chains with different levels of SHMs

The process of generating SHMs has been described as
stochastic in nature for many decades. However, it has re-
cently been demonstrated that intrinsic biases are present
in vivo mostly due to the activity of the activation-induced
cytidine deaminase (35). Nevertheless, we wanted to test
whether a mutation accruing at any position of the CDR
in the variable domain could generalize an effect on the
performance of the methods used in this benchmark. For
this, we used immuneSIM (36) version 0.8.7 to simulate
four libraries containing 100 HC, 100 LcL and 100 LcK
that harbored 15, 30, 45 and 60 SHMs. We used the option
‘shm.mode=data’, which focuses on mutation events in the
CDRs (based on IMGT) occurring at any position during
the process of SHM. First, this tool computes the frequen-
cies of the V–D–J germline genes, insertions and deletions
in the V and J junctions using repertoires present in differ-
ent studies (37–40). Second, it recreates the sequences of HC
and LC trying to maintain the statistical patterns and ratios
of the number of germline genes. In case an introduction of
SHMs is required in a simulation, the tool considers only
chains without stop codons. In case a stop codon occurs, it
resamples genes and other features until the requested num-
ber of simulated sequences without stop codons is reached.
We noticed, though, that even if the resulting simulated se-
quences of HC or LC had no stop codons, they could still
have out-of-frame V–J junctions that eventually resulted in
a nonproductive chain. The output fasta file of each of the
simulated HC, LcL and LcK was used as a reference to
create synthetic reads and to obtain paired-end Illumina
libraries containing 500 000 75-bp-long reads, using ART
(41) version 2.1.8 (parameters -l 75, -f 500 000). Finally,
we annotated each of the simulated sequences using the
Immcantation framework v4.0 (34) to identify the germline
genes and the number of assembled and productive HC and
LC (Supplementary Figure S2A–D and Supplementary Ta-
ble S4), which we used as the ground truth to compute the
accuracy of each tool.

Sensitivity as a performance metric for experimental data

In this study, ground truth was considered as a set of HC
and LC sequences coming from different single cells and ob-
tained by Sanger sequencing. In principle, every cell should
have a pair of HC and LC in the ground truth. However,
we realized that only ∼40% of single cells in each of three
analyzed datasets had paired HC and LC that were also de-
fined as assembled and productive using the criteria men-
tioned earlier (Supplementary Figure S1A–C). Therefore,
the ground truth information was available only for a sub-
set of single cells (and thus productive BCRs) that could be
used as a ground truth for all the single cells in each dataset.
A metric such as specificity could not be used to evaluate the
performance of the tested algorithms for BCR reconstruc-
tion due to the nature of the data (every antigen-specific B

cell must have an HC and an LC), which prevents calcula-
tion of the false positive values. In other words, if Sanger
sequencing misses one HC or one LC, assigning a false pos-
itive to a productive HC and LC assembled by a tool would
be a wrong assumption since the absence of the chain would
reflect a technical problem with Sanger sequencing and not
the true biology. Therefore, we used sensitivity as a metric
to compare different tools. First, we identified genes of pro-
ductive HC and LC (K or L) of the ground truth for each
cell in each dataset as described earlier. Second, we used dif-
ferent tested tools to assemble and annotate HC and LC (K
or L) in different experimental libraries that we generated as
described earlier. Then, we compared genes of each produc-
tive chain of the ground truth to the corresponding produc-
tive ones obtained by a tested method. As IgBLAST and
tested tools can sometimes output more than one of each
V–D–J germline gene, an HC was defined as a true posi-
tive (TP), if at least one of each of the V–D–J genes of a
productive HC in the ground truth matched one of each of
the corresponding V–D–J genes obtained by the computa-
tional method. In case an HC was not reported as assem-
bled and productive by the tool, or when at least one of the
V–D–J genes in the ground truth did not match any of the
corresponding V–D–J genes obtained by a computational
method, it was considered a false negative (FN). The same
approach was used for the LC, but only V–J genes were
matched. Knowing that a B cell can have two LC and [a
process named allelic inclusion (42)] in case two LC were
assembled in the Sanger sequencing, we compared only the
productive one to the one obtained by the given method.
Sensitivity was then calculated using the following formula:

sensitivity = TP
TP + FN

Accuracy as a performance metric for simulated synthetic
BCRs

In the simulated synthetic dataset described earlier, we
counted both productive and nonproductive HC and
LC (Supplementary Figure S2A–D). In humans, mature
antigen-specific B cells have one productive HC and LC af-
ter SHM, as cells that fail to display functional BCRs are
negatively selected and undergo apoptosis. However, the in-
troduction of SHMs by immuneSIM returned several HC
and LC with out-of-frame V–J junctions, which we inter-
preted as a proxy of the SHMs in the variable regions, re-
sulting in nonproductive chains that would be negatively se-
lected in the real world. Having assumed this, we counted
true positive (TP), false negative (FN), false positive (FP)
and true negative (TN) chains for each tool to compute the
accuracy. Here, TP and FN were calculated the same way as
for the sensitivity. If assembled and nonproductive chains
in the ground truth were marked as assembled and produc-
tive by the tools, such chains were called FP. In case highly
mutated and nonproductive HC and LC in the synthetic
ground truth were reported as nonproductive by the tool,
they were TN. To evaluate this, we computed the accuracy:

accuracy = TP + TN
TP + TN + FP + FN
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Calculation of gene overlap among the methods

To sustain the sensitivity as a metric for performance eval-
uation of the tested methods, we overlapped the V–(D)–
J genes, mapped during the BCR reconstruction by each
tool, in a pairwise manner separately for HC and LC. To
do this, we counted all the HC that were reconstructed in
each dataset by at least one method, and we used this num-
ber as denominator of our calculation. This was necessary
because some methods were incapable of reconstructing the
entire number of HC in each dataset. Afterward, we over-
lapped lists of separate V–(D)–J genes reconstructed by the
methods in a pairwise manner and divided this number by
the denominator. The same procedure was also performed
for the LC (Supplementary Table S6).

Assessment of the execution time of each method

We considered the execution time as time needed to recon-
struct a BCR from fastq files. For each tool, samples were
run as parallelized jobs, in which a sample was run in par-
allel to all the others at the same time. We first created
a multi-node high-performance computing cluster employ-
ing SLURM (version 18.08.5-2) as a job scheduler with 10
nodes using the Amazon Elastic Compute Cloud (Amazon
EC2) and the r5.2xlarge instance that uses the Intel Xeon®

Platinum 8000 processor, 3.1 GHz with eight vCPUs and 64
GB of RAM. All tools were then run on this virtual cluster
requiring at least two CPUs and 6 GB of RAM for each
job using the following parameters: ‘-n=2’ and ‘–mem-per-
cpu=6G’.

Final score to evaluate the methods

For each experimental dataset, we aggregated the sensitivity
scores of HC and LC separately. For the HC, we summed
the sensitivity values across different coverages and read
lengths for all the libraries and divided this value by the
number of libraries tested (where a library is a dataset with
a defined read length and coverage). Given that BASIC was
the only method capable of reconstructing HC in libraries
of 25 bp length and that BRACER could not reconstruct
HC when the read length was 50 bp in most of the libraries,
we divided the sum of the sensitivity values across the dif-
ferent libraries of each dataset by the number of libraries
in which the reconstruction was successful. The same was
performed for the LC. Afterward, the two mean values ob-
tained for the HC and the LC were added up and divided
by 2. This score represents the evaluation of each tool for a
given experimental dataset.

For the simulated SHM dataset, we first summed up the
accuracy values of the HC reconstruction across the four
SHM libraries (where each library contained HC with a spe-
cific amount of SHMs) and divided this number by the total
number of libraries. We then performed the same procedure
for the LC. These two values were added up and divided by
2 to obtain a score for this dataset.

Finally, we computed a cumulative average score by aver-
aging the scores obtained from the four datasets and used it
as a final evaluation metric of each method.

Creation of the scBCR docker image and data usage

The scBCR docker image that was used to install and run
the methods tested in this study was built using Debian 10.6
docker. It embeds various tools that share dependences of
different versions that can potentially be incompatible. To
avoid this, different Anaconda environments were used to
separate different versions of the same software. The na-
tive image has BRACER commit 131c2b9, MiXCR 3.0.13
and TRUST4 1.0.4. The conda omics environment con-
tains BALDR commit 461d9b0. The conda vdjpuzzle envi-
ronment contains VDJPuzzle 3.0 and BASIC 1.5.0. Along
with the files needed to run each tool, the image also con-
tains human genome and annotation version GRCh38, hu-
man transcripts and Bowtie index version GRCh38. The
IGMT annotation is also provided to run the tools (43).
All the tools were run using standard parameters for all
the datasets, if not stated differently. For VDJPuzzle, we
had to modify the first line of each fastq read when run-
ning samples from the Upadhyay dataset. Each pair of
reads was modified from e.g. ‘@SRR6471013.1 1’ to ‘@
SRR6471013 1/1’ for read 1, and from ‘@SRR6471013.1 2’
to ‘@ SRR6471013 1/2’ for read 2. In case of BALDR, we
used the output from the ‘Ig mapped & Ig mapped + Un-
mapped’ model to evaluate the reconstructed HC and LC
since it was reported as the best option by the authors (27).
In case of BASIC and BRACER, we took the sequences
of a given chain and used Change-O (34) within the Imm-
cantation framework v4.0 (34) to obtain the germline genes,
productivity and in-frame V–J junctions. This information
was already present in the output folders of TRUST4, VD-
JPuzzle, BALDR and MiXCR.

Validation of reconstructed TT-specific BCRs

We selected three pairs of reconstructed HC and LC be-
longing to three different BCRs for experimental valida-
tion. These TT-specific (TT+) BCRs were part of clono-
types identified in our dataset containing (TT+) memory B
cells. We obtained these clonotypes by running BRACER
function ‘bracer summarise’ (Supplementary Figure S4).
We synthesized and cloned variable domains of the assem-
bled HC and LC sequences to produce and test the result-
ing monoclonal antibodies (mAbs). First, sequences were
codon-optimized via GeneArt Gene Synthesis (Life Tech-
nologies) and the HC/LC variable genes together with 5′-
BamHI and 3′-XhoI restriction sites, the Kozak sequence
and the respective leader sequence were ordered from Ge-
neArt (Life Technologies). The constructs were then lig-
ated into a pcDNA3.1(+) expression vector (Invitrogen)
carrying the IGHG1/4 or the IGLC1/IGKC constant re-
gions (UniProt), respectively, flanking a 3′-XhoI site. The
recombinant mAbs were produced in Freestyle™ 293-F cells
(Gibco) as previously stated (44). Supernatants were har-
vested 5–6 days post-transfection. IgG antibodies were pu-
rified using a 1-ml HiTrap® Protein G HP affinity column
(GE Healthcare) followed by a direct buffer exchange us-
ing a 53-ml HiPrep™ 26/10 Desalting column (GE Health-
care) according to the manufacturer’s instructions. An IgG
enzyme-linked immunosorbent assay (ELISA) was used to
determine IgG concentrations of the mAbs according to the
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manufacturer’s protocol (Bethyl Laboratories). Anti-TT re-
activity was assessed by a TT ELISA. TT (NIBSC) was
directly coated onto C96 Maxisorp NuncImmuno plates
(Thermo Fisher Scientific). mAbs were tested in multi-
ple concentrations. Bound anti-TT IgG was detected by
polyclonal rabbit anti-human IgG horseradish peroxidase
(Dako), ABTS and H2O2 (Sigma-Aldrich).

RESULTS

Effect of coverage and read length on BCR assembly, produc-
tivity and sensitivity

To evaluate the experimental parameters affecting the per-
formance of the BCR reconstruction tools in different B-
cell types, we generated datasets of distinct library lengths
and read coverages. To comprehensively test this, we se-
lected three datasets with different characteristics. The first
dataset named ‘Leiden’ consisted of reads obtained from
TT-specific memory B cells and memory B cells with un-
known antigen specificity. It was generated as part of this
study using the SMART-seq2 protocol and had read length
of 100 bp. The Canzar (SPEC-seq) (25) and Upadhyay
(SMART-seq2) (27) datasets were obtained by sequenc-
ing plasmablast cells, yielding read lengths of 50 and 100
bp, respectively. We downsampled all three datasets to cre-
ate libraries with variable coverage levels (from 50 000 to
1 250 000). Similarly, read trimming was done to simulate
libraries with different read lengths (from 25 to 100 bp). Fi-
nally, we assessed whether a set of productive HC and LC
(LcK or LcL) could be assembled by each tool for each sin-
gle cell in the total set of 70 different libraries (see the ‘Ma-
terials and Methods’ section) and used the ground truth in-
formation (see Supplementary Figure S1A–C) to compute
the sensitivity (see the ‘Materials and Methods’ section).

Leiden

We observed different outcomes for the different methods
in terms of the percentage of cells with assembled and pro-
ductive HC and LC (Figure 2A) using libraries generated
from this dataset of 72 cells. Specifically, the number of as-
sembled and productive HC was dependent on the number
of reads for all the tools and increased with the rising cov-
erage of the libraries. Moreover, this effect was strikingly
pronounced for BASIC, which was able to assemble only
<40% of the HC in libraries with 100 000 reads. Further-
more, BRACER showed difficulties in reconstructing HC in
a scenario of 50-bp libraries with a very pronounced effect
for coverages below 500 000 reads (Supplementary Figure
S5A). BALDR, BRACER and TRUST4 displayed a simi-
lar high performance, assembling HC in up to 90% of the
single cells. Finally, the average sensitivity for the HC re-
mained relatively stable across the different coverage levels
with an average value of 85% for BRACER, followed by
BALDR with 77% and TRUST4 with 66% (Figure 2A and
Supplementary Table S1).

All tools demonstrated a consistently high number of as-
sembled and productive LC (K or L) across the different
coverage and read length levels, with BALDR, BRACER
and TRUST4 assembling LC in >90% of single cells (Figure
2A). Likewise, BRACER, BALDR and TRUST4 reached

LC assembly sensitivities of 99%, 94% and 93%, respec-
tively, being the highest among the tested tools (Figure 2A
and Supplementary Table S1). In conclusion, BRACER,
BALDR and TRUST4 were the best performing tools, as-
sembling HC and LC with the highest sensitivity in this
dataset.

Canzar 2017

In contrast to the other two datasets, we could only test the
tools using 25- and 50-bp read length scenarios due to the
nature of the original libraries of 113 plasmablasts in the
Canzar dataset. As in the Leiden dataset, we observed vary-
ing effects of the tested parameters on the different tools
(Figure 2B). Surprisingly, BRACER failed to assemble HC
in all the tested libraries, seemingly due to the shortness of
reads. On the other hand, all the other tested tools success-
fully assembled >75% of the productive HC. Moreover, BA-
SIC reached up to 95% sensitivity across different coverage
levels for the HC, followed by BALDR and TRUST4 with
a sensitivity of 63% and 54%, respectively (Figure 2B and
Supplementary Table S1). Although MiXCR and VDJPuz-
zle assembled comparably high percentages of the HC, they
were less sensitive than others.

Furthermore, all the tested tools successfully assembled
LC in >80% of the single cells. Additionally, changing cov-
erage did not affect the assembly and productivity rates, ex-
cept for VDJPuzzle, where we observed a drop to 75% of
the assembled LC in the 1 250 000 read libraries. More-
over, BASIC and BRACER showed the highest sensitiv-
ity of 88% that remained stable across the different cover-
age levels. Other methods were less sensitive, with BALDR,
TRUST4, MiXCR and VDJPuzzle reaching the sensitivities
of 82%, 79%, 78% and 59%, respectively (Figure 2B and
Supplementary Table S1). Notably, BASIC was the only
method capable of assembling productive HC and LC from
25-bp libraries, displaying 54% sensitivity in reconstructing
HC and 88% sensitivity for LC, with the average of 71% for
both chains (Supplementary Figure S6 and Supplementary
Table S1). Altogether, BASIC, BALDR and TRUST4 were
the methods capable of assembling the highest number of
productive HC and LC with the highest sensitivity values in
the Canzar dataset.

Upadhyay 2018

Comparably to the Canzar dataset, the Upadhyay dataset
was originally generated by sequencing 51 single plas-
mablasts in a paired-end mode, using 100-bp libraries in-
stead of 50 bp. This could potentially explain some of the
differences we observed (Figure 2C). The number of assem-
bled and productive HC across the different coverage levels
was ≥85% for all tools analyzed except for MiXCR, which
assembled <60% productive chains. Consistently with the
Canzar dataset, BRACER was not able to assemble HC
when the length of reads dropped to 50 bp and below (Sup-
plementary Figure S7A). Similarly, BASIC achieved the
highest average sensitivity value (90%) across the different
coverage levels for the HC. It was followed by BALDR
and TRUST4 with 64% and 52% of sensitivity, respec-
tively. Finally, VDJPuzzle and BRACER showed an in-
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Figure 2. Performance of each method on different datasets. Effect of sequencing depth on the assembly, productivity and sensitivity of each tool in (A) the
Leiden dataset created in this work, (B) the Canzar dataset and (C) the Upadhyay dataset, consisting of 72, 51 and 113 paired-end single-cell libraries.
Original libraries were generated using either SPEC-seq or SMART-seq2 technology and had 100-, 50- and 100-bp-long reads, respectively. These datasets
were downsampled to different coverages as displayed in the figures to test the effect of coverage on the assembly, productivity and sensitivity of BCR heavy
and light chains (LcK or LcL). Assembled are heavy and light chains without stop codons. Productive are assembled heavy and light chains with in-frame
V–J junctions. Left y-axis depicts % of assembled chains over the total number of single cells in each dataset. Right y-axis corresponds to coverage. The
size of the circles is proportional to the % of the productive chains. Higher intensity of the yellow color of the circles corresponds to the higher sensitivity.
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verse sensitivity–coverage relationship, with both reaching
the sensitivity of 88% in libraries made up of 50 000 reads.

Only MiXCR failed to achieve >90% of assembled and
productive LC across the different coverage levels. Among
the remaining tools, TRUST4, BALDR and BASIC were
the most sensitive, reaching average sensitivity levels equal
to 87%, 87% and 86%, respectively (Supplementary Ta-
ble S1). As for the HC, the sensitivity of VDJPuzzle and
BRACER increased up to 83% and 77% with the simulta-
neous decrease of the number of reads to 50 000. An inves-
tigation of the read quality of all samples (Supplementary
Data S1, Supplementary Figure S3 and Supplementary Ta-
ble S5) revealed that the Upadhyay libraries harbored an
overrepresentation of k-mers and duplicated reads, which
might explain the inverse sensitivity–coverage relationship
observed for BRACER and VDJPuzzle. Thus, BASIC was
the method capable of assembling the highest number of
productive HC and LC with the highest sensitivity value fol-
lowed by BALDR in the Upadhyay dataset.

Method sensitivity is reflected by the V–(D)–J gene overlap

Next, we asked whether the performance of the tested meth-
ods was driven by the mere availability of a subset of
HC and LC and the corresponding ground truth sequences
in each dataset (see Supplementary Figure S1A–C) or by
the capability of each method to detect the same genes and,
therefore, alleles during the mapping procedure before re-
construction. To comprehensively test this, we did a pair-
wise comparison of separate V–(D)–J genes that were recon-
structed in HC and LC by different methods. We selected
libraries of 100 bp with 1.25 million reads from the Leiden
and Upadhyay datasets and 50 bp with 1.25 million reads
from the Canzar dataset for this analysis (Figure 3). Start-
ing with the Leiden dataset (Figure 3A), we observed that
BRACER and BALDR had the highest overlap of anno-
tated HC V–(D)–J genes (0.88, 0.72 and 0.84). Moreover, al-
though MiXCR and BRACER had a high overlap of the D
genes, a poor overlap of the V and J genes was reflected in a
general lower sensitivity of this tool. Furthermore, BALDR
and BRACER showed the highest overlap of the V and J
genes of LC (0.9 and 0.9). These results were in line with
the overall better performance of these two tools on the
Leiden dataset when the ground truth was used. Besides,
we observed that BASIC and BALDR had a consistently
good overlap of annotated HC V–(D)–J genes (0.71, 0.51
and 0.76) and the best overlap of annotated LC V–J genes
(0.86 and 0.8) when compared to the match among other
tools while using the Canzar dataset (Figure 3B). It is im-
portant to note that BRACER did not show any overlap
of HC genes with any of the tools due to the inability of
BRACER to reconstruct HC using 50-bp read length li-
braries. Finally, BASIC and BALDR had consistently the
best overlap of V–(D)–J genes of the HC (0.86, 0.59 and
0.86) and LC (0.9 and 0.92) in the Upadhyay dataset (Figure
3C). Again, this agreed with the best performance of these
two tools on this dataset. Overall, this analysis, which did
not rely on the ground truth, reflected the performance of
each method, which was evaluated when using the ground
truth and the sensitivity as a metric.

Effect of SHMs on BCR assembly, production and accuracy

After assessing the effect of the read coverage and length
on BCR assembly and production, we next investigated the
consequences of different levels of SHMs in the CDRs of
the variable domains of the BCRs on the performance of
each tool. To address this, we first simulated datasets that
consisted of 100 HC, 100 LcK and 100 LcL and contained
distinct levels of SHMs (ranging from 15 to 60) in the CDRs
of their variable domains. Second, we created synthetic Il-
lumina libraries and tested the capability of each method to
reconstruct HC and LC harboring various levels of SHMs.
Finally, we annotated the simulated HC and LC and used
them as the ground truth to compute the accuracy of each
tool (see the ‘Materials and Methods’ section and Supple-
mentary Figure S2A–D).

The first noticeable outcome of this experiment was a
pronounced decrease in the percentage of assembled HC
and LC (LcK and LcL) with the increasing number of in-
troduced SHMs in the CDRs of the variable domains for
MiXCR, VDJPuzzle and TRUST4 (Figure 4). Interestingly,
we observed a stronger effect of SHMs on the assembly
of LC than HC for MiXCR and BALDR compared to
other tools. In contrast, BASIC, TRUST4, VDJPuzzle and
BRACER did not show large differences in the assembly
of HC and LC. Importantly, not all simulated HC and LC
were productive in all the datasets (Supplementary Figure
S2A–D). In fact, the number of nonproductive chains in-
creased with the higher number of SHMs. Consequently,
using the tested tools to assemble BCRs from such libraries
would result in nonproductive HC and LC. Using the pro-
posed metric of accuracy, we found that BRACER returned
the highest average values of 95% and 97% across different
SHM levels for HC and LC, respectively (Figure 4 and Sup-
plementary Table S1). This was reflected by the capability
of this method to correctly assemble a chain and assign its
(non)productivity as in the ground truth. Other tools, such
as BASIC, BALDR and TRUST4, were also stable across
the different SHM levels in HC and LC but demonstrated
on average lower accuracy of 66%, 77% and 83% for the
HC and 92%, 87% and 79% for the LC, respectively (Figure
4 and Supplementary Table S1). In conclusion, BRACER
was the most accurate tool across different SHM levels in
correctly assembling HC and LC for this dataset, followed
by BALDR.

Validation of the specificity of assembled BCRs

To validate the specificity of the BCR sequences assembled
by the different algorithms, we produced three mAbs using
productive BCR sequences that were assigned to three dif-
ferent clonotypes by BRACER using the SMART-seq2 Lei-
den dataset obtained in this study. Two mAbs were based on
BCR sequences of single TT-specific B cells collected from
patient 1 (cells B10 and D8) and a third mAb was based
on a sequence isolated from patient 2 (cell G1) (Figure 5A
and Supplementary Figure S4). First, the BCR sequences
of these three cells assembled by all algorithms were com-
pared to the ground truth that was obtained using ARTI-
SAN PCR followed by Sanger sequencing. The assembled
sequences of 1-B10 LC, 1-D8 LC and 2-G1 HC were iden-
tical among all different algorithms and the ground truth.
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Figure 3. Pairwise overlap of V–(D)–J genes. Proportions of overlapping separate V–(D)–J genes among different computational methods for heavy chains
(IGH) and light chains [IGL(K/L)] in the (A) Leiden, (B) Canzar and (C) Upadhyay datasets. Higher intensity of the yellow color in heatmaps corresponds
to the higher overlap.
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Figure 4. Effect of the number of SHMs in the variable domain on the performance of each method. One hundred HC, 100 LcK and 100 LcL were simulated
with immuneSIM while introducing different amounts of SHMs in the CDRs of the variable domain (SHMs from 15 to 60). Using these sequences as a
reference, Illumina libraries were created with ART (41) tool and all the methods were tested using those libraries. The obtained HC, LcL and LcK were
compared to the initially simulated sequences to assess the assembly, productivity and accuracy rates of each method. Assembled are HC and LcK/LcL
without stop codons. Productive are assembled HC or LcL/LcK with in-frame V–J junctions. Left y-axis corresponds to the % of assembled chains. Right
y-axis shows the number of SHMs in each simulated library. The size of the circles is proportional to the % of the productive chains. Higher intensity of
the yellow color of the circles corresponds to the higher accuracy.

However, MiXCR assembled two differences when com-
pared to all other algorithms and the ground truth in the se-
quence of 1-B10 HC. In the 1-D8 HC and 2-G1 LC, several
differences between the ground truth and the output of all
algorithms were found (Figure 5B). We decided to produce
the mAbs based on the sequences assembled by BRACER
because two of the three selected sequences showed clonal
relationship with BCR sequences determined by this tool in
the dataset of TT-specific B cells (Figure 5C). After cloning
and expression of selected mAbs, an IgG ELISA was first
performed to stratify concentrations up to 1.5 �g/ml fol-
lowed by a TT ELISA to test the TT binding of these anti-
bodies. We confirmed that an unrelated mAb with a proven
specificity for citrullinated antigens was negative in the TT
ELISA, while a validated TT mAb was positive. All three
tested mAbs showed a clear TT binding, with 1-D8 dis-
playing the strongest signal (Figure 5D). In conclusion, ex-
cept for sequence regions in which all the tools reported
a different nucleotide composition when compared to the
ground truth among themselves, only MiXCR reported in-
dividual amino acid differences in the CDR2 region. Nev-
ertheless, the experimentally validated clonotype-forming
BCRs showed high antigen specificity.

Evaluation of the execution time

If an experiment includes thousands or millions of cells
to be assembled, the runtime during which tools com-
plete BCR assembly might become a determining factor.

Therefore, we evaluated the execution time of each tested
method using a standard virtual cluster (see the ‘Materi-
als and Methods’ section and Supplementary Table S2). As
a result, we observed that runtimes increased with the in-
crease of coverage and read length for all methods, except
BRACER that demonstrated stable execution times across
all coverages, starting from 50 bp (Figure 6 and Supplemen-
tary Figure S8A–D). Finally, TRUST4 was the tool that
processed the highest number of reads per second, followed
by MiXCR, BASIC, BALDR, BRACER and VDJPuzzle.

DISCUSSION

In this work, we extensively benchmarked six computa-
tional methods for BCR reconstruction using four different
B-cell datasets, three experimental and one simulated. We
focused our attention on the evaluation of methods capa-
ble of reconstructing full-length BCRs. The primary aim of
this work was to provide guidance for the method of choice
for different plate-based scRNA-seq datasets and scenar-
ios (Figure 7C). In addition, we directed our attention to
understanding the performance of each method on highly
mutated BCRs that are common in autoimmune diseases
(7,10), cancers (6,11) and in neutralizing anti-HIV antibod-
ies (31–33).

Methods based on either ‘semi de novo’ (BASIC) or ‘de
novo’ (BALDR) assembly and using the IMGT annota-
tion during the mapping procedure showed on average the
highest performance when assembling both HC and LC
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Figure 5. Validation of the TT specificity of the mAbs that were produced based on the assembled BCR sequences. (A) Characteristics of the TT IgG BCR
variable region of the selected mAbs, based on the full-length BCR sequences obtained from the ground truth. V–D–J, CDR3 amino acid (AA) sequences
and the numbers of nucleotide (nt) mutations compared to the germline sequence are depicted for the HC and LC of each TT IgG mAb. (B) Sequence
alignment of the HC and LC of the sequences used for mAb production. The lollipops depict differences between the ground truth and the used tools. The
positions of the lollipops are based on the IMGT amino acid numbering. Open circles depict differences of the MiXCR assembled sequence compared to
the ground truth and the output of all other tools. Closed circles depict differences between the ground truth and all the evaluated tools. (C) The clonotype
networks of the selected BCRs with other TT+ single cells obtained using BRACER (26). (D) Antibody validation using a TT ELISA for all antibodies.
The ELISA was performed with a concentration of 1.5 �g/ml of the mAbs. Validated mAbs with (pos. ctrl) and without (neg. ctrl) tetanus specificity were
used as controls. The optical density (OD) was measured at 415 nm 20 min after ABTS addition. The dashed line shows the upper detection limit of the
TT ELISA.
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Figure 6. Execution time of each method using samples with different read lengths and coverages. Each method was tested using standard parameters and
libraries with different read lengths and coverages. These libraries were simulated using the Leiden dataset. Each dot represents the median value (seconds)
of the execution time calculated using all single cells from a particular library type. Top x-axis depicts the read length of the libraries. Bottom x-axis shows
the coverage of the same libraries. Left y-axis corresponds to the runtime in seconds. Right y-axis shows the tested tool. The circle of each measurement
corresponds to the median value of the time of execution of all the cells for a particular library type. The deviation from this value represents the standard
deviation.

(K or L) of BCRs (Figure 7A) in the two plasmablast
datasets (Canzar and Upadhyay). Moreover, despite the
Upadhyay dataset being biased toward the overrepresented
k-mers, both BALDR and BASIC algorithms maintained a
good overall performance as previously reported (27), with
BASIC being independent of the type of immunoglobu-
lin chain. Despite having a similar high performance when
compared to the other methods in the Leiden dataset, BA-
SIC was, however, sensitive to the decreasing coverage level
when reconstructing HC, and was outperformed by the
de novo assembly-based methods BALDR, BRACER and
TRUST4 (Figure 7A). The main difference of the Leiden
dataset compared to the previously published datasets was
the type of cells used for library construction, memory B
cells and plasmablasts, respectively. This could have had a
potential impact on the results we observed as plasmablasts
produce high amounts of antibodies and thus have higher
amounts of BCR mRNA. However, an excess of reads that
belong to the V–(D)–J genes in a sequencing library does
not strictly implicate better performance of all the tools.
This could be observed in Figure 7A for the two plasmablast
datasets (Canzar and Upadhyay), in the which the final
score of all the tools was lower than the one obtained for
the Leiden dataset of memory B cells. This could be ex-
plained by an open problem in genomics, which describes

a possibility of multiple reads, belonging to a short variable
genomic region (in this case, V–D–J genes), to map to multi-
ple locations. Moreover, in accordance to the previous study
(45), MiXCR showed a generally low sensitivity in respect
to the other tools, which was reflected by the inconsistency
of genes annotated in the assembled HC and LC, which
is probably due to the high number of gene mishits. Thus,
our results suggest the adoption of BASIC, BALDR and
BRACER for the investigation of B-cell repertoires where
BCRs are carrying a particular antigen specificity to accel-
erate antibody-based drug design.

When assessing the capability of each method to recon-
struct BCRs bearing variable levels of SHMs in their vari-
able domains, we noticed the limited performance of VD-
JPuzzle. We propose that this was due to the intrinsic prop-
erty of the tool to completely discard reads in case they do
not map to any of the V–D–J genes and constant regions
during the first assembly step (28). To support this notion,
methods based on more sophisticated algorithms to recon-
struct the variable portion of the HC and LC by overlap-
ping the unmapped reads to those mapping to V–J junctions
together with genes present in the constant regions of HC
and LC showed to have adopted a better strategy. There-
fore, BRACER, BALDR, BASIC and TRUST4 should be
chosen when assembling highly mutated sequences.
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Figure 7. Average performance of benchmarked BCR methods on the different datasets. (A) For each method, a weighted average value for the sensitivity
was calculated by averaging single sensitivity values that were obtained for HC and LC after running the tools on the different libraries of the three datasets:
Leiden, Canzar and Upadhyay. A similar procedure was performed using the accuracy for the HC and LC obtained using the simulated SHM dataset. (B)
A cumulative average score for each method across the different datasets was obtained. (C) Our recommendation tree for method selection, according to
the research question and type of the dataset to be analyzed.

The experimental and simulated datasets used for this
benchmarking study supplemented each other. On one
hand, the experimental data reflected the real-world sce-
nario of a limited number of available (antigen-specific) B
cells and underlined the challenges in the assembly of their
BCRs at different cell differentiation stages. On the other
hand, larger sets of sequences with specific characteristics

such as SHM load with absent sequencing challenges (e.g.
duplicated reads, overrepresented k-mers, etc.) can be com-
pared when using simulated datasets. However, in general,
simulated datasets cannot completely reflect and thus re-
place the in vivo situation.

In terms of execution time, TRUST4, MiXCR and BA-
SIC can process the highest number of reads per second.
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They can run on a machine with as few as two CPUs Intel
Xeon® Platinum 8000 with 3.1 GHz frequency each and
6 GB of RAM and process single-cell libraries of 1 million
reads in ∼2 min, thus making them adoptable in every mod-
ern lab.

Importantly, some of the BCR assembly tools,
namely BASIC (25), MiXCR (24), VDJPuzzle (28)
and TRUST4 (29), can also be used to assemble TCRs
from single-cell sequencing data. However, since BCR
reconstruction is complicated by SHM, while this is not the
case for TCRs, an independent benchmarking of the tools
should be performed for TCR assembly.

With the goal to validate the specificity of the BCR se-
quences assembled by the different algorithms, three mAbs
were produced. Remarkably, all tools showed consistent se-
quence (dis)similarities when compared to the ground truth,
except for MiXCR, which assembled 1-B10 HC with two
additional mutations. This is in line with the previous study
(45) showing a high frequency of gene mishits during the
alignment step of MiXCR and the resulting negative impact
on the BCR sequence assembly. The disagreement of all the
tools with the ground truth for the 1-B10 HC was in line
with the low quality of the Sanger sequencing in the region
where different nucleotides were called, suggesting that the
computational methods can be superior to Sanger sequenc-
ing in such cases. However, the Sanger sequence of the 1-D8
LC was of high quality and may hint to either the amplifi-
cation bias during the ARTISAN PCR or the issues during
the BCR reconstruction step. Since all computational tools
employ different methodologies for BCR assembly, the lat-
ter seems unlikely. Finally, the antigen affinity assay showed
a clear TT binding by the cloned antibodies. This confirms
that the adoption of these tools in the research and clinical
setting would be beneficial for BCR and antibody recon-
struction.

We would also like to emphasize that this benchmark
study was explicitly done with datasets generated using
plate-based scRNA-seq techniques, such as SMART-seq2
or a variant of it named SPEC-seq. TRUST4 was the only
method, among the publicly available ones, capable of pro-
cessing 10x BCR data (29). However, the unfeasibility to ob-
tain the ground truth for 10x data and the scarcity of tools
to process them made us exclude this type of data from our
benchmark. Nevertheless, such comparisons should be ad-
dressed in the future studies. Moreover, although BRAPeS
(46) was initially included in our evaluation, the extremely
long runtimes to reconstruct just the CDR3 region resulted
in a need to subset the reads (∼5000 as suggested by the de-
veloper). Since the scope of this work included understand-
ing the effect of read coverage and length on tool perfor-
mance, we excluded BRAPeS from further evaluations.

In conclusion, we provide clear guidance to select the best
method (Figure 7C) according to the data type and research
question the user has at the start of the BCR reconstruc-
tion experiment to facilitate the research. In our opinion,
this work will help to improve the existing and develop new
methods for BCR construction, especially adapting them
to other sequencing technologies that are gaining increas-
ing popularity, such as those using 10x, Oxford Nanopore
and PacBio sequencing platforms.

DATA AVAILABILITY

Figures 2, 4 and 7 can be reproduced using data in Sup-
plementary Table S1. Figure 3 can be reproduced using the
data in Supplementary Table S6. Figure 5 can be repro-
duced using Supplementary Table S2. The Sanger sequenc-
ing results of the ‘Leiden’ dataset together with the anno-
tation can be found in Supplementary Table S3. The fasta
sequences of the simulated datasets with different levels of
SHMs in the CDRs of the variable domains of HC and LC
can be found in Supplementary Table S4.

We deposited the scBCR docker image together with the
instructions to run all the tested methods in the following
GitLab repository: https://gitlab.com/tAndreani/scBCR. In
addition, we also created notebooks to compute the sensi-
tivity and accuracy as well as to recreate the plots presented
in this manuscript within the same directory.
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