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Antibodies (Abs) are the major component of the humoral immune response and a

key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to

in vivo protection against HIV have not been elucidated. In addition to the desired viral

capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve

engaging immune effector cells to clear infected host cells, immune complexes, and

opsonized virus have been proposed as being relevant. These inhibitory mechanisms

involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity,

phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition.

Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial

was correlated with the production of non-neutralizing inhibitory Abs, highlighting

the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and

subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor

polymorphisms have been associated with disease progression. These findings further

support the need to define which Fc-mediated Ab inhibitory functions leading to

protection are critical for HIV vaccine design. Herein, based on our previous review Su &

Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific

Abs that may potentially contribute to HIV protection.
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INTRODUCTION

Currently, sexual transmission is the major route for human immunodeficiency virus (HIV)
infection and contributes to 80% of newly diagnosed cases worldwide. This statistic implies that the
virus crosses themucosal barrier to reach and infect HIV target cells (1) and that an effective vaccine
needs to induce an immune response that acts rapidly at mucosal sites. Neutralizing antibodies
(NAbs), which can be IgG or secretory IgA, are certainly desired for blocking HIV transmission
and have been shown to be highly effective at preventing infection through this route (Figure 1)
(2, 3). During the last decade, a whole new series of broadly neutralizing Abs (bNAbs), which
are NAbs with exceptional potency and breadth, have been isolated (4–6) and have efficiently
protected humanized mice and non-human primates (NHPs) from experimental challenge. Some
of these bNAbs are undergoing testing in human clinical prevention and therapeutic trials (6–14).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02968
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02968&domain=pdf&date_stamp=2019-12-18
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:c.moog@unistra.fr
https://doi.org/10.3389/fimmu.2019.02968
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02968/full
http://loop.frontiersin.org/people/123175/overview
http://loop.frontiersin.org/people/695874/overview
http://loop.frontiersin.org/people/420222/overview
http://loop.frontiersin.org/people/299093/overview
http://loop.frontiersin.org/people/56688/overview
http://loop.frontiersin.org/people/33453/overview
http://loop.frontiersin.org/people/36983/overview


Su et al. Fc-Mediated Antibody Protection Against HIV-1

FIGURE 1 | Distinct inhibitory activities of Abs in HIV target cells. The interaction of Fc regions with Fc gamma receptors (FcγRs) on immune cells, such as dendritic

cells (DCs), macrophages, and natural killer (NK) cells, will trigger several antiviral immune responses, including immune activation, which are able to restrain HIV

replication. Five major Ab responses against HIV infection that can occur as a result of IgG neutralizing Abs (depicted in red), IgG non-neutralizing inhibitory Abs

(depicted in blue) or IgA (in green) are shown. (A) There are two types of stratified epithelium and columnar epithelium. The binding of virus/Ab immune complexes to

FcRn at the surfaces of Langerhans cells may lead to transcytosis through genitorectal mucosal surfaces; (B) FcγRIII-mediated antibody-dependent cellular

cytotoxicity (ADCC); (C) neutralizing antibody (NAb)-mediated activity; (D) phagocytosis mediated by NAbs/non-NAbs through FcγRI binding; (E) FcγRII-mediated

non-neutralizing inhibition; some FcγR/Fc interactions may also enhance HIV entry and infection. These different inhibitory activities can occur at mucosal sites

beneath the mono- or pluri-stratified epithelial layers where HIV target cells reside.

However, bNAbs that display these features have very specific
characteristics. Indeed, bNAbs exhibit uncommonly long
complementarity-determining loops and extensive somatic
hypermutation, which requires a long maturation process

(6, 15–17). In turn, bNAbs are developed by only 10–
30% of HIV-infected individuals (6, 17–20), and attempts
to induce them by vaccination have encountered extreme
difficulties (17, 21).
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An increasing body of evidence suggests that Ab functions
mediated by the Fc domain may play a role in protection against
infections (22–27). Interestingly, the moderately protective
effects observed in the RV144 HIV-1 vaccine trial were
achieved in the absence of detectable NAbs, suggesting an
important role for Fc-mediated functions in protection (28,
29). Fcγ receptor (FcγR)-mediated Ab responses, which lead
to phagocytosis, aggregation, complement inhibition, Ab-
dependent cellular cytotoxicity (ADCC), Ab-dependent cellular
phagocytosis (ADCP), and Ab-dependent cell-mediated virus
inhibition (ADCVI), have been shown to decrease HIV
replication and may therefore substantially contribute to HIV
protection (22–25, 27). This review focuses on the importance
of Ab Fc-mediated functions in preventing HIV-1 infection and
highlights their possible relevance for the development of new
vaccine strategies.

ANTIBODY RESPONSES DURING HIV
INFECTION

Significant efforts have been made over the past two decades to
deepen the understanding of the role of the humoral immune
response in HIV infection and to foster the development of
vaccine strategies to control viral replication (30). The acquisition
of HIV-specific IgGAbs appears within the first 2 months (31, 32)
and evolves during the course of infection. In the neonatal period,
the early serological response to infection in infants is obscured
by the presence of transplacentally acquired maternal HIV Ab.
The amount of immunoglobulin to HIV-1 and the number
of HIV-1 antigens recognized increases with age (31, 33). The
emergence of Ab responses to the viral envelope during HIV
infection can generally be divided based on the timing of their
appearance and their functions (34, 35). These responses include
the following:

(1) A non-neutralizing inhibitory Ab (non-NAb) response
directed at immunogenic epitopes that develops in all
individuals soon after infection. Typically, this Ab response
is directed first against viral gp41 following gp120/CD4
binding (34, 36) and soon thereafter against the V3 loop
of gp120 (37). These Abs have a low impact on the virus
and plasma viral load because they may have limited
interactions with functional Env trimers (38). However,
they may play an important role in protection via Fc-
mediated effector functions, although the exact mechanism
remains to be elucidated (24). Holl et al. reported that
polyclonal sera with non-neutralizing activity inhibit HIV
replication in macrophages by the phagocytosis of immune
complexes bound to FcR expressed on cells (27). In a clinical
trial called RV144, non-NAbs exhibiting in vitro inhibitory
functions were described and associated with decreased HIV
acquisition (39, 40).

(2) An HIV strain-specific NAb response targeting Env epitopes
that are expressed on the native trimer, which is directed
toward viruses present earlier in infection and is detected
within the first year after seroconversion (20, 30). The
NAbs recognizing Env epitopes via their Fab fragments
may block HIV entry. An autologous NAb response is

observed in vitro in the absence of additional factors,
such as FcRs or complement, and is mainly a result of
the blocking of virus-cell interactions (41). Such NAbs
will encounter challenges, as they have to cope with a
staggering level of viral diversity. Continuous viral escape
from NAbs will occur as a consequence of single amino
acid substitutions, insertions, and deletions, and through
an “evolving glycan shield,” in which shifting glycans
prevent access by Abs to their cognate epitopes (38).
Nonetheless, these autologous neutralizing responses may
display additional effector functions involving Fc-mediated
contributions to the decreases in the viral load detected
within the first months after HIV acquisition (42).

(3) An Ab response capable of neutralizing a wide range of
viral isolates that develops 2–5 years after seroconversion
(43–46). However, this bNAb response occurs in only a
minority of patients and is associated with increased HIV
replication and diversity, although bNAbs can sometimes
be detected in subjects that control HIV (16, 47, 48) or in
chronically HIV-infected individuals (19). Ultimately, the
virus will escape from bNAbs. Notably, bNAbs have also
demonstrated efficient Fc-mediated inhibitory function in
addition to neutralization.

Therefore, during the course of HIV infection, the Ab
response evolves, leading to complex polyfunctional activities
that may certainly impact the course of HIV disease. The
specific role of bNAbs in disease evolution and the potential
contributions of other inhibitory functions have not been
firmly demonstrated.

NEW GENERATION OF bNAbs

Thanks to major improvements in Ab isolation technologies,
more than 100 HIV-1-specific bNAbs with remarkable potency
against a wide variety of HIV subtypes have been developed
(4, 6, 8, 9, 17, 43, 44, 49–53). The breadth of viral recognition
and the antiviral potency of bNAbs can be classified according
to their preferential target on the Env spike (4, 26, 49, 54,
55). Passive transfer of bNAbs performed in macaques has
shown their remarkable capacity to protect non-human primates
(NHPs) from experimental simian-HIV (SHIV) challenge when
administered via different routes and modes (a single high
dose or repeated low doses administered by the intravenous,
rectal or vaginal route) (56–59). Interestingly, recent studies
have demonstrated that such protection was not necessarily
sterilizing, as was previously thought. Indeed, a few infected cell
foci were detected 1–3 days after experimental challenge (60, 61),
which intriguingly disappeared leading to complete protection.
These results strongly suggest that protection is not solely due
to neutralization of the virus particles and that Fc-mediated
inhibitory function leading to the lysis of HIV-infected cells by
bNAbs participate in this protection (62–64).

Although the newer bNAbs react with more than 90% of
circulating HIV-1 strains when tested in vitro, at present, no
single bNAb potently neutralizes all HIV strains. Therefore,
a combination of two or more bNAbs would be desirable to
cover the entire range of viral strains encountered in vivo
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(6, 7, 65, 66). In this regard, bi-specific and even tri-specific
Abs targeting multiple HIV-1 Env epitopes were developed
recently to increase Ab breadth and potency (67–70). These
new bNAbs were characterized following the sequencing of
their Fab heavy and light chains and were further reconstituted
with an IgG1 heavy chain to form the Ab Fc domain.
Most bNAbs have high levels of somatic hypermutation,

including amino acid in-frame substitutions (71), frequent in-
frame insertions and deletions (72), and genetic bias in the
Ig heavy chain variable region (IGHV) (73). Modifications
of the FcR domain were introduced in some of these
bNAbs to increase their stability and persistence in vivo and
to potentially allow long-lasting activity and less frequent
administration (23, 74–76).

FIGURE 2 | Human FcγR gene polymorphisms and the expression and affinity of IgG subtypes. Four IgG subtypes are present in human serum that have distinct

structures and functions (top). FcγRs belong to the Ig receptor superfamily and comprise two or three extracellular Ig domains that mediate IgG binding. Differential

immune regulatory effects are produced depending on binding to FcRs. Activating or inhibitory functions occur based on the presence of an intracellular cytoplasmic

domain ITAM or ITIM motif that transduces an immunostimulatory or inhibitory signal, respectively, following receptor cross-linking. Binding of the Fc to the receptors

is mediated at the CH2-CH3 interface following a conformational change (right). The diversity of FcγRs is further increased by SNPs in their extracellular domains,

which in turn affect the expression of FcRs and their binding affinity and function (bottom). Mo, Monocyte; Mφ, Macrophage; DC, Dendritic cell; MC, Mast cell; Neu,

Neutrophil; Bas, Basophil; Eos, Eosinophil; NK, Natural killer cell; BC, B cell; PLT, Platelet.
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ANTIBODY ISOTYPES AND THEIR
SUBCLASSES

Upon B-cell activation by immune complexes, an HIV-specific
Ab response will be generated that induces the production of
immunoglobulins (Ig) of different types and isotypes (77, 78).
These types and isotypes differ in their related Ig heavy chains,
which therefore impacts the Fc-mediated function of the Abs.
Four IgG subtypes are present in healthy adult serum: IgG1 (60–
72%), IgG2 (20–31%), IgG3 (5–10%), and IgG4 (<4% of the
total main IgG subclasses) (79) (Figure 2), whereas the gp120-
specific IgG subclass distribution and IgA/IgM distribution are
generally as follows: IgG1>IgG2 = IgG4>IgG3 and IgA>IgM
(80). Indeed, diverse types (IgM, IgG, and IgA) and IgG subtypes
will be induced by HIV in plasma and other body fluids,
such as cerebrospinal fluid, saliva and genital secretions (80).
The Ig subclasses will vary according to the type of infection,
the related inflammatory stage and pathogen localization (81).
Therefore, the isotype distribution following infection remains
to be established. Some studies have proposed that Abs against
gp41 are mainly IgG1 rather than other IgG subtypes or IgA
or IgM classes (80, 82), whereas others reported gp41-specific
Abs of other subclasses (83, 84). The functional role of these
different isotypes also needs to be better characterized. It has
been proposed that Env-specific gp41 IgM and IgG Ab responses
have little effect on the control of the acute phase of viral
replication (36). IgG1 and IgG3 Abs are highly active against
viral infection, and IgG3 Abs appear first during the course
of infection (85), whereas the role of the IgG2 subclass is not
known. This isotype is mainly induced by bacterial capsular
polysaccharide antigens (79, 86). Moreover, the IgG subclass
prevalence has been reported to change over time. For example,
gp120-specific IgG1 levels remain constant during the first
6 months after infection, whereas the level of gp120-specific
IgG3 peaks after 1 month and then declines (84). Another
example is gp140-specific IgG2 and IgG3 responses, which do not
occur simultaneously in HIV-1-infected individuals (87). Isotype
switching may largely impact Ab functionalities linked to Fc
affinity toward Fc receptors (22, 78).

The Ab isotype/subclass recognition of Env epitopes is
associated with certain disease courses, symptoms and responses
to medication. Assessment of the IgG subclass distribution in
the plasma of HIV-1-infected patients enrolled in a French
prospective asymptomatic long-term (ALT) cohort showed that
in contrast to the IgG1 titers, the IgG2 titers directed against
HIV-1 Env gp41 and anti-p24 Abs were correlated with and
were highly predictive of decreased viral loads and slower disease
progression, especially long-term non-progression (88). This
observation was confirmed recently (89, 90). Moreover, Martinez
et al. found that in addition to HIV-1-specific CD4+ Th1 cell
responses, anti-gp41 IgG2 was the best predictor of long-term
non-progression (91). In the RV144 vaccine trial (29, 92), the
serum Env-specific IgA level was correlated with an increased
risk of HIV-1 infection, which was potentially due to monomeric
circulating IgA competing with IgG and interfering with the
ability of IgG to mediate ADCC and ADCP (28). The presence
of IgG3 against the Env V1V2 region was correlated with a lower
risk of HIV-1 infection (29, 93). Interestingly, IgG3 appeared to

neutralize HIVmore efficiently in vitro than IgG1 (94).Moreover,
the plasma IgG1 and IgG2 anti-HIV-1 p24 levels were inversely
correlated with the plasma HIV RNA levels in viremic HIV
patients (95).

In addition to isotype switching, the glycosylation profile of
Ig changes during infection. Agalactosylation and afucosylation
were more common in HIV-specific Abs among patient with
spontaneous control of HIV and were linked to enhanced NK
cell activity (96). The modifications of specific glycan groups
determine the functional properties of Abs.

Taken together, these different results suggest that dynamic
Ab subclasses/isotypes, posttranslational modifications, and
glycosylation will impact disease progression. A comprehensive
interrogation of the extensive biological diversity in naturally or
experimentally protected subjects may provide insights critical
for guiding the development of effective vaccines and Ab-
based therapies.

Fc-RECEPTOR: THE CELLULAR
COUNTERPART FOR
ANTIBODY-MEDIATED RESPONSES

Each Ig isotype binds to specific Fc receptors, which in humans
are the high-affinity receptors Fcα/µR for IgA and IgM, FcµR
for IgM, FcαRI for IgA, FcεRI for IgE and FcγRI and neonatal
Fc receptor (FcRn) for IgG and the low-affinity receptors FcεRII
for IgE and FcγRII and III for IgG (97) (Table 1). Special
attention has been paid to genes encoding the Fcγ receptors, since
they bind the constant domain of IgG, which is the major Ab
type induced by the host response following viral or bacterial
infection (98). Human cells express three FcγRIIs (A–C) and
two FcγRIIIs (A and B). All human FcγRs except FcγRIIB signal
through an immunoreceptor tyrosine-based activating motif
(ITAM), whereas FcγRIIB delivers inhibitory signals through
an immunoreceptor tyrosine-based inhibitory motif (ITIM) (99)
(Figure 2). The diversity of human FcγRII and III is further
increased by the presence of single nucleotide polymorphisms
(SNPs) in their extracellular domains, the most studied of
which are H131R in the FcγR gene FCGR2A (100), 126C>T
in FCGR2C (99), F158V in FCGR3A (101), and NA1/2 in
FCGR3B (102) (Figure 2). FcγRIIC has an unusual structure and
is generated by the unequal crossover of FcγRIIA and FcγRIIB
(99, 103). FCGR2C in FcγRIIC (126C>T) shares the extracellular
sequence of FCGR2B but signals through the ITAM, similar
to FCGR2A.

Importantly, the different FcR polymorphisms in the host
need to be taken into consideration when analyzing the FcR-
mediated functions of Abs. FcγR SNPs will impact both binding
to the complementary Fc portion of the Abs and on the other
side the expression and activation state in cells (Figure 2). Indeed,
increasing evidence suggests that FcγR SNPs impair receptor
expression on DCs, which in turn influences the risk of HIV
infection and vaccine efficacy (104). Similarly, the FcγRIIIA
polymorphism appears to modify NK cell activation and, as
a consequence, ADCC activity (105). Specific polymorphisms
in the FCGR2A (encoding Arg at position 131) and FCGR3A
(encoding Phe at position 158) gene loci have been associated
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TABLE 1 | Fc receptors and their corresponding Ig binding in humans.

Receptor Fcα/µR FcµR FcαRI FcεRI FcεRII FcγRI FcγRIIa FcγRIIb FcγRIIc FcγRIIIa FcγRIIIb

Human Ig IgA/IgM IgM IgA IgE IgE IgG IgG IgG IgG IgG IgG

Affinity for monomer Ig *N.D. *N.D. Low High Low High Low Low Low Medium Low

*N.D., not determined.

with decreased HIV acquisition (106). The latter SNP leads to
the increased binding capacity of Abs for FcγRIIIA, which is the
receptor involved in ADCC, suggesting that vaccine efficacy may
be related to the increased efficacy of this function.More recently,
Li et al. found that a tagged SNP (rs114945036) in FCGR2C
(126C>T) was significantly associated with protection against
infection with the HIV-1 AE subtype strain in the RV144 vaccine
clinical trial. The direct effect of this SNP is not well-documented,
although the authors proposed that it may lead to an FcR with an
atypical FcR protein sequence, thereby modifying FcR expression
or accessibility on cells (99). Interestingly, FcγRIIC has been
reported to mediate ADCC and may play a role in anti-HIV-1 Ab
neutralizing activity similar to that of FcγRIIB (103, 107–109).

Furthermore, although it has not yet been thoroughly
investigated, there is evidence that FcγR polymorphisms
are associated with mother-to-child transmission of HIV.
Mothers with the FcγRIIIa-158V allele have enhanced
binding affinity for IgG and ADCC capacity, which
reduces the susceptibility of their fetuses to HIV infection
and significantly reduces the chance of mother-to-
child transmission during both the intrapartum and
in utero periods compared with the FcγRIIIa-158F
allele (110, 111).

These studies showing the significant role of FcγR
polymorphisms strongly suggest that the Fc-driven function
induced by vaccination may play a role in HIV protection.
However, whether specific FcR polymorphisms are also involved
in the control of HIV replication is not clear. One study did
not detect significant differences when comparing the genotype
profiles of FCGR2A and FCGR3A (polymorphisms H131R and
V158F, respectively) in 73 patients in which HIV infection was
controlled with those in patients who progressed to disease (112).
Conversely, another study showed that the combination of these
two SNPs was significantly associated with HIV progression in
53 patients who progressed compared with 43 patients in which
HIV infection was controlled (113). Additional studies will be
needed to define the roles of these SNPs in HIV replication
and disease.

Importantly, the Fc regions of Abs contain a binding epitope

for FcRn (neonatal FcR), which is responsible for the extended

half-life, placental transport, and bidirectional transport of IgGs
or immune complexes through the mucosal layer (Figure 1)
(75, 114–116). FcRn is also expressed in myeloid cells, where
it participates in both phagocytosis and antigen presentation
together with the classical FcγR and complement. The relevance
of this receptor in HIV infection has not been defined. However,
this characteristic was largely exploited by modifying Fc regions
in monoclonal Abs for use in the treatment of cancer or
HIV infection.

Fc-MEDIATED Ab FUNCTIONS

Abs with Fc-mediated inhibitory activities, such as ADCC,
ADCP, or aggregation, in addition to neutralizing activity have
been detected at all stages of HIV disease. These inhibitory
functions involve the Fc domains of Abs as well as the Fab
domain. Therefore, both the Ab isotype and FcR expression on
effector cells will be determinants of these functions (Figure 1).

Antibody-Dependent Cellular Cytotoxicity
ADCC is a complex but potent Fc-mediated effector function
that is involved in the clearance of malignant or infected cells. In
the latter process, ADCC eliminates virus-infected cells through
mediating cooperation between innate and acquired immunity
(117–119). Specifically, Abs act as a bridge between an infected
target cell and an effector cell; the Fab domain binds to a specific
viral antigen expressed by the infected cell, and the Fc domain
binds to FcγR expressed on the surface of the effector cell (i.e.,
NK cells, monocyte/macrophages, and neutrophils) (120–122).
As a result of this interaction, effector cells release perforin and
granzymes, leading to death of the Ab-bound infected target cells.
Several studies have shown an association between ADCC and
slower disease progression in NHPs and humans (29, 123–126),
highlighting the importance of ADCC in vivo (25, 26, 126–128).
In the NHP model, ADCC was associated with protection from
infection by a pathogenic virus (129). Interestingly, Abs directed
against the V2 epitope were found to efficiently exhibit ADCC
activity in vitro (130, 131). Similarly, non-NAbs targeting the
V2 region of Env were associated with a decreased risk of HIV
acquisition in the RV144 vaccine trial in Thailand (28, 29, 92).
The relevance of ADCC was also demonstrated for mother-
to-child transmission (MTCT), where the presence of ADCC-
mediating Abs was associated with improved clinical status,
delayed disease progression in infants (132) and a reduced risk
of infection through breastfeeding (133).

In-depth studies are required to determine how Abs clear
HIV-1-infected cells, including the investigation of epitopes
recognized by ADCC-mediating Abs, naturally occurring Fc
domains on ADCC-mediating Abs and Fc receptors on
physiologically relevant effector cells (134). Further studies
will be required to determine how to elicit the appropriate
combinations of Abs and effector cells in the desired locations by
vaccination. Because ADCC is a complex, multilayered process,
the detection of this process using in vitro assays is challenging.
Numerous assays have been developed to analyze ADCC activity
in vitro. These assays differ in their use of various effector and
target cell types (cell lines or primary cells), antigens (Env or
whole virus), and read-outs (binding, effector cell activation,
granzyme release or infected cell lysis). As a consequence, the
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results obtained from each ADCC assay will reflect the different
aspects and factors involved in each step (135).

First, Abs bind a specific epitope on target cells to mediate
ADCC. This step can occur either during early events of virus
binding to target cells or at a later step when viral epitopes are
expressed on infected cells (121, 128, 136). As a consequence,
different Env conformations can be involved according to the
infection stage, and therefore the recognition of different specific
epitopes by Abs may impact the ADCC results (137). Moreover,
caution needs to be taken to ensure that the identified Abs
effectively target infected cells and not uninfected cells that have
captured HIV Env via their CD4 receptor (138–140). Therefore,
identifying the viral epitopes on infected cells involved in ADCC
is critical. The number of viral epitopes targeted by ADCC
activity seems to be higher than that targeted by neutralization.
Indeed, numerous non-NAbs recognizing non-functional spikes
on the viral surface or specific conformations of epitopes
expressed on infected cells were shown to mediate ADCC
without displaying neutralizing activity. We may very well-
propose that Abs mediating ADCC may be complementary to
bNAbs in potentiating the inhibitory activity of an HIV vaccine.

Second, the Fc domain of an Ab binds to the FcR expressed
on effector cells. This binding is dependent on one side of the
Ab heavy chain sequence. Interestingly, the Fc domain sequence
is influenced by B-cell activation, the recognized epitope and
intrinsic donor variability and therefore varies according to
the isotype and gene rearrangement. Notably, newly developed
monoclonal Abs were generated by their reconstruction with a
same IgG1 heavy chain therefore all expressing an identical Fc
domain. These constructs provided the opportunity to analyze
ADCC while maintaining a constant Ab Fc domain. However,
we must remember that these bNAbs do not reflect the large
spectrum of variability in the Ab Fc domain in vivo.

Third, the function of Abs is dependent on the polymorphisms
and expression of the FcRs on effector cells. FcR expression
is regulated in different cell populations according to their
localization, maturation stage, and genotype. For example,
NK cells from healthy donors are usually used as effector
cells to test ADCC in vitro. However, little is known about
how the distribution of FcR expression on NK cells varies
in different tissues and among individuals. This phenomenon
may impact vaccine responses, HIV transmission and disease
progression. Moreover, the combination of specific HLA and
killer immunoglobulin-like receptor (KIR) expression on NK
cells was shown to play a role in protection against infection and
elite control (141–145). Taken together, the results suggest that
all primary NK cell variables may influence ADCC outcomes in
vitro if not adequately standardized. This may be overcome by
using an NK cell line, albeit at the expense of the physiological
variability of FcRs in vivo.

Finally, the assays currently being developed in the field
use distinct read-outs (24, 134, 146). The detection of the lysis
of HIV-infected cells is the ultimate physiologically relevant
read-out, but this outcome is technically highly challenging to
measure. More straightforward read-outs, such as detection of
FcR triggering, are being proposed, but whether these indirect
detectionsmethods effectively reflect ADCC function is not clear.

Further investigations are urgently required to precisely define
the important epitopes and to determine how to efficiently trigger
effector cells to achieve the in vivo destruction of infected cells.

Antibody-Dependent Cellular Phagocytosis
Abs can also eliminate opsonized pathogens through
phagocytosis via the engagement of FcRs expressed by cells of
the innate immune system, including monocytes, macrophages,
neutrophils, dendritic cells (DCs), and mast cells (27, 147–149).
Phagocytosis is important for pathogen clearance by direct
lysis or antigen presentation and innate immune cell activation
with consequent pathogen elimination. The detection of ADCP
in vitro leads to efficient inhibition of HIV replication in
infected cells (27, 148, 149) and is associated with protection
from repeated intrarectal challenge with SHIV-SF162P3 or
SIVmac251 in immunized rhesus macaques (150–152). ADCP
mediated by IgG3 Abs was elicited in recipients of the RV144
vaccine (153). However, the epitope specificity of Abs mediating
ADCP still needs to be investigated. Musich et al. demonstrated
that anti-V2 monoclonal Abs mediated ADCP activity in a dose-
dependent manner similar to anti-V3 and CD4bs monoclonal
Abs against clade B gp120 (154) but displayed increased activity
against clade C gp120 compared to anti-V3 and anti-CD4bs
monoclonal Abs, suggesting the broader recognition of exposed
epitopes (154); this may also have been due to V2 epitopes
being more conserved between clade B and C than V3 epitopes.
Moreover, the role played by the cell type that mediates ADCP
should also be defined. Current in vitro ADCP assays mainly use
cell lines that may largely reduce the physiological relevance of
these in vitro assays. However, recently, phagocytosis mediated
by macrophages or activated neutrophils in human mucosal
and lymphoid tissues was proposed to play a significant role
in protection from infection (155). Thus, this type of assay
requires further development to better define the in vivo role of
ADCP function.

Antibody-Dependent Cell-Mediated Virus
Inhibition
ADCVI involves a combination of different FcγR-mediated
antiviral activities that occur when an Ab bound to a virus-
infected target cell engages FcγR-bearing effector cells, such
as NK cells, monocytes or macrophages (156). In vitro virus
inhibition assays partly measure target cell death mediated by
ADCC and partly measure non-cytolytic mechanisms of HIV
inhibition due to β-chemokine release from effector cells or the
phagocytosis of immune complexes (27, 42, 157).

Overall, Fc-mediated function was found to actively
contribute to Ab inhibitory activities. The combination of these
activities was found to be associated with protection (158).

The involvement of Fc-mediated activity in HIV protection
was demonstrated in an experimentally challenged macaque
model. The protection observed with the bNAb b12 was
markedly reduced after the modification of the Fc domain,
leading to impaired FcR binding (159). However, Fc-mediated
effector functions might not be absolutely necessary to generate
maximum protection, as was recently shown for the bNAb
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PGT121. In this study, a mutation impairing FcγR binding of
PGT121 did not modify the protective effect of the bNAb (160).

ANTIBODY CAPTURE OF INFECTIOUS HIV
PARTICLES/AGGREGATION

The Fc domains of Abs can directly bind the virus, leading to the
formation of virus/Ab aggregates. Ab inhibition by aggregation
of a pathogen is a very basic inhibitory mechanism that results
in a decrease in viral infectivity (161). The potential role of
aggregation was reviewed recently (24, 146, 162).

Formation of the Ab/virus immune complex may hinder
viral movement and impede viral replication by adhering the
complex to mucus and restraining its transfer and transcytosis
across mucosal epithelial cells (Figure 1). HIV aggregates will
be trapped more efficiently than free virus particles (e.g., in
the female reproductive tract, where there is abundant cervical
mucus) (163). Moreover, immune aggregates may be retained
efficiently in the mucus by binding of the Fc domain of IgG to
mucins and specific binding in the vaginal tract to MUC16 (164).
Analogous mechanisms may act on other mucosal surfaces, such
as those in the gastrointestinal tract (165).

These findings suggest a direct inhibitory effect of HIV/Ab
immune complex formation on HIV infectivity. Abs that retain
HIV and hinder its diffusion through the epithelial barrier need
to be better characterized to elucidate how they can be selectively
induced at the mucosal site. We expect that these Abs recognize
quaternary functional trimeric envelopes and non-functional Env
spikes expressed on HIV particles. Therefore, the number of Abs
able to form aggregates will be enlarged compared to that of
NAbs, which will open up new opportunities to induce functional
Abs with distinct epitope recognition by vaccination.

ANTIBODY-MEDIATED COMPLEMENT
ACTIVATION

The complement system is key to both innate and adaptive
immunity, where it exerts multiple functions. Complement
activation occurs through three distinct pathways (classical,
alternative and lectin), which result in several types of
antimicrobial activity, such as opsonization, inflammatory cell
recruitment, cell lysis and virolysis [see review (24, 26, 166, 167)].

HIV has developed a sophisticated defense to protect itself
by failing to bind complement proteins (168). Indeed, the
gp120 Env does not bind complement (168). Moreover, during
budding, HIV incorporates glycosyl phosphatidylinositol (GPI)-
anchored CD55 and CD59 as well as transmembrane CD46,
which are downregulatory molecules that inhibit complement-
mediated damage to the virus (169). HIV also captures serum
complement factor H, which plays a central role in protecting
cells from complement by downregulating complement binding
and in turn increases virulence (170–172). For these reasons,
the use of primary isolates produced by primary cells is
absolutely mandatory for in vitro studies of complement-
mediated responses.

Moreover, bNAbs engineered to lack complement binding
activity do not lose their protective effect, as shown in macaques
challenged with SHIV (159), which is in contrast to those
engineered to lack FcR. This finding suggests that complement
may not be required for optimal in vivo Ab protection against
infection. Nonetheless, in the RV144 vaccine trial that showed
modest efficacy, complement activation induced by V1V2-
specific Abs was stronger andmore frequently detected compared
to that in two related trials, VAX003 and VAX004, in which no
significant protection was observed (173).

In contrast, complement and Ab may contribute to the
enhancement of infection, as first described for Dengue virus
(174). Binding of IgGs to FcRs induces the enhanced transcytosis
of the virus at mucosal sites, although the exact mechanism is still
unclear (Figure 1) (175). Moreover, whether this phenomenon
has physiological relevance during HIV infection is still under
debate (176, 177).

Collectively, complement components and their interactions
with their cognate receptors are key to controlling adaptive
immune responses, which provides insight into the use of
complement components as novel drug targets. However,
the relative contribution of complement to virolysis vs.
viral enhancement in tissues and the periphery needs to
be further investigated to understand its role in protection
against HIV.

ROLES OF Fc-MEDIATED ANTIBODY
FUNCTIONS IN MUCOSAL TISSUES

Mucosal surfaces are the first entry site for HIV during
transmission (Figure 1). Indeed, Langerhans cells (LCs), urethral
macrophages and/or conventional DCs residing in mucosal
tissues have been proposed to capture HIV (178–185) and further
replicate or transfer the virus locally to potential HIV target
cells, such as macrophages and CD4+ T cells (Figure 1). NK
cells, macrophages and DCs, which are the effector cells involved
in Fc-mediated Ab functions, are present in different mucosal
tissues at different levels. Accordingly, mucosal effector cells
may act through an Fc-mediated Ab response and be the first
cells that modulate the early events of HIV transmission. The
relative contribution of any of the aforementioned Fc-mediated
Ab responses will depend on the frequency and distribution of
the cells present within a given tissue and their FcR expression
levels (3, 26, 182, 184, 186). Overall, FcR expression on cells
and their affinities and binding profiles for Abs will directly
impact Fc-mediated functions. Indeed, a comparison of penile,
cervical and intestinal tissues showed that the expression profile
of FcR onmucosal effector cells was reduced compared to that on
blood cells, although the overall cell frequency was substantially
different (187). Specifically, FcγRII+ DCs and macrophages were
well-represented in all three tissues, whereas FcγRIII+ NK cells
were rare only in the intestinal mucosa. We may imagine that
Fc-mediated Ab function(s) may be less relevant in the blood
circulation, where infected CD4+ T cells express very little FcγR
on their surfaces (188).
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Importantly, FcR expression varies according to the immune
cell type and the localization and activation status. FcR-
bearing cells, such as macrophages and DCs, predominate and
tightly interact with tissues, which may facilitate their activity.
Although resident NK cells express negligible levels of FcRs,
mature circulating NK cells expressing high FcγRIII levels are
rapidly recruited to the site of infection. Therefore, Fc-mediated
inhibitory functions involving binding to FcγR on resident tissue
cells may be of particular interest for the inhibition of mucosal
transmission, although the exact mechanisms underlying FcR
expression are not well-defined. Further studies on the potential
role of Fc-bearing HIV targets and the involvement of Fc-
mediated Ab inhibition at mucosal sites are needed to inform
HIV vaccine strategies.

STRATEGIES TO INDUCE Fc-MEDIATED
ANTIBODY FUNCTIONS BY VACCINATION

Antibodies have now been proven to contribute to HIV
protection and are therefore a central component of new
vaccine strategies (189). As Fc-FcR interactions are able
to generate powerful extraneutralizing Fc functions, these
additional functions should be defined (159).

Numerous vaccine trials have already reported the induction
of Fc-mediated functions. Vaccination with the gp120/CD4 mAb
immune complex was found to be more efficient in inducing Fc-
mediated adjuvant activity than that with gp120 alone. However,
highly variable elements in the gp120 sequence limit the breadth
of the responses to immune complex vaccines to a few HIV-1
isolates (190, 191). Moreover, vaccination with the SIVmac239-
1Nef virus induced an FcR-mediated inhibitory response that
prevented founder virus entry and avoided local expansion (192).
These results suggest protective Fc-mediated Ab function against
transmitted/founder viruses at the mucosa surface. Another
study demonstrated robust polyfunctional non-NAb responses,
such as ADCC and ADCP, associated with protection against
SIVmac251 challenge following vaccination with adenovirus
serotype 26 (Ad26) vector priming/purified envelope (Env)
glycoprotein boosting strategy in rhesus monkeys (151). In
addition, a robust non-NAb response to the V1V2 region of the
gp120 Env glycoprotein, which has been shown to exhibit Fc-
mediated functions, was associated with a decreased risk of HIV
acquisition in the RV144 clinical vaccine trial (193, 194). These
different vaccine trials indicate that Abs displaying Fc-mediated
functions participate in protection against HIV acquisition. This
protectionmay be particularly efficient when several Fc-mediated
activities are combined (158). Fc polyfunctionality increases over
time following HIV infection and has recently been correlated
with the further induction of neutralizing activity (195).

Therefore, we hypothesize that the induction of immune
responses leading to Fc polyfunctionality may require the
presentation of multiple antigens, similar to what induces
bNAb production. Indeed, multiple antigens appear to be
required for induction of bNAbs, as they appear following long
periods of high viral replication in which there is continuous
mutation of the viral Env protein. The general concept that the

induction of an efficient humoral response, i.e., with bNAbs, and
possibly Fc polyfunctionality will require high viral replication is
sometimes misleading within the field. The correlation between
an efficient Ab response and a high viral load provides a
confusing dichotomist message regarding the potential role
of Abs in protection against HIV acquisition. Accordingly,
we may need a complex combination of immunogens to
induce efficient Fc polyfunctional Abs as for induction of
bNAbs. A more systematic analysis of Fc polyfunctional activity
induced following vaccination is mandatory to understand the
dynamics of the induction of functionally relevant Abs and to
avoid switching to an immunodominant non-functional decoy
Ab response.

To define the correlates between Ab profiles and protective
functions, an integrative approach analyzing the “humoral
Fc fingerprints” of vaccines was proposed. According to
these principles, Chung et al. developed a unique approach
called “Systems Serology” to retrospectively examine recent
vaccine trials in humans to reveal features of immune
complex composition underlying protective immunity to
HIV (196). Using the “Systems Serology” approach, the
protective humoral response signatures in vaccinated or
naturally infected individuals in HIV can be defined. Moreover,
systematic data production and application of machine learning
approaches may identify distinct immunogenic regimens and Fc
effector functions, allowing the selection of promising vaccine
candidates (197).

These different studies provide insight into how to potentially
induce Fc-mediated functions able to protect or control HIV
infection via Fc-mediated antiviral activity (198, 199). New
vaccine strategies aimed at directly inducing Fc-mediated
activity should now be designed to improve the induction
of potential functional activity in addition to highly desirable
neutralizing activity.

SUMMARY AND CONCLUSION

This review highlights the potential role of FcγR-mediated Ab
immune functions besides neutralization in protection against
HIV. Although the role of the Fc-mediated function of Abs
lacking broadly neutralizing activity for HIV protection is still a
matter of debate (160, 200), numerous independent studies now
hint at their relevance for HIV inhibition. Above all, the specific
Fc-mediated functions of non-NAbs are the only correlates of
protection against infection observed in the RV144 vaccine
trial conducted in Thailand (28, 29, 193, 201). However, no
in vivo demonstration of the pertinence of non-NAbs for the
prevention of HIV transmission is currently available. Dedicated
experiments utilizing the NHPmodel may help dissect the role of
Fc-mediated Ab responses and their relevance for the prevention
of HIV infection. Nonetheless, to exert their function, these
Abs must colocalize with the appropriate FcR-bearing cells at
the site of infection. This scenario may occur during the early
events of HIV mucosal transmission, when the virus crosses
the epithelial barrier to infect the underlying target cells and
further disseminate to other organs. Close contact between the
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virus, infected cells, Abs and effector cells in mucosal tissues may
provide an ideal environment for Fc-mediated Ab functions to
occur. We can also imagine that the prevalent and relevant Fc-
mediated Ab function(s) may differ according to the infection
route and mucosal type involved (i.e., genital or intestinal
mucosa). An important hurdle for HIV vaccine designers will be
to determine how to induce high concentrations of Abs with Fc-
mediated functions directly within the mucosal sites of exposure,
which is a challenge that may equal or be greater than that of
inducing bNAbs (202).
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