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Migration is a complex trait that often has genetic underpinnings. However,
it is unclear if migratory behaviour itself is inherited (direct genetic control),
or if the decision to migrate is instead the outcome of a set of physiological
traits (indirect genetic control). For steelhead/rainbow trout (Oncorhynchus
mykiss), migration is strongly linked to a large genomic region across their
range. Here, we demonstrate a shared allelic basis between early life growth
rate and migratory behaviour. Next, we demonstrate that early life growth
differs among resident/migratory genotypes in wild juveniles several
months prior to migration, with resident genotypes achieving a larger size
in their first few months of life than migratory genotypes. We suggest that
the genetic basis of migration is likely indirect and mediated by physiological
traits such as growth rate. Evolutionary benefits of this indirect genetic
mechanism likely include flexibility among individuals and persistence of
life-history diversity within and among populations.
1. Introduction
Migration influences the distribution of animals across the landscape and their
ability to access resources [1]. Many populations include both migratory and
non-migratory individuals [2]. For these ‘partially migratory’ populations, vari-
ation in migratory behaviour often has strong genetic underpinnings across
many taxa, from birds to fish [3–5]. However, it is unclear if the behaviour itself
is inherited (i.e. direct genetic control), or if the decision to migrate is the outcome
of inherited, non-behavioural, physiological traits (i.e. indirect genetic control)
[6,7].

There are likely evolutionary benefits to indirect genetic control of migratory
behaviour [8], such as phenotypic plasticity, which is common in partially
migratory taxa [9–11]. Indirect genetic control via physiological traits could
shape the reaction norm for migration within populations [6] thereby influencing
the threshold at which individuals express each behaviour [12,13]. The model of
indirect genetic control allows for previously observed density-dependent
strategies within populations [14] and may help maintain life-history diversity
in a population.

The celebrated migrations of salmonid fish, between marine feeding and
freshwater breeding grounds, have led to the detailed study of the genetic archi-
tecture of migration in these fish. In steelhead/rainbow trout (Oncorhynchus
mykiss), migration is associated with a large genomic region (Omy05) across a
broad geographic area [15–18]. Omy05 has two chromosomal inversions, which
leads to reduced recombination, so there could be co-adapted alleles that have
been conserved together on this region [19]. It is possible to identify if physiologi-
cal traits map to this region, and a shared allelic basis between these traits and the
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region that is known to be associated with migration would
reveal one mechanism of indirect genetic control.

Early life growth rate has a strong genetic basis [20,21] and
is linked to migration in O. mykiss [22–24]. Here, we use the
term ‘early life growth’ to include development rate (time to
hatch) and early life growth rate because they are correlated
and map to the same genetic position [25]. Early life growth
rate is an important trait because salmonids face strong selec-
tion on emergence timing and size [26]. Additionally, given
the importance of dominance hierarchies in drift-feeding
salmonid fishes [27,28], any competitive edge that is obtained
in the first few months may have downstream fitness and
life-history consequences [29–31].

The effects of growth rate on migratory behaviour are con-
text-dependent inO.mykiss [22]. In some cases, rapid growth is
associated with freshwater maturation [32–35], but in others,
rapid growth is associated with ocean migration [36–38].
In short, growth alone is an unreliable predictor of migration
across streams with different thermal regimes and prey
resources. Consequently, there is no clear prediction about
whether migratory or resident genotypes are more likely to
be associated with rapid early life growth.

Given the relevancy of growth for migratory behaviour, we
predicted that the genetic basis for the two is linked. We used
published sequence data to reveal a shared allelic basis
between the two. This finding prompted us to ask if this
shared allelic basis influences growth in wild populations,
where growth is a result of many factors. We addressed this
question via a field study, comparing size-at-age for greater
than 1500 juvenile migratory and resident genotype O.
mykiss. We use this combination of genetic and ecological
data to explore if the genetic basis of migration operates
indirectly through physiological traits such as growth.
2. Methods
(a) Shared allelic basis for growth and migration
We explored the overlap in alleles for migration and early life
growth. Two clonal lines, Clearwater and Swanson, have faster
early life growth in a laboratory than a third line, Whale Rock
[20,21]. Previous analyses revealed that the rapid growth of Clear-
water and Swanson is controlled by a large, conserved haplotype
on Omy05 [20], the same region associated with migration
[15–17]. However, the extent of shared allelic variation between
early life growth andmigration has not been analysed. Using pub-
lished sequence data [17], we identified SNPs that are located
between 25 and 80 Mb on Omy05, the double chromosomal inver-
sion associated with migration [39] and that differ in the major
allele between our previously identified resident and migratory
genotype groups [16]. These SNPs have low minor allele frequen-
cies within each group (mean ± s.d. of 0.12 ± 0.10 in resident and
0.13 ± 0.11 in migratory genotypes [40]). We then used published
sequence data [41] to identify which of these SNPs have also
been genotyped in the clonal lines. We identified a set of 128 di-
allelic SNPs for which we compared alleles between the three
clonal lines and the major allele for the resident and migratory
genotype groups. SNPs are available at [40]. We visualized the
raw genetic distance between all groups using a neighbour-joining
tree produced with the ‘ape’ package [42] in R [43].

(b) Field comparison of growth in wild fish
We captured O. mykiss from two tributaries to the South Fork Eel
River, California, USA, with co-occurring migratory and resident
fish: Fox Creek (2.7 km2 drainage area) and Elder Creek
(16.8 km2). Elder Creek has two fish-bearing tributaries, Paralyze
(4.9 km2) and Misery (1.9 km2). We consider Fox Creek and three
regions of Elder Creek (above and below a waterfall that is a
partial barrier to migration and Paralyze) separately because
they differ in migratory/resident genotype frequencies [17].
We excluded Misery because we captured only one migratory
genotype out of 64 juveniles.

We captured fish from study pools that encompassed the entire
fish-bearing length of the streams from late July to early August
each summer from 2014 to 2017 following methods in [17].
Sampling occurred over as few days as possible (less than 5 days
per sample location and within three weeks overall) to reduce
growth during the sampling window (dates and data are available
in [44]). Briefly, we used three-pass electrofishing to estimate fish
density in each sample pool, which strongly influences growth
rates of juvenile salmonids [45,46]. We captured 2400 juveniles
(less than 1 year of age, fork length≤ 85 mm [47]). We focus on
the fork length-at-summer’s end for these fish (body size), which
represents growth rates over the first few months of life. Early
life growth is relevant because it influences whether or not fish
reach a threshold for migration [35,36].

We extracted DNA from caudal fin samples and performed
restriction site-associated DNA (RAD) capture following [48].
We used SNPs on Omy05 to assign individuals to resident, het-
erozygous or migratory genotypes, details in [16], resulting in
1903 genotyped juveniles. We previously demonstrated that
these genotypes are associated with migratory behaviour later
in life in these streams [16]. Sex can also inform migratory behav-
iour [16,49], but we expect an even sex ratio among juveniles. In
fact, the ratio of males-to-females is not statistically different from
1 : 1 for the subset of juveniles for which we have both sex and
migratory/resident genotype data [40] (n = 195 juveniles, p > 0.4
for binomial tests comparing sex ratios within each genotype).

We compared body size among genotypes with linear mixed-
effects models (normal distribution) using R packages ‘lme4’ [50]
and ‘lmerTest’ [51]. First, we compared body size among geno-
types within each sample location. Body size is the response
variable, genotype is a fixed effect, and location and year are
random effects to account for repeated sampling. Next, we com-
pared body size for each genotype across fish densities. We
included body size as the response variable, genotype and fish
density (individual m−2) as fixed effects, a genotype × density
interaction, and sample pool (unique for each year) as a random
effect. Finally, we compared condition factor among genotypes
(discussed in electronic supplementary material).
3. Results
(a) Shared allelic basis for growth and migration
We found that in theOmy05 region, alleles for clonal lines with
rapid early life growth (Swanson and Clearwater) were shared
with the major allele from resident genotypes at 90.6% and
88.3% of SNPs, but only at 3.1% of SNPs for the slow-growing
clonal line (Whale Rock). An unrooted tree demonstrates clus-
tering of the fast-growing lines with the resident genotype and
the slow-growing line with the migratory genotype (figure 1a).
This analysis demonstrates a shared allelic basis between rapid
early life growth and residency.

(b) Field comparison of growth in wild fish
Resident genotype juveniles tended to be slightly larger than
migratory genotype juveniles within each location (figure 1b).
Summarizing across locations, the fork length (mm, mean ±
s.d.) for resident, heterozygous and migratory genotypes are



Whale Rock (slow)

migratory genotype

resident genotype

Clearwater (fast)
Swanson (fast)

(a)

(b)

(c)

30

40

50

60

ju
ve

ni
le

 f
or

k 
le

ng
th

 (
m

m
)

70

80

30

40

50

60

ju
ve

ni
le

 f
or

k 
le

ng
th

 (
m

m
)

70

80

0.5 1.0

genotype

resident

heterozygote

migratory

genotype

resident

heterozygote

migratory

density of fish (individual m–2)

sample location

Fox Ck Elder Ck:
below waterfall

Elder Ck:
above waterfall

Elder Ck:
Paralyze

1.50

Figure 1. Indirect genetic control of migration in O. mykiss. (a) Unrooted tree (raw genetic distance) shows clustering among the resident genotypes and faster
growing clonal lines and between the migratory genotypes and the slower growing clonal line. Resident genotype juveniles are larger than migratory genotype
juveniles several months (at least) before migration across sample locations (b) and fish densities (c). In (c), each point is an individual, lines represent predicted
slopes and intercepts, and shading represents one standard error.
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62.1 ± 10.2, 58.4 ± 9.9 and 56.7 ± 9.8, respectively. Genotype is
significant in the linear mixed-effects model comparing size
within sample locations and years (F2,1743 = 30.6, p < 0.001,
electronic supplementary material), with resident genotype
fish being larger than migratory genotype fish (contrast from
migratory genotype, estimate (Est) ± standard error (s.e.): 5.0
± 0.7, p < 0.001), and heterozygous genotype fish expressing
an intermediate size (Est ± s.e.: 1.5 ± 0.6, p < 0.01).

Similarly, we found that resident genotype juveniles
tended to be larger than migratory genotypes under high
fish densities (figure 1c). This result indicates that within
pools, where rearing conditions are shared, resident genotype
juveniles obtain a larger size than migratory genotypes. Size
decreased with fish density (F1,196 = 23.0, p < 0.001, Est ± s.e.:
−7.3 ± 1.2, p < 0.001, electronic supplementary material), but
there was a significant interaction effect between density
and genotype (F2,1729 = 7.2, p < 0.001). The slope estimate for
resident genotype fish was shallower than that for migratory
genotype fish, with a contrast of 6.7 ± 1.8 ( p < 0.001), and het-
erozygous genotype fish again showing an intermediary
level, with a contrast of 2.8 ± 1.4 ( p = 0.05). This result
suggests that at higher densities, resident genotype juveniles
tend to be larger than migratory genotype juveniles. We note
that the size distributions for fish of each genotype overlap
considerably (figure 1b,c), and similarly that the total
explained variance in our models is low (electronic sup-
plementary material). This overlap in body size is expected
for fish that are co-rearing, and any observed size differences
in these wild, uncontrolled conditions are remarkable.
4. Discussion
Wedemonstrate a shared allelic basis between early life growth
and migratory behaviour and that this genetic basis is corre-
lated with early life growth in wild fish. This work builds on
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Figure 2. Genetic and environmental effects directly influence physiological
condition, which in turn directly influences migratory behaviour. Environment
may also influence genetics via epigenetic regulation of gene expression.
Dashed arrows represent possible effects that have yet to be observed.

royalsocietypublishing.org/journal/rsbl
Biol.Lett.16:20200299

4

previous comparisons of growth and life history by comparing
growth among genotypes rather than phenotypes. We compare
growth several months prior to the expression of migration,
rather than a post-hoc comparison. This combination of genetic
association and field studies allows us to demonstrate that gen-
etic variation influences growth rates far in advance of
migration and deepens our understanding of the underlying
mechanisms ofmigration. Our results suggest amodel of indir-
ect genetic control of migratory behaviour, such that genetic
variation, along with environmental and epigenetic factors,
influences physiology, which then influences migratory
behaviour (figure 2).

Benefits of indirect genetic control of migration might
include flexibility to take advantage of environmental con-
ditions to express the most beneficial life-history strategy. For
example, with indirect genetic control, during poor growth
conditions, a higher proportion of individuals than expected
from genetics may migrate. Indirect genetic control is consist-
ent with many observations of life-history flexibility in wild
salmonids. For example, flooding and increased food avail-
ability resulted in elevated rates of freshwater maturation
(residency) in Salmo salar [52]. Similarly, O. mykiss isolated in
a reservoir for 70 years are still able to express migration [53].
In summary, indirect genetic control may facilitate opportunis-
tic responses to environmental conditions and also encourage
the persistence of life-history diversity, contributing to
population stability [54].

We found that rapid early life growth is linked to the
resident genotype for O. mykiss. Mixed results have been
reported in other studies comparing growth rate between
migratory and resident O. mykiss. For example, O. mykiss from
populations that experience high temperatures and faster
growth were more likely to smolt (prepare for migration) com-
pared to slower growing populations [55]. In another study, fast
growth was associated with freshwater maturation [35]. These
differences may be related to compensatory growth, wherein
migratory individuals grow faster depending on the time
window and proximity to the outmigration period [56]. We
emphasize that growth trajectories are context dependent,
and future studies should incorporate how Omy05 genotypes
respond to varying temperature and food conditions.

Beyond differences in growth rate, another factor contribut-
ing to variation in size of juvenileO.mykiss could be differences
in breeding time and the resultant juvenile emergence time.
However, for O. mykiss, resident fish typically breed a few
weeks later than anadromous fish, with some overlap [57–
59]. This pattern leads to the expectation that resident fish
would emerge from the gravel later than their migratory
counterparts. However, despite their potential younger age,
resident genotype fish were larger than migratory genotype
fish, providing further support for faster growth rates. There
may also be microhabitat differences in nest sites between
resident and migratory adults that influence juvenile growth
[59], but we compare fish within habitat units.

An alternative model is that Omy05 directly influences
migration behaviour and early life growth differences are a
result of previously determined migration decisions. However,
the influence of Omy05 on growth begins very early in life,
during embryonic development [20,21,25]. Furthermore, other
studies suggest that conditions later in life influence life-history
decisions, reviewed in [22]. Second, growth is independent of
migration in clonal lines reared in controlled conditions. The
Swanson and Clearwater lines have the rapid growth haplo-
type, but the Clearwater and slower growing Whale Rock
lines undergo smoltification [41]. The fact thatOmy05genotypes
are not necessarily correlated with smoltification in clonal lines
provides further evidence that this genomic region influences
physiological traits, which then influence migratory decisions.
These lines of evidence suggest that the decision to migrate or
not is context dependent, and informed by physiological
condition, which is to some extent genetically controlled.

Other topics that warrant further investigation are the role
of epigenetics and sex, relative to indirect genetic mechanisms,
in determining migratory behaviour. Epigenetics may be
especially important within partially migratory populations
where genetic variation is low and environmental conditions
are shared. In the Clearwater line, smoltification is associated
with several DNA methylated regions [60], suggesting that
epigenetics may facilitate behavioural plasticity within geno-
types. Epigenetic differences are correlated with migratory
behaviours in other taxa as well [61,62] but the relative role
of epigenetics in shaping plasticity is unknown [63]. Further-
more, sex can also have a strong influence on migratory
decisions in partially migratory populations [2,64], including
in our streams [16]. Sexes may differ in their size thresholds
needed to initiate migration [33] especially when fitness
benefits of migration vary greatly between the sexes [39]. We
suggest that future studies investigate how sexes differ in
physiological traits and decision thresholds within life-history
genotypes and epigenetic modifications.

In summary, we highlight that the genetic basis for
migration in O. mykiss is likely indirect and mediated by
physiological traits. Evolutionary benefits of this indirect gen-
etic mechanism include individual flexibility and persistence
of life-history variation. Growth is associated with life-history
strategies across many taxa [2], and O. mykiss provide a tem-
plate for how the genetic basis of the two is linked. Studies on
the genetic mechanisms of migration illuminate the relative
role of genetics in maintaining life-history diversity.
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