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Cardiovascular disease is the leading cause of death worldwide. In spite of the mature
managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high
morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury,
initiating a cascade of events contributing to cardiomyocyte death and myocardial
dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role
in cardiomyocyte death response to I/R injury, whose activation is a key feature of
myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum
(ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions.
CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant
subtype in heart, has been widely studied in the activation, location, and related pathways
of cardiomyocytes death, which has been considered as a potential targets for
pharmacological inhibition. In this review, we summarize a brief overview of CaMKII
with various posttranslational modifications and its properties in myocardial I/R injury.
We focus on the molecular mechanism of CaMKII involved in regulation of cell death
induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally,
we highlight that targeting CaMKII modifications and cell death involved pathways may
provide new insights to understand the conversion of cardiomyocyte fate in the setting of
myocardial I/R injury.
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INTRODUCTION

Cardiovascular disease is the leading cause of death worldwide (Heusch, 2020), which accounts for
about 30% of all deaths. Ischemic heart disease accounts for nearly half of all cardiovascular deaths in
low- and middle-income countries (Zhou et al., 2016; Prabhakaran et al., 2018; Zhao et al., 2019).
During myocardial infarction (MI), the ischemia and hypoxia status due to coronary artery
obstruction results in the injury and death of cardiomyocyte. Therefore, timely thrombolytic
therapy or percutaneous coronary intervention to restore coronary blood flow is the effective
method to reduce acute MI injury and limit MI area (Hausenloy and Yellon, 2008; Hausenloy and
Yellon, 2013; Heusch, 2020). However, the reperfusion of MI leads to cardiac injury, such as
abnormal cardiac electrical activity, myocardial stunning, microvascular obstruction, and lethal
myocardial reperfusion injury (Hausenloy and Yellon, 2013). From the point of view of cell biology,
the response of cardiomyocyte during myocardial I/R includes activated immune response, organelle
dysfunctions, and shifted metabolic pathways (Hausenloy and Yellon, 2013). The key procedure in
reperfusion after MI is the overproduction of ROS by abnormal mitochondrial dynamic in
endothelial cell and cardiomyocyte (Wang et al., 2020b) and Ca2+ overload (Talukder et al.,
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2009). The mitochondrial homeostasis can be maintained by
mitochondrial quality control (MQC) by mitochondrial fission,
fusion, or mitophagy (Wang and Zhou, 2020), while during
cardiac microvascular I/R, MQC defection leads to ROS
overproduction (Wang et al., 2020a), which recruits
neutrophils to the lesion (Hausenloy and Yellon, 2013) and
triggers the NF-κB inflammatory pathway (Morgan and Liu,
2011). ROS can also lead to Ca2+ overload by ER stress, which
is the main cause of mitochondrial permeability transition pore
(mPTP) opening and myofilament hyper-contraction
(Hausenloy and Yellon, 2013). The opening of mPTP results
in the increased ROS production, which forms a positive feedback
between ROS and Ca2+ overload until cell death. CaMKII, as a
substrate of Ca2+, is greatly involved in the ROS and Ca2+

overload feedback. Therefore, it is of great significance to
decipher the mechanism of CaMKII involved in regulation of
cell death during myocardial I/R injury, contributing to potential
drug targets discovery.

Ca2+/calmodulin (CaM)-dependent protein kinase II
(CaMKII) is a multifunctional serine/threonine kinase with
four subtypes, including CaMKIIα, CaMKIIβ, CaMKIIγ, and
CaMKIIδ (Erickson et al., 2011; Gray and Heller Brown,
2014). CaMKIIα and CaMKIIβ are mainly expressed in the
nervous system, closely related to memory development
(Mayford et al., 1996), while CaMKIIγ and CaMKIIδ are
widely distributed in various organs and tissues (Gray and
Heller Brown, 2014). In cardiomyocytes, CaMKIIδ is a
dominant subtype (Hund et al., 2010; Erickson et al., 2011;
Gray and Heller Brown, 2014). The CaMKII monomer
consists of three domains: the N-terminal catalytic domain,
the C-terminal binding domain, and the intermediate
regulatory domain (Erickson et al., 2011; Gray and Heller
Brown, 2014). The variant region (variant domain) locates in
the intermediate regulatory domain, whose composition differs
according to different CaMKII splicing variants. Taking
CaMKIIδ as an example, there are 11 CaMKIIδ variants,
among them four variants are located in the heart, including
CaMKIIδA, CaMKIIδB, CaMKIIδ C, and CaMKIIδ913. Most
studies focus on CaMKIIδB and CaMKIIδC because of its
opposite roles in cardiomyocyte. With the nuclear localization
sequence (NLS), CaMKIIδB splicing variant mainly locates in the
nucleus, while phosphorylation at specific locus in the NLS may
prevent the nuclear transport of CaMKIIδB (Srinivasan et al.,
1994; Heist et al., 1998; Gray and Heller Brown, 2014).
CaMKIIδC is in the cytoplasm due to the absence of NLS
(Srinivasan et al., 1994). CaMKIIδA locates in the T-tubule,
sarcolemmal, and nuclear membrane. As an embryonal
CaMKII type, CaMKIIδA may strengthen the L-type calcium
current for contraction in newborn cardiomyocytes (Beckendorf
et al., 2018). It is almost absent in adult cardiomyocytes, but the
upregulation of CaMKIIδA triggered by MI-induced HF or
chronic HF leads to the hypertrophy or death of
cardiomyocyte (Gui et al., 2018). For CaMKIIδ9, its activation
also leads to cardiomyocyte injury by inhibiting DNA repair
(Zhang M. et al., 2019). Under certain cardiac pathology
condition, for example, pression overload or I/R stress,
CaMKIIδC is activated with the suppression of CaMKIIδB

(Gray et al., 2017; Ljubojevic-Holzer et al., 2020). However,
CaMKIIδB is highly expressed in the hypertrophied
cardiomyocyte model induced by transverse aortic constriction
(TAC), which is degraded by calpain-2 to trigger the
mitochondrial apoptosis pathway (Sheng et al., 2015).
CaMKIIδB is located in the nucleus, but it can also be
expressed in the endoplasmic reticulum (ER), membrane,
cytosol, and mitochondria (Mishra et al., 2011). Under stress,
CaMKIIδC is activated by autophosphorylation, and it migrates
to the ER and activates two ER receptors: ryanodine receptor 2
(RyR2) and phospholamban (PLN), which were phosphorylated
by activated CaMKIIδC (Beckendorf et al., 2018) resulting in the
Ca2+ leak into cytoplasm. Furthermore, activated CaMKIIδC
governs sarcoplasmic reticulum Ca2+-ATPase2 (SerCa2) and
stimulates PLN on the nuclear membrane, which enables
autophosphorylated CaMKIIδC to transfer into the nucleus.
Activated CaMKIIδC binds and phosphorylates histone
deacetylase 4 (HDAC4) protein, causing the disability of
nuclear transcription and nuclear location. In addition,
CaMKIIδC activation also leads to increased intranuclear Ca2+

and aggravates nuclear disorder (Ljubojevic-Holzer et al., 2020).
CaMKIIδB is also autophosphorylated at the locus Ser332 in its
NLS, contributing to its migration to the cytosol (Gray and Heller
Brown, 2014). Thus, different subtypes of CaMKIIδ have their
own effect on physiological and pathological roles in
cardiomyocyte (Figure 1).

A series of studies have shown that myocardial I/R is
significantly alleviated by inhibiting the activity of CaMKII
either by drug inhibition, including KN93 (Mattiazzi et al.,
2007), AIP (Vila-Petroff et al., 2007; Salas et al., 2010), or by
gene inhibition (Ling et al., 2013). CaMKII, as a protein kinase,
has a series of target proteins in cardiomyocytes. Through
posttranslational modification (majority phosphorylation) of
these target proteins, CaMKII is involved in the regulation of
cardiomyocyte ion homeostasis, contraction, inflammatory
response, and programmed cardiomyocyte death. In CaMKIIδ
knockout mice in cardiomyocyte, the inflammatory response was
suppressed (Willeford et al., 2018), and the apoptosis and cardiac
hypertrophy were reduced significantly (Daniels et al., 2015),
revealing a protection effect of inhibiting CaMKIIδ in
cardiomyocyte.

In brief, the majority way to activate CaMKII in
cardiomyocyte is by stimulating β1-adrenergic receptor (β1-
AR) (Pereira et al., 2013) and increasing Ca2+ concentration
[often by L-type Ca2+ channel (LTCC)] (Beckendorf et al., 2018),
but intriguingly, the blockage of β1-AR cannot inactive CaMKII
(Dewenter et al., 2017). Moreover, its activation is closely related
to ER stress in I/R. By phosphorylating RyR2 Ser2814 and PLN
Ser16 and Thr17 loci, the SerCA2 was opened, leading to ER
stress and Ca2+ leakage (Netticadan et al., 2000). A large amount
of Ca2+ entering the cytoplasm directly induced contracture of
myofilaments and diastolic dysfunction (Boontje et al., 2011).
Furthermore, a large amount of Ca2+ in cytoplasm is transported
into mitochondria by mitochondrial Ca2+ unidirectional
transporter (MCU), leading to the opening of (mPTP) to
cause cardiomyocyte death (Joiner et al., 2012). In addition,
mitochondrial stress produces more intracellular ROS and this
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stimulates CaMKII and forms a positive feedback, resulting in the
accumulation of a large number of intracellular Ca2+ until cell
death (Luo et al., 2019). Therefore, from the perspective of
organelles, the activation of CaMKII in I/R results in the stress
of both ER and mitochondria, the increase of intracellular Ca2+

concentration, and myofilament contracture (Figure 2).
Meanwhile, the relative transmembrane ion channels are
changed to affect the intracellular ion homeostasis. The detail
was not mentioned in this article.

CALMODULIN-DEPENDENT PROTEIN
KINASE II MODIFICATION DURING
MYOCARDIAL I/R INJURY
CaMKII’s activity is regulated by numerous proteins, with two
key steps to activate CaMKII, including the conformational
change by Ca2 +/CaM-dependent and posttranslational
modification. CaMKII is a dodecamer protein assembly in the
intracellular Ca2+ homeostasis, which possesses an auto-
inhibitory structure. With the elevation of intracellular Ca2+

and tightly combined to the CaM for activation, thus by
binding to the regulatory domain, the conformation of
dodecamer changes with the N-terminal catalytic domain
closing to ATP and substrate protein. Full exposure to the
intermediate regulatory domain endows CaMKII prone to
oxidation and autophosphorylation (Erickson et al., 2011;
Rokita and Anderson, 2012). The catalytic domain transfers
ATP’s phosphoric group to CaMKII Ser287 locus (subtype α is
Ser286) to change it as an active state, and then increases the
binding force of phosphorylated-CaMKII to Ca2+/CaM, which is
known as Ca2+/CaM-dependent direct activation, the most
common posttranslational modification of CaMKII (Rokita
and Anderson, 2012). Self-phosphorylated CaMKII can be
dephosphorylated by protein phosphatases (including PP1 or

PP2A) to restore the self-inhibited state, which are potential
targets in cardiac disease like HF, arrhythmia, and MI (Strack
et al., 1997; Fischer et al., 2018; El Refaey et al., 2019). While
autophosphorylation of Thr305 locus in CaMKIIγ (Munevar
et al., 2008) (Thr305 and Thr306 in CaMKIIα) inhibits the
binding ability between CaMKII and Ca2+/CaM, resulting in
decreased CaMKII activity (Cook et al., 2021). Moreover,
CaMKII can also be activated by the direct oxidation of
CaMKII Met281 and Met282 (α-subtype is CM 280/281) by
increased reactive oxygen species (ROS) in cardiomyocytes.
This activation manner still requires the initial binding of the
Ca2+/CaM complex to the CaMKII regulatory domain to release
the self-inhibitory structure, and the oxidized component is ROS
produced by pathological stimuli or factors such as
hyperglycemia, activation of the renin–angiotensin–aldosterone
system (RAAS), MI, or heart failure (HF) (Erickson et al., 2008;
Luo et al., 2013). As methionine oxidized reductase, methionine
sulfone reductase A (MsrA) reverses the oxidative modification of
CaMKII, which is a potential drug target to reduce the production
of ox-CaMKII (Erickson et al., 2008). Both phosphorylation and
oxidation modifications of CaMKII are present in
cardiomyocytes under different physiological or pathological
conditions. For example, during MI, the expression of CaMKII
is significantly increased; meanwhile, aldosterone upregulates its
expression through oxidation and phosphorylation, which leads
to the deterioration of MI injury (He et al., 2011). Furthermore,
by reducing necroptosis key protein RIP3, the activation of
CaMKII, both of oxidation and phosphorylation, is suppressed
in I/R or doxorubicin treatment cardiac injury (Zhang et al.,
2016). In 2013, oxygen-linked acetylglucosamine transferase
(OGT) glycosylation CaMKII Ser280 (α-subtype Ser279) and
the formation of β-N-acetylglucosamine modification at O-site
were demonstrated. This modification of CaMKII occurs in
response to high-glucose stimulation (Erickson et al., 2013),
while oxygen-linked acetylglucosaminase (OGA) sponges the

FIGURE 1 | The activation of CaMKIIδB and CaMKIIδC in cardiomyocyte during pathological condition.
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glycosylation at the Ser280 of CaMKII, thus reversing the
glycosylation modification of CaMKII (Zou et al., 2012). In
addition, CaMKII can also be activated by nitrosylation in
cardiomyocyte. Among them, β-adrenergic receptors (β-AR)
induce the nitric oxide (NO) intracellular production, which
activates CaMKII by nitrosylation rather than nitrosylating
other targets like RyR2, leading to ER Ca2+ leak and the
occurrence of arrhythmias (Gutierrez et al., 2013). Through
binding to Ca2+/CaM, NO simultaneously nitrosylates the
Cys289 residue in CaMKIIα, which reduces
autophosphorylation of Thr286 (Coultrap and Bayer, 2014). In
the cardiomyocyte, the S-nitrosylation of Cys290 activates
CaMKIIδ, contributing to downstream Ca2+ leak. However, it
can be reversed by S-nitrosylation of Cys273 (Erickson et al.,
2015). Thus, various CaMKIIδ modifications are essential in
cardiac I/R injury (See Figure 3; Table 1).

CaMKIIδ Thr287 Phosphorylation
Phosphorylation of CaMKIIδ Thr287 occurs in many
physiological conditions, and almost all cardiac pathological
conditions require the activation of CaMKIIδ by
phosphorylation. During MI, the upregulation of CaMKII
phosphorylation affected the expression and the
phosphorylation of ER receptors including RyR2, PLN, and
SerCa2, which leads to ER dysfunction in post-MI HF
(Netticadan et al., 2000). During reperfusion, CaMKII is
autophosphorylated and redistributes into the cytoplasm
(Uemura et al., 2002). Through the computer mathematical
model and biochemical imaging technology applying to the
MI model, it was confirmed that the autophosphorylation of
CaMKII in the border zone of infarction was increased, which
resulted in abnormal intracellular Ca2+ homeostatic and
influences on sodium channels to reduce upstroke velocity of
action potential (Hund et al., 2008). In an abnormal cardiac
contractility after MI, increased intracellular Ca2+ leads to the
enhanced myofilament contraction ability (Zhang Y. et al., 2019).

CaMKIIδC’s phosphorylation plays an important role in the
filament reactivity by modulating the phosphorylation of
myofilament associated protein, myosin-binding protein C
(Boontje et al., 2011; Reil et al., 2020). In addition, CaMKIIδC
phosphorylation can activate NF-κB–related pathways to
enhance TNF-α expression in response to I/R injury (Gray
et al., 2017). During MI, CaMKII phosphorylation leads to the
phosphorylation of Nav1.5, a cardiac sodium channel (Howard
et al., 2018), and the reverse of Ito (a cardiac potassium channel)
by decreasing Kv4.3 gene (Tao et al., 2020; Tinaquero et al., 2020),
inducing arrhythmias. In the case of I/R injury, CaMKII
phosphorylation can also be regulated by zinc transporters or
(Wang et al., 2020c) brain-derived neurotrophic factor (BDNF)
(Lee et al., 2018). Thus, CaMKII phosphorylation plays a role in
ER stress, intracellular ion stabilization, and contractility in
cardiomyocytes.

CaMKIIδMet281/282OxidativeModification
Since 2008, ROS was found to directly oxidize CaMKII in Met281
and Met282 sites and to induce its activation (Erickson et al.,
2008). Ox-CaMKII was identified to be associated with various
diseases including cardiovascular disease, arrhythmia, cancer,
and asthma (Anderson, 2015). Ox-CaMKII function firstly
observed in cardiac disease is the induction the apoptosis of
sinoatrial node (SAN) cells, contributing to sinus node
dysfunction (SND). By inhibiting the NADPH oxidase in the
angiotensin II (Ang II) infusion mice model, ox-CaMKII is
suppressed, thus improving the survival of SAN cells,
suggesting that ox-CaMKII may be the cause of SND by
triggering SAN cell death (Swaminathan et al., 2011). In terms
of MI, activation of the TLR/MyD88/NF-κB pathway after MI
induces CaMKII oxidation, leading to myocardial cell death.
Knocking out MyD88, ox-CaMKII production was inhibited to
protect the adverse hypertrophy and inflammation by LPS and
MI (Singh et al., 2012). In addition, increased ox-CaMKII in
mitochondria contributes to sudden death in diabetic MI, while

FIGURE 2 | The effect of CaMKIIδ related pathway in cardiomyocyte during I/R.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6681294

Yang et al. CamKII Regulation Cell Death

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


mitochondrial antioxidants inhibited ox-CaMKII and increased
the number of cardiomyocyte survival (Luo et al., 2013). Ox-
CaMKII also exerts an important role in the development and
maintenance of atrial fibrillation (Yoo et al., 2018), (Yang et al.,
2020). Recent studies showed that ROS and O-GlcNAcylation
protein (OGN) are elevated in diabetic heart disease, both of
which induce atrial fibrillation. However, only ROS-induced
CaMKII oxidation, while OGN is dependent on CaMKII-
induced atrial fibrillation not by CaMKII glycosylation
(Mesubi et al., 2021). Therefore, the interaction between the
oxidation and other posttranslational modifications of CaMKII
in myocardial I/R injury remains to be elucidated. In fact, several
inhibitors, such as protein phosphatase 1 inhibitor 1 (I1PP1) and
Chinese patent medicines, also alleviate diabetes and I/R-related
myocardial injury by inhibiting ox-CaMKII (Luo et al., 2019; Liu
et al., 2020).

CaMKIIδ Cys290 Nitrosylation Modification
Before the discovery of the nitrosylation modification of
CaMKII, studies have demonstrated that NO and CaMKII
exhibited interaction, but the site and the role have not been
clarified for a long time. In ventricular arrhythmias,
phosphorylation of RyR2 receptor occurs under the condition
of intracellular nitroso-redox imbalance; further study showed
that its phosphorylation is related to CaMKII activation (Cutler
et al., 2012). An upstream event could be represented by the
stimulation of β-receptor stimulation, which activates CaMKII
to induce ER Ca2+ leakage, but the specific mechanism and
pathway remain to be elucidated (Curran et al., 2014). Until
2014, the CaMKIIα S-nitrosylation was first identified (Coultrap
and Bayer, 2014), and further studies illustrated that the Cys290
nitrosylation of CaMKII by NO autonomously activates
CaMKII (Erickson et al., 2015). Its activation also induces
phosphorylation and nitrosylation of downstream RyR2
receptors, which can be abolished by Cys273 mutation,

suggesting the potential pathogenicity and inhibitory site of
CaMKII protein–causing cardiomyocyte death (Erickson et al.,
2015).

CaMKIIδ Ser280 Glycosylation Modification
O-N-acetylglucosamine (O-GlcNAc) glycosylation of CaMKII
mediated by O-GlcNAc transferase (OGT) is a unique form of
activation that does not affect Ca2+/CaM-induced direct
activation of CaMKII. Similar to other phosphorylation,
O-GlcNAc glycosylation of CaMKII is an inducible, reversible,
and dynamic posttranslational modification. In addition to OGT,
another glycosidase O-GlcNAcase (OGA) also regulates the
activity of CaMKII. Unlike phosphorylation mediated by huge
amounts of kinases and phosphatases, the reversible modification
of O-GlcNAc glycosylation is only catalyzed by glycosylation
(OGT) and deglycosylation (OGA) (Erickson et al., 2013).

O-GlcNAc is closely related to the level of glucose, so
CaMKII glycosylation is often modulated by the level of
glycemia in physiology or pathology status. Glucose
deprivation has been reported significantly to increase
O-GlcNAc levels, and it is associated with decreased OGA
but not with increased OGT (Zou et al., 2012). In neonatal
cardiomyocytes, glucose deprivation and heat shock both
increase O-GlcNAc levels, which is overturned by CaMKII
inhibitor KN93, suggesting that intracellular CaMKII
activation induced by Ca2+ plays a key role in regulating the
increase in O-GlcNAc levels (Zou et al., 2012). CaMKII is highly
expressed and highly active in the hearts of patients with
diabetes and HF, especially CaMKII O-GlcNAc glycosylation.
The first research about OGT published in 2010 showed that
OGT deletion worsens the cardiac function in post-MI HF
(Watson et al., 2010). In terms of hyperglycemia, the sudden
elevation of glycemia results in the induction of arrhythmias due
to CaMKII activation through glycosylation (Erickson et al.,
2013). Further studies showed a transient increase in glycemia

FIGURE 3 | Schema of human CaMKIIδ protein structure.
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due to stress may increase the speed of Ca2+ waves and
downregulate the cardiac potassium channel amplitude
through CaMKIIδ-Ser280-GlcNAcylation. Moreover, chronic
hyperglycemia and CaMKII activation during diabetes
downregulate K+ channel expression and function, both of
which increase sensitivity to arrhythmias possibly by
O-GlcNAc glycosylation (Hegyi et al., 2020; Miura et al.,
2020). However, when acute hyperglycemia was used to
induce the glycosylation of CaMKII in animal experiments,
only a low arrhythmic substrate was observed and atrial
fibrillation was not induced (Manninger et al., 2020).
Moreover, the most recent study showed that the locus of
Ser280 in CaMKIIδ acts as phosphorylation rather than
glycosylation in the model of AF (Mesubi et al., 2021), which
should be further verified and explored in its change of
conformation and function. In terms of MI or myocardial
I/R, the glycosylation of CaMKII was increased in the type 2
diabetes mellitus (Wang et al., 2018). CaMKII glycosylation
induces the occurrence of myocardial cell damage and a series of
in vivo and in vitro experiments proved, suggesting O-GlcNAc
influences myocardial I/R injury through various ways (Ngoh
et al., 2010; Dassanayaka and Jones, 2014). Its various functions
in the nervous system are also new fields not only in heart
diseases but also in neuronal functions (Lagerlöf et al., 2016).

CALMODULIN-DEPENDENT PROTEIN
KINASE II INVOLVED IN INFLAMMATORY
RESPONSE AND VARIOUS
CARDIOMYOCYTE CELL DEATH MODES

Calmodulin-Dependent Protein Kinase II
and Apoptosis
As early as 1996, it was found that apoptosis was the main death
mode of cardiomyocyte after MI, which accounts for more than
90% of death myocyte 2 h after MI, and the necrosis of
myocardial cells reached the peak after apoptosis (Kajstura
et al0., 1996). The cell death modes of cardiomyocytes during
I/R injury are various, and the cause of cell death owning to
CaMKII may be dependent on the accumulation of intracellular
Ca2+. In apoptosis, Ca2+ accumulation is relatively slow in
apoptosis and other forms of programmed cell death (mainly
necroptosis) (Wang et al., 2010). In 2006, by modulating

myocardial CaMKII through the expression of highly specific
CaMKII inhibitory peptide AC3-I, researchers showed that AC3-
I mice had reduced ER Ca 2+ content and were resistant to
apoptosis induced by isoproterenol (ISO) and MI, suggesting that
inhibition of CaMKII or ER Ca2+ leakage prevents cardiomyocyte
apoptosis in pathological condition (Yang et al., 2006). CaMKII
inhibition reduced caspase-3 activation and the number of
TUNEL-positive cells and increased the Bcl-2/Bax ratio (Vila-
Petroff et al., 2007). As the upstream of CaMKII, β1-AR, as a
common target in I/R injury or LPS stimulation, induces both
apoptosis and necrosis of cardiomyocytes (Yoo et al., 2009; Wang
et al., 2015). PLN and RyR2, two major activated CaMKII
downstream substrates on ER, mediate apoptosis in myocytes.
In PLN double-mutants mice and constitutive RyR2 activation
mice (RyR2 S2814D mice), the infarct size increased and
myocardial apoptosis happened after I/R damage (Di Carlo
et al., 2014). Moreover, apoptosis was reduced in CaMKIIδ-
knockout mouse in the TAC model, maybe due to Akt
inactivation (Toischer et al., 2010). For drugs inhibition,
estrogen inhibits CaMKII expression by protein kinase A
(PKA), thereby alleviating ISO-induced cardiac I/R injury (Ma
et al., 2009).

Calmodulin-Dependent Protein Kinase II
and Necrosis
The previous study has demonstrated that the necrosis of
myocytes, which is often accompanied by other cell death
mode (for example apoptosis), is one of the reasons for the
progressive loss of myocardial cells after MI despite its small
proportion in cardiomyocyte’s death after MI (Kajstura et al.,
1996). When the accumulation rate of Ca2+ is relatively fast in
cardiomyocyte (Ca2+ overload occurs rapidly), ER uptakes and
releases more Ca2+, resulting to the hyper-contraction of
myofilament and mitochondrial hyperpermeability (Garcia-
Dorado et al., 2012), thus leads to mPTP and MCU opening
and loss of mitochondrial membrane potential (mitoptosis)
(Joiner et al., 2012). With the dysfunction of mitochondria,
ATP cannot be produced and necrosis happens (Zhu et al.,
2021). Thus few studies have been conducted on myocardial
necrosis due to the relatively moderate intracellular Ca2+

accumulation during I/R injury. From the perspective of
molecular biology, CaMKII inhibition reduces LDH release,
suggesting that CaMKII inhibition could prevent necrosis

TABLE 1 | Overview of CaMKII posttranslational modification (CaMKIIδ as an example).

CaMKII posttranslational
modification

Modification locus Substrate/donor Function

Phosphorylation Thr287 Substrate: protein calmodulin and donor: ATP
autophosphorylation

Activation

Phosphorylation Thr306 and Thr307 maybe (no report in
CaMKIIδ)

ATP autophosphorylation Inhibition

Oxidation Met281 and Met282 ROS Activation
S-nitrosylation Cys290 NO Activation
S-nitrosylation Cys273 NO Inhibition
O-GlcNAc glycosylation Ser280 OGT Activation
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process (Vila-Petroff et al., 2007). As the upstream of CaMKII,
the activation of β1-AR induces both apoptosis and necrosis of
cardiomyocytes during I/R (Yoo et al., 2009). Furthermore,
phosphorylation of PLN and RyR2, two major activated
CaMKII downstream substrates on ER, mediates necrosis of
cardiomyocytes. Constitutive activation of RyR2
phosphorylation site S2814 gives rise to the increase of infarct
size after I/R, myocardial necrosis happened, while the lack of
PLN activation can also aggravate myocardial I/R injury,
suggesting that CaMKII mediates necrosis of myocardial cells
through phosphorylation on RyR2 (Di Carlo et al., 2014). For
PLN, its activation involves the reverse of ER Na+–Ca2+

exchanger (NCX) pattern, then induces a cascade to
mitochondrial effector like MCU or mPTP to induce
mitoptosis,27 35 a cell death mode was often classified into
necrosis. Until now, more pathways and chemical substrates
are related to CaMKII and mitoptosis in myocardial I/R
(Wang J. et al., 2021). As the development of biotechnology, a
new mode of programmed cell death, necroptosis, has been
reported (Zhou et al., 2016).

Calmodulin-Dependent Protein Kinase II
and Pyroptosis/Inflammatory-Related Cell
Death
Pyroptosis has been widely reported in cell and organ injury, and its
mechanism has been gradually clarified in recent 5 years. In brief,
pyroptosis is an under-controlled programmed inflammatory death
mediated by caspase-1, -4, -5, and its effectors gasdermin family (Shi
et al., 2017). The classical pathway of pyroptosis is the activation of
inflammasome; the most common is NLRP3 inflammasome (He
et al., 2016). There are more research studies focused on MI and
pyroptosis; however, there is still no relevant report linking CaMKII
and cardiomyocyte pyroptosis (cell perforation by gasdermin family)
except several research studies focused on the activation of NLRP3

inflammasome by CaMKII. Inflammasomes were activated prior to
Ang II-induced cardiomyocyte death in the normal mice group and
weakened in CaMKIIδ knockout mice, and inflammasomes can
recruit immune cells like macrophage to infiltrate myocardium,
causing the cardiac remodeling (Willeford et al., 2018). Pression
overload acts as the induction of NLRP3 inflammasome, which is
accompanied by the expression of inflammatory genes (Suetomi
et al., 2018; Suetomi et al., 2019). Moreover, the blockage of calpain
(CAPN) could inhibit the NLRP3/ASC/caspase-1 pyroptosis
pathway in the hypoxia-reoxygenation process of cardiomyocytes
(Yue et al., 2019), while CAPN is closely related to CaMKII. In I/R,
calpain binds to phosphorylated CaMKII and promotes the
transport of phosphorated CaMKII and CapN1 to the ER
membrane, thus activating the downstream receptor RyR2 (Lu
et al., 2020). Despite this programmed inflammatory cell death
mode, pyroptosis, CaMKII also mediates I/R injury through
activation of the NF-κB inflammatory pathway. CaMKIIδ
depletion attenuates I/R-induced inflammation and upregulated
nuclear factor-κB (NF-κB); meanwhile, its activation is
independent of cardiomyocyte necrosis. The expression of
activated CaMKII in cardiomyocytes contributes to
phosphorylation of IκB kinase (IκK) and the increase of nuclear
factor p65, suggesting that CaMKIImay activate NF-κB through IκK
during I/R (Ling et al., 2013). Further studies showed that selective
activation of CaMKIIδC during I/R was more likely to activate NF-
κB and expressed more TNF-α compared with activation of
CaMKIIδB, suggesting the acute activation of CaMKIIδC and
NF-κB in reperfusion pathogenesis (Gray et al., 2017). In
addition, myocardial knockdown of CaMKIIδ significantly
reduces the activation of NF-κB, the expression of inflammatory
chemokines and cytokines inAng II infusion, while with the infusion
of Ang II, CaMKII-dependent inflammatory gene expression and
inflammasome development could be detected before the
recruitment of macrophage, ultimately brings about cardiac
fibrosis (Willeford et al., 2018). CaMKIIδC can also induce

FIGURE 4 | CaMKII induced cardiomyocyte-related death forms and its pathways.
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cardiomyocyte to express pro-inflammatory chemokine signal like
macrophage inflammatory protein 1 (MIP-1) in post-MI through
the inflammatory pathway rather than induction of cell death in
post-MI early state and mediate changes in immune cells infiltration
and cardiac remodeling, suggesting that CaMKII modulates
post-pathological infarction (Weinreuter et al., 2014). The
expression of inflammatory genes can also be triggered by
activated CaMKII in cardiomyocytes in the mice TAC model,
while by knocking out CaMKIIδ, inhibiting monocyte
chemotactic protein-1 (MCP-1), and suppressing inflammasome
are able to effectively reverse cardiac remodeling (Suetomi et al.,
2018; Suetomi et al., 2019). Moreover, a critical protein in the
inflammatory pathway, MyD88, also triggers cardiac hypertrophy

and cardiomyocyte death in MI through oxidation of CaMKII
(Singh et al., 2012). To inactivate NLRP3 inflammasome and
inhibit the inflammatory response, some common drugs are
useful. PCSK9 inhibitor and statin can both inactivate NLRP3
inflammasome (Wang X. et al., 2020; Chen et al., 2021), while
melatonin can downregulate CaMKII in isolated heart I/R injury
under intermittent hypoxia condition; by this way, it reduces the
release of inflammatory factors like TNF-α and IL-6 (Yeung et al.,
2015). During I/R, SGLT2 inhibitors effectively reduce the
inflammatory response and the formation of inflammasomes in
cardiomyocytes, and the mechanism may be related to the
downregulation of CaMKII and the activation of phosphorylated
AMPKα by maintaining intracellular ion homeostasis (Andreadou

TABLE 2 | Related drugs targeting CaMKII in disease.

CaMKII inhibitor Subject Clinical
trial

Disease treatment Reference

KN-93 Rabbit and rat No Hypokalemia-induced ventricular arrhythmia Pezhouman et al. (2015)
KN-62 Rat No Heart I/R injury Lu et al. (2020)
AIP Rat No Diabetes heart disease Daniels et al. (2018)
Rimacalib (SMP-114) Human Yes Rheumatoid arthritis (RA); phase 2, NCT00296257; and ventricular

arrhythmia
Neef et al. (2017); Westra et al.
(2009)

RA608 Human and
mouse

No Arrhythmia and HF Mustroph et al. (2020)

Ranolazine Human and
canis

Yes Ventricular arrhythmia and related death, chronic kidney disease–induced
arrhythmia, MI, and phase 2, NCT02360397

Zareba et al. (2018); Ke et al. (2020);
Le et al. (2020)

PaAIP2 Mouse and rat No Neuronal dysplasticity Murakoshi et al. (2017)
CN21(LY900014)/
tatCN21

Human Yes Type 2 diabetes mellitus and Phase 3, NCT04605991 Tao-Cheng et al. (2013)

RA306 Rat and
mouse

No HF Beauverger et al. (2020)

TABLE 3 | Drugs or inhibitors affecting CaMKII-related pathways in I/R.

Drug/inhibitor Subject and I/R
method

Function Related molecular
and pathway

The inhibition of
death pathway

Result after
medication

Reference

Melatonin 1. SD rat, ex vivo I/
R, and chronic
intermittent hypoxia

1. Maintain ER Ca2+ homeostasis
and enhance antioxidant enzyme
activity

1. Unknown 1. Inflammatory
response

1. Inflammation and
fibrosis improved

Yeung et al.
(2015); Zhou
et al. (2018)

2. Mouse in vivo I/R 2. Attenuation I/R-triggered
microvascular necroptosis

2. RIPK3-PGAM5-
CypD-mPTP
pathway

2. Necroptosis 2. Reduce endothelial
necroptosis

SGLT2 inhibitor Rat and mouse with
many studies

Maintaining intracellular ion
homeostasis, inhibiting reactive
oxygen species, and AMPKα
activation

Unknown, maybe
AMPK activation

Inflammatory
response, stress,
and oxidation

I/R MI area maintained in
the short term but
decreased in the long
term

Andreadou et al.
(2020)

3, 4-dihydroxy
flavonol

Rat in vivo I/R Enhance the respiratory function
and decrease the ROS production

Inhibit mPTP open Mitoptosis Preservation of
mitochondrial function

Woodman et al.
(2014)

Melatonin Mouse in vivo I/R Inhibition of RIP3 maybe RIP3-MLKL/CaMKII
pathway

Necroptosis and
inflammatory
response

Myocardial necrosis and
ROS production were
improved

Yang et al.
(2018)

ZYZ-803 Mouse in vivo I/R Hydrogen sulfide and nitric oxide
are produced to maintain
intracellular endoplasmic
reticulum stability and influence
necroptosis pathways

RIP3/CaMKII
pathway

Necroptosis and
ER stress

Reduce infarct size and
improve cardiac function

Chang et al.
(2019)

Total saponins of
Panax
notoginseng

Mouse in vivo I/R Enhancing glucose deprivation
induces autophagy, antiplatelet
aggregation, angiogenesis, and
endothelial migration

AMPK and CaMKII
phosphorylation

Induction of
autophagy

Enhance endothelial cell
migration and
angiogenesis

Wang D. et al.,
(2021)

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6681298

Yang et al. CamKII Regulation Cell Death

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


et al., 2020). Thus, CaMKII simultaneously activates NLRP3
inflammasomes, induces inflammatory response through the NF-
κB inflammatory pathway, and mediates the involvement of
immune cells in post-MI remodeling.

Calmodulin-Dependent Protein Kinase II
and Necroptosis
Necroptosis is a newly found cell death mode, which the death
cell’s morphology resembles between necrosis and apoptosis, and
it acts as a critical role in cell survival and diseases (Weinlich et al.,
2017). Themain pathway in necroptosis includes the inhibition of
caspase-8, resulting in activation of receptor-interacting protein
(RIP) kinase family activation (RIP1 and RIP3); as two substrates
of effector protein mixed lineage kinase domain-like protein
(MLKL), it is phosphorylated and oligomerized to perforate
the cell membrane (Weinlich et al., 2017). It was found that
RIP3, rather than RIP1, activates CaMKII to trigger
cardiomyocyte necroptosis by mPTP (Zhang et al., 2016). This
study verified that RIP3-induced phosphorylation or oxidative
activation of CaMKII triggers the opening of the mPTP and
myocardial necrosis in HF due to I/R or doxorubicin (Zhang
et al., 2016). Further studies showed that in the ischemic
preconditioning of the rat heart, the RIP1 inhibitor NEC-1
and its combination improved the recovery of ischemic
cardiac function and reduced the infarction area by preventing
MLKL oligomerization and translocation to the membrane. It is
suggested that inhibition of necroptosis plays an important role in
cardioprotecion in ischemic preconditioning independent of
CaMKII signal transduction and oxidative stress (Szobi et al.,
2018). Some drugs or inhibitors have effect on the necroptosis
pathway in MI or I/R. Melatonin attenuates chronic pain–related
MI susceptibility by inhibiting the RIP3-MLKL/CaMKII
signaling pathway (Yang et al., 2018), and it can also alleviate
endothelial necroptosis by the RIPK3-PGAM5-CypD-mPTP axis
in cardiac microvascular I/R injury (Zhou et al., 2018). ZYZ-803,
as a compound producing NO and hydrogen sulfide gas, can both
alleviate ER stress and necroptosis after MI by suppression of the
RIP3-CaMKII pathway (Chang et al., 2019). Adenosine kinase
(ADK) inhibitor in I/R injury results in diminishing of CaMKII
and MLKL phosphorylation; in addition to stabilizing the
X-linked apoptotic protein (XIAP), it inhibits both necroptotic
and apoptotic pathways during I/R (Yoo et al., 2009). Bisphenol A
upregulates the RIPK3/CaMKII pathway in coronary endothelial
cells to decline the integration of artery wall by the necroptotic
pathway (Reventun et al., 2020). Necroptosis also occurs in other
cardiac injuries such as hyperglycemic myocardial dysfunction
(Sun et al., 2019), and it may also provide a new direction in I/R
and ischemic cardiomyopathy in the future.

Calmodulin-Dependent Protein Kinase II
and Autophagy
Although autophagy and CaMKII have been studied deeply in
neurology and oncology (Jing et al., 2016; Li et al., 2017), they are
still less known in myocardial I/R injury. In the mouse HFmodel,
the activation of caspase-3 could not be detected in a small

portion of TUNEL-positive cardiomyocytes. However,
autophagic death was only found in approximately 0.3% of
cardiomyocytes in ischemic or dilated cardiomyopathy
(Knaapen et al., 2001). Autophagy-induced death was
confirmed by cytoplasmic inclusion body called autophagic
body. Thus, this group of autophagic cardiomyocytes is
characterized by granular cytoplasmic ubiquitin inclusions, but
both necrosis and apoptosis markers, like TUNEL stain and
caspase-9, are negative; meanwhile, caspase-3 and -7 cleavage
are also absent (Knaapen et al., 2001). It was reported that ROS
activates the TRPM2-Ca2 +-CaMKII cascade to phosphorylate
Beclin1 on Ser295, thus leading to autophagy inhibition (Wang
et al., 2016). However, it remains to be studied whether ROS
affects autophagy through related pathways during cardiac I/R.
And inhibiting CaMKII by KN-93 in the cardiac remodeling
model induced by free fatty acid and hyperlipidemia, the
autophagy level is decreased, which demonstrates a potential
path to prevent fat-induced myocardial remodeling (Zhong et al.,
2017). Recently, research demonstrated that inhibition of
CaMKIIδ decreases beclin-1 phosphorylation at Ser90, which
reduces myocardial autophagy and I/R damage, while beclin-1
siRNA has little effect on CaMKII phosphorylation (Kong et al.,
2020). In addition, CaMKIIδC upregulates the expression of class
I histone deacetylase (HDAC) in HF, including HDAC1 and
HDAC3, but only HDAC1 inhibitors downregulate the
autophagy gene of cardiomyocytes and reduce autophagic
death of cardiomyocytes (Zhang et al., 2020). While applying
traditional Chinese medicine Panax Notoginseng saponins (PNS),
the cardiac function was reserved after MI by phosphorylating
CaMKII and its downstreamAMPK (Wang D. et al., 2021), which
possibly through AMPK/mTOR signaling to activate not only
cardiomyocyte but also vascular smooth muscle cell (VSMC) and
endothelial cell autophagy (Hughes et al., 2020). Thus, both
excessive activation and excessive inhibition of autophagy give
rise to cardiomyocyte death, and CaMKII plays a certain role in
these processes.

The Role of Calmodulin-Dependent Protein
Kinase II and Other Modes of
Cardiomyocyte Death
Ferroptosis (Li et al., 2021), parthanatos, and other
cardiomyocyte death forms (Del Re et al., 2019) are also
included in a variety of cardiac pathological conditions.
Among them, ferroptosis is associated with the accumulation
of ion and lipid, which can be induced by erastin (Tang et al.,
2019). In diabetic myocardial I/R injury, ER stress leads to
ferroptosis of myocardial cells; in addition, inhibition of
ferroptosis can reduce the cardiotoxicity in I/R and
doxorubicin-induced HF (Fang et al., 2019; Li et al., 2020).
However, ER stress is closely related to the activation of
CaMKII; thus, we speculate that CaMKII activation may lead
to ferroptosis of cardiomyocytes through ER stress. Furthermore,
parthanatos is featured by hyper-activation of PARP-1 and
accumulation of PARP in the cytosol and then leads to DNA
fragmentation related by apoptosis-inducing factor (AIF) (Tang
et al., 2019). In 2017, it was found that PARP was activated and
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AIF was translocated in circulating leukocyte in chronic HF
patients (Bárány et al., 2017). But the relative mechanism and
its existence in different cardiac diseases remain to be solved.
Therefore, a variety of cell death modes occur during myocardial
I/R and associate with CaMKII activation (Figure 4).

CALMODULIN-DEPENDENT PROTEIN
KINASE II INHIBITION

Since the first CaMKII inhibitor, KN-62 was invented in
experiment (Tokumitsu et al., 1990); more and more drugs
targeting CaMKII were discovered. Yet most of drugs are still
utilized in animal models, only three specific CaMKII inhibitors,
rimacalib (SMP-114), tatCN21 (Zybura et al., 2020), and
ranolazine are applied in clinical trials, so there is still a long
journey to the development of CaMKII-related medicine and its
utilization in myocardial I/R injury. Meanwhile, many commonly
used drugs have effect on CaMKII suppression, which is also
unfavorable to the passion of targeting CaMKII invention. In this
article, we enumerate several CaMKII-specific inhibitors
(Table 2) and drugs affecting CaMKII and its related pathway
in I/R (Table 3).

CONCLUSION

Cardiomyocyte Ca2+ overload is a major cause of I/R injury,
initiating a cascade of events culminating in cardiomyocyte death
andmyocardial dysfunction. CaMKII activation is a key feature of

myocardial I/R, leading to adverse reactions such as intracellular
mitochondrial swelling, ER Ca2+ leak, and abnormal contraction
of myofilaments. CaMKIIδ has been widely studied in the
activation, localization, signaling pathways, and induced cell
death of cardiomyocytes. Although the utilization of CaMKII
inhibitor has not been carried out on a large scale in clinical work,
many teams have made a great deal of contributions to relevant
studies, and based on this theoretical basis, new targets and
feasible inhibitors of related pathways have been sought.
Understanding of CaMKII mode of action in cardiomyocytes
death induced by I/R is helpful to ameliorate treatment strategies
and find out new targets of CaMKII applied to new therapy. We
anticipate that there will be several promising treatment
regiments or drugs to correct abnormal activation of CAMKII
in the future for I/R injury after MI and other related cardiac
diseases.
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GLOSSARY

ADK Adenosine kinase

AngII Angiotensin II

AMPK Adenosine monophosphate-activated protein kinase

CaM Calmodulin

CaMKII Ca2+/CaM-dependent protein kinase ll

CaMKIIα Ca2+/CaM-dependent protein kinase ll subtype α

CaMKIIβ Ca2+/CaM-dependent protein kinase ll subtype β

CaMKIIγ Ca2+/CaM-dependent protein kinase ll subtype γ

CaMKIIδ Ca2+/CaM-dependent protein kinase ll subtype δ

CaMKIIδ9 Ca2+/CaM-dependent protein kinase ll subtype δ variant 9

CaMKIIδA Ca2+/CaM-dependent protein kinase ll subtype δ variant A

CaMKIIδB Ca2+/CaM-dependent protein kinase ll subtype δ
variant BCa2+/CaM-dependent protein kinase ll subtype δ variant C

CaMKIIδB Ca2+/CaM-dependent protein kinase ll subtype δ
variant BCa2+/CaM-dependent protein kinase ll subtype δ variant C

CAPN Calpain

ER Endoplasmic reticulum

HDAC Histone deacetylase

HF Heart failure

I/R Ischemia-reperfusion injury

ISO Isoproterenol

JNK2 c-Jun N-terminal kinase 2

KATP ATP-sensitive potassium channel

LTCC L-type calcium channel

MCP1 Monocyte chemotactic protein 1

MCU Mitochondrial calcium unidirectional transporter

MI Myocardial infarction

MLKL Mixed-lineage kinase domain-like protein

mPTP Mitochondrial permeability transition pore

MsrA Methionine sulfone reductase A

NCX Sodium–calcium exchanger

NF-κB Nuclear factor–κB

NLRP3 Nod-like receptor protein 3

NLS Nuclear localization sequence

NO Nitric oxide

OGA O-GlcNAcase

O-GlcNAc O-linked N-acetylglucosamine

OGN O-GlcNAcylation protein

OGT O-GlcNAc transferase

PHD2 Proline hydroxylase 2

PLN Phospholamban

PKA Protein kinase A

RIP1 Receptor-interacting protein 1

RIP3 Receptor-interacting protein 3

ROS Reactive oxygen species

RyR2 Ryanodine receptor 2

SerCa2 Sarcoplasmic reticulum Ca∼(2+)-ATPase2

TNF-α Tumor necrosis factor-α

ULK1 UNC-51–like kinase 1

XIAP X-linked apoptotic protein inhibitor

β1-AR β1-adrenergic receptor
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