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Abstract: In this communication we discuss the development of ionophore based 
nanosensors for the detection and monitoring of histamine levels in vivo. This approach is 
based on the use of an amine-reactive, broad spectrum ionophore which is capable of 
recognizing and binding to histamine. We pair this ionophore with our already established 
nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. 
This approach enables capturing rapid kinetics of histamine after injection, which are more 
difficult to measure with standard approaches such as blood sampling, especially on small 
research models. The coupling together of in vivo nanosensors with ionophores such as 
nonactin provide a way to generate nanosensors for novel targets without the difficult 
process of designing and synthesizing novel ionophores. 
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1. Introduction 

In vivo detection and tracking of analytes is central for monitoring specific diseases, as well as a 
tool to advance knowledge about disease progression, personalized medicine, and biomarker 
discovery. Current approaches for in vivo analyte monitoring rely heavily on sampling techniques 
followed by offline analysis. Sampling techniques such as microdialysis [1,2] and blood sampling [3], 
while effective, have several key limitations including limited temporal resolution and the need to 
couple the technique with analysis methods such as HPLC or immunoassays. Both HPLC and 
immunoassays are inherently batch procedures, which prevent the use of these methods in continuous 
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monitoring. Driven by the need for continuous glucose monitoring in diabetes, research groups and 
corporations have developed implanted enzymatic electrodes to enable continuous in vivo monitoring [4]. 
Unfortunately, these invasive approaches have drawbacks resulting from foreign body responses [4,5], 
leading to limited implantation lifetimes, as well as the difficulties of weekly re-implantation and lack 
of extension to other analytes. 

To circumvent many of these limitations, we previously demonstrated the use of ionophore-based 
nanosensors for in vivo monitoring of sodium [6,7]. These spherical nanosensors are made of a highly 
plasticized hydrophobic polymer core with a biocompatible hydrophilic coating. The basic operation 
principle of these nanosensors is the same as that of the optodes on which they are based, and  
is explained in detail in other reports [8,9]. Briefly, a lipophilic ionophore binds to the target ion  
and extracts it into a polymer core. Also present in the polymer core is a pH sensitive dye 
(chromoionophore), which deprotonates to keep charge balanced in the core, and undergoes a shift in 
optical properties as a result. This transduction mechanism converts ionophore binding into a readily 
measured fluorescence change. However, one of the key limitations for this approach is the need to 
generate novel ionophores for each new desired target. Although ionophores exist for many atomic 
ionic species and several molecular ions [10], the ability to generate ionophores for larger molecules is 
difficult and precludes this approach for many desired analytes without significant additional research. 

In this communication, we discuss the development of nanosensors utilizing a broadly  
amine-responsive ionophore that can be used to generate a sensor system to detect targets for which 
there is no available ionophore. This has been seen on macro-scale optodes before [11] as well as in 
other sensor architectures such as molecular beacons [12], but in this communication we develop an 
optode-based nanosensor for the detection of histamine. As our choice of ionophore we utilize the 
ammonium ionophore nonactin which has been thoroughly characterized in optodes by other  
groups [13,14]. In addition to recognizing ammonium, nonactin can bind to a range of amine containing 
small molecules [11]. The sensor mechanism is the same as other ionophore sensors where nonactin 
extracts histamine from the buffer into the polymer, which alters the fluorescence of the embedded pH 
sensitive fluorophore. This approach is based on our laboratory’s significant experience in the design 
and application of this class of ion sensors (predominantly used for sodium sensing).  

2. Experimental Section  

2.1. Materials 

Poly(vinyl chloride) (PVC), bis(2-ethylhexyl) sebacate (DOS), tetrahydrofuran (THF),  
4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), dichloromethane, 9-dimethylamino-5-
[4-(16-butyl-2,14-dioxo-3,15-dioxaeicosyl)phenylimino]benzo[a]phenoxazine (chromoionophore II; 
CHII), 9-(diethylamino)-5-[(2-octyldecyl)imino]benzo[a]phenoxazine (chromoionophore III; CHIII), 
nonactin (ammonium ionophore I), sodium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (NaTFPB), 
potassium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (KTFPB), and histamine dihydrochloride 
were purchased from Sigma Aldrich (St. Louis, MO, USA). 1,2-disteroyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy(polyethylene glycol)-550] ammonium salt in chloroform (PEG-lipid) 
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was purchased from Avanti Polar Lipids (Alabaster, AL, USA). Phosphate buffered saline (PBS,  
pH = 7.4) was purchased from Life Technologies (Grand Island, NY, USA).  

2.2. Optode and Nanosensor Fabrication 

Protocols used in this report are based on those previously described [7,15]. In brief, the process of 
fabricating optodes and nanosensors starts with formulation of an optode cocktail comprising 500 µL 
of THF containing PVC, DOS, and the sensing components. These components include an ionophore, 
in this work nonactin, a chromoionophore, in this work both chromoionophore II (CHII) and 
chromoionophore III (CHIII) were used, and an ionic additive, NaTFPB or KTFPB. The ratio of these 
components is tuned to control the response of the nanosensors. The initial CH III optodes and 
nanosensors utilize a ratio of 20:40:1.5:0.1:0.05 PVC:DOS:nonactin:CHIII:KTFPB (mg/cocktail). 
CHII based nanosensors utilize a ratio of 30:60:3:0.5:10 PVC:DOS:nonactin:CHII:NaTFPB 
(mg/cocktail) for initial in vitro research and a ratio of 30:60:3:0.5:7.5 for in vivo work. Optode 
membranes are prepared by spotting 2 µL of CHIII based optode cocktail onto a 5 mm glass coverslip 
at the bottom of a 96 well plate. The THF evaporates to leave behind the optode membrane. 

Histamine nanosensors were fabricated using methods previously reported for ion sensitive 
nanosensors [7,15]. In a scintillation vial, 2 mg of PEG-lipid was dried and then resuspended in 5 mL 
PBS with a probe tip sonicator for 30 seconds at 20% intensity (Branson, Danbury, CT, USA).  
Fifty µL of the optode cocktail was combined with 50 µL of dichloromethane, and added to the 
PBS/PEG-lipid solution under probe tip sonication (3 minutes, 20% intensity). The nanosensor 
solution was filtered with a 0.22 µm syringe filter to remove excess polymer (Pall Corporation, Port 
Washington, NY, USA). Nanosensors were sized using dynamic light scattering (DLS) with a 
Brookhaven 90Plus (Brookhaven Instruments, Holtsville, NY, USA). 

2.3. In Vitro Characterization 

2.3.1. Optode Characterization 

Histamine optodes were prepared on the bottom of a 96 well plate as described above. Three 
hundred µL of 10 mM HEPES buffer pH 7.4 was added to each well and allowed to equilibrate 
overnight (14 hours) to hydrate the optodes. The buffer was replaced with 200 µL of fresh buffer, and 
optode fluorescence was monitored using a SpectraMax M3 plate reader (Molecular Devices, 
Sunnyvale, CA, USA) with excitation at 635 nm, emission at 680 nm and a cutoff filter at 665 nm. 
After 1.5 hours this buffer was replaced with a histamine solution in HEPES (0 mM, 1 mM, 10 mM or 
100 mM) and fluorescence intensity was monitored for 1.5 hours. The histamine solution was replaced 
with fresh buffer to regenerate the optodes and monitored for 1.5 hours. Another two cycles (1.5 hours 
histamine solution, 1.5 hours buffer) was performed to assess reversibility and reuse of the optodes. 
Fluorescence data was normalized by dividing by the fluorescence of the final point in the final cycle, 
and plotted as normalized fluorescence. 
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2.3.2. Nanosensor Characterization 

The same optode cocktail used for optode characterization was fabricated into nanosensors using 
the procedure outlined above. Nanosensors were added to a 96 well plate and scanned in the absence 
of histamine using the same wavelengths as for optode data acquisition. Histamine solutions were then 
added to the wells to final concentrations of 0 mM through 22 mM and the plate was rescanned. Data 
was normalized well-by-well to intensity before addition followed by normalization to intensity at  
0 mM histamine. Nanosensors with chromoionophore II as the indicator were fabricated and 
characterized in a similar fashion. Optical wavelengths used for absorbance spectrums of CHII 
nanosensors were between 400 and 800 nm, 5 nm/step, and, for absorbance, endpoint measurements 
were made at 515 nm, 660 nm, and 570 nm (see supplementary information for absorbance results). 
Fluorescence was measured with excitation at 660 nm, emission at 700 nm with a cutoff filter at  
695 nm. Fluorescence spectra were obtained with excitation at 660 nm, emission from 680–800 nm 
with a 2 nm step and a cutoff filter at 665 nm. Histamine concentrations used for measurement ranged 
from 10 nM to 50 mM and data was normalized to a 0 mM solution. The data for the calibration curve 
was fit to a Hill equation using Origin 8 software (OriginLab, Northampton, MA, USA) in order to 
determine the Kd of the response.  

Chromoionophore II nanosensors were also calibrated in vitro utilizing a Lumina II in vivo imaging 
system (Caliper Life Sciences, Hopkinton, MA, USA). Nanosensors were combined with histamine 
solutions in a 96 well plate (100 µL final volume, blank and 100 nM to 50 mM histamine 
concentrations). This plate was imaged with high lamp power, excitation filter centered at 640 nm  
(30 nm bandpass), emission filter from 695 nm to 770 nm, and a 1 second exposure. For data analysis 
regions of interest were drawn over each well using Living Image 4 software (Caliper Life Sciences) 
and total fluorescent intensity values were obtained for each well and normalized to data for 0 mM 
histamine and fit as above. 

2.4. In Vivo Studies 

All in vivo studies were approved by the institutional animal care and usage committee (IACUC) of 
Northeastern University as well as the US Army Medical Research and Materiel Command (USAMRMC) 
Animal Care and Use Review Office (ACURO). The mice used in this research were male CD-1  
Nude mice from Charles River (Wilmington, MA, USA). All experiments were carried out at 
Northeastern University. 

Imaging experiments were conducted using a Lumina II in vivo imaging system (IVIS). The IVIS 
was used in fluorescence mode with high lamp power, excitation filter centered at 640 nm (30 nm 
bandpass), emission at 700 nm (20 nm bandpass), 1 second exposure, and images taken every minute. 
Nanosensors were concentrated approximately 10X for injection by using Amicon Ultra centrifugal 
filters (10 kDa cutoff). For data analysis of each experiment, a region of interest encompassing the 
injection area was selected and total fluorescent intensity was recorded. Each intensity value was 
normalized to the same spot at the first time point after injection of histamine (see Supplementary 
Figure S4 for an example of the normalization process). Normalizing the data to the first time point 
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results in an increase in error bars as time increases due to slight differences between the three 
nanosensor injections. All animals were sacrificed after experiments were completed. 

The first in vivo experiment was a coinjection of histamine and nanosensors to observe nanosensor 
reversibility. One mouse was anesthetized with isoflurane and given three subcutaneous injections 
along the left side of the back of 30 µL each of nanosensors diluted with PBS. Along the right side of 
the back the mouse was given three injections of 30 µL each of nanosensors diluted with histamine in 
PBS to a concentration of 80 mM. After injections, the mouse was imaged every minute for 90 minutes 
total. Two injections, one from each batch, were too close together to separate fluorescence for each 
one, and they were discarded for data processing resulting in two nanosensor injections for each curve 
in the coinjection data. 

Following in vivo experiments involved intraperitoneal (i.p.) administration of histamine. For each 
experiment two mice were anesthetized with isoflurane and given three subcutaneous injections along 
the centerline of the back of 30 µL of nanosensors. Mice were imaged for 20 minutes to establish a 
baseline followed by an i.p. injection of histamine (75 mg/kg in PBS) or PBS alone (matched volume). 
Mice were then imaged for approximately 90 minutes following histamine administration. This 
experiment was repeated for a total of eight mice (four experimental, four control). 

Figure 1. Bulk optodes utilizing nonactin as an ionophore are able to reversibly detect 
histamine in aqueous solutions. Note: to clarify image, only one of every five error bars is 
shown here. Please see Supplementary Information for the full dataset. 

 

3. Results and Discussion 

3.1. In Vitro Characterization 

Development of a nanosensor approach for the detection of histamine begins with bulk optode 
characterization of the formulation. This approach allows for simple formulation changes as well as the 
ability to assess the reversibility of the sensor system. For continuous in vivo monitoring, reversibility 
is a key attribute enabling sensors to sense decreases in analyte concentrations during monitoring. The 
bulk optode, approximately 5 mm in diameter, is prepared on a glass disk in the bottom of a well 
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supplementary information for related data). All of the experiments showed the same trend of a drop in 
fluorescence intensity after injection indicating histamine detection. The nanosensors are not yet 
capable of quantification of histamine concentrations in vivo, due to effects such as varying skin 
absorption. However, based on the signal change obtained the concentration detected is above the plasma 
concentration observed in physiological processes but below that of local changes near mast cell 
release. Future work will focus on the incorporation of reference signals to enable more quantitative 
measurements. 

4. Conclusions/Outlook 

In this communication we have demonstrated the fabrication and application of nanosensors for the 
in vivo detection and monitoring of histamine. We utilized a well-known ammonia ionophore, 
nonactin, as the recognition element of these nanosensors and demonstrated that the use of a broad 
spectrum ionophore such as this can generate nanosensors which function even in the analytically 
complicated in vivo environment. Despite the presumed lack of specificity that this ionophore may 
provide, these nanosensors were able to track histamine kinetics in vivo even at low analyte 
concentrations and a wide range of potential interferents. The use of enzymes coupled with this 
approach may be used to improve specificity in cases where it is necessary. This approach opens up 
the possibility of detecting a broad range of target analytes for which, like histamine, there is currently 
not an available ionophore recognition element. Future research should focus on two key areas in order 
to expand the utility of this approach. First, the range of ionophores which can be used in this manner 
should be extended. Until now, specificity has been a key focus of ionophore development, although this 
work highlights the advantage of a less specific ionophore in recognition of larger, more complicated, 
analytes. A second area of future research is to improve fluorescent signaling of the nanosensors through 
methods such as adding reference fluorophores or utilizing the inner filter effect [19,20] with brighter 
and more stable fluorophores than the chromoionophore, potentially increasing sensitivity. This will 
enable better transdermal imaging and as a result improve detection limits as well as measurement 
confidence. In vivo imaging of a wide range of analytically valuable targets will be made possible through 
development of nanosensors based on broadly reactive ionophores as recognition elements. 

Supplementary Information 

Supplementary information includes full error bars for Figure 1, details on absorbance characteristics 
of the nanosensors which change in response to histamine concentration as well as experimental data 
for three additional animal experiments similar to Figure 6. 
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