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Simple Summary: Multiple myeloma is the second most common cancer of the blood system in the
US. Despite new therapies, a cure remains elusive, and current drugs inevitably become ineffective
due to various resistance mechanisms. A frontline clinical strategy is the inhibition of the proteasome,
the main cellular machinery that degrades proteins in the cytosol and nucleus. Mitochondria are
organelles that contain their own set of proteases for protein degradation. Surprisingly, proteases
inside mitochondria are also capable of processing proteins normally found outside of these or-
ganelles. In this study, we provide evidence that the mitochondrial protease LonP1 can compensate
when the proteasome is inhibited and that increased levels of LonP1 confer partial resistance against
proteasome inhibitors in multiple myeloma.

Abstract: Multiple myeloma and its precursor plasma cell dyscrasias affect 3% of the elderly popula-
tion in the US. Proteasome inhibitors are an essential part of several standard drug combinations used
to treat this incurable cancer. These drugs interfere with the main pathway of protein degradation
and lead to the accumulation of damaged proteins inside cells. Despite promising initial responses,
multiple myeloma cells eventually become drug resistant in most patients. The biology behind
relapsed/refractory multiple myeloma is complex and poorly understood. Several studies provide
evidence that in addition to the proteasome, mitochondrial proteases can also contribute to protein
quality control outside of mitochondria. We therefore hypothesized that mitochondrial proteases
might counterbalance protein degradation in cancer cells treated with proteasome inhibitors. Using
clinical and experimental data, we found that overexpression of the mitochondrial matrix protease
LonP1 (Lon Peptidase 1) reduces the efficacy of proteasome inhibitors. Some proteasome inhibitors
partially crossinhibit LonP1. However, we show that the resistance effect of LonP1 also occurs
when using drugs that do not block this protease, suggesting that LonP1 can compensate for loss of
proteasome activity. These results indicate that targeting both the proteasome and mitochondrial
proteases such as LonP1 could be beneficial for treatment of multiple myeloma.

Keywords: ubiquitin-proteasome system; mitoprotease; multiple myeloma; bortezomib; carfilzomib;
drug resistance
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1. Introduction

Multiple myeloma is the second most common hematological malignancy in the
US [1]. Despite promising new drugs, this cancer remains incurable [2]. Derived from
terminally differentiated plasma cells, myeloma cells produce and secrete antibodies at
high rates, and their capacity for protein quality control is strained [3]. The proteasome is
the endpoint of many protein degradation pathways and represents an Achilles’ heel in this
cancer [4,5]. Since their clinical introduction in 2003, proteasome inhibitors have become
the first-line treatment for multiple myeloma. Unfortunately, a resistance to treatment
inevitably develops [6]. The cause of resistance includes a variety of unrelated mechanisms
such as up-regulation or mutation of proteasome subunits, increased multidrug transporter
activity, and metabolic changes [7–12]. However, in most cases the precise nature of drug
resistance remains unknown.

Specific elimination of proteins inside a cell is mainly accomplished by the ubiquitin-
proteasome system [4]. This pathway entails several enzymatic steps that act in combi-
nation to selectively degrade polypeptides. Proteins that are targeted for removal are
covalently modified through ubiquitination. Certain ubiquitin linkages are then recog-
nized by proteasomes, which are large complexes in the cytosol and nucleus that consist
of regulatory and core subunits that catalyze the proteolysis of substrate proteins [13].
The ubiquitin-proteasome system represents a first-line target for intervention in multiple
myeloma, and several inhibitors of the proteasome are used in the clinic to increase protein
stress and eventually destroy multiple myeloma cells [14].

Mitochondria play an important role in multiple myeloma. Given the energy-draining
biology of this protein-secreting cancer, mitochondria are the main source of ATP. In fact,
while several cancers have been postulated to rewire their metabolism to bypass mito-
chondria (“Warburg effect”), multiple myeloma has been shown to engage in the opposite
“anti-Warburg effect”, in which extracellular lactate is shuttled into cells for mitochondrial
consumption [15,16]. Mitochondrial activity has also been shown to increase in multiple
myeloma cell lines that have adapted to proteasome inhibition, suggesting a role of these
organelles in conferring resistance to therapeutic intervention [10]. Besides their metabolic
function, mitochondria have also been shown to facilitate the degradation of cytosolic
proteins [17–19]. Insoluble protein aggregates that cannot be cleared by the canonical
ubiquitin-proteasome pathway can be taken up by these organelles and digested by mi-
tochondrial proteases, some of which still resemble their ancestral bacterial counterparts.
Their proteolytic activity may complement the activity of the proteasome as the main
cytosolic and nuclear protease [19]. Moreover, some proteasome inhibitors have been
shown to also inhibit mitochondrial proteases [20]. It is therefore unclear whether the
efficacy of proteasome inhibitors is solely proteasome-related, or whether inhibition of
mitochondrial proteases is also clinically relevant.

We hypothesized that the activity of mitochondrial proteases contributes to extra-
mitochondrial protein quality control in multiple myeloma and that they promote ther-
apeutic resistance by compensating for proteasome inhibition. To test this hypothesis,
we investigated the expression profiles of mitochondrial proteases following proteasome
inhibition, analyzed the potency of different proteasome inhibitors in combination with
mitochondrial protease inhibitors, and determined the effect of mitochondrial protease
expression in vitro and clinically on cancer growth. The results of our study suggest that
the essential matrix protease LonP1 is connected to proteasome activity and that it can
promote therapeutic resistance against proteasome inhibitors [21].

2. Results
2.1. Mitochondrial Proteases in Multiple Myeloma

Mitochondria evolved from endosymbiotic proteobacteria and as such contain several
bacterial-like proteases [22]. Human mitochondria contain 20 intrinsic proteases (mitopro-
teases) that are encoded in the nucleus, translated in the cytosol, and targeted to various
compartments inside the organelle (Figure 1A) [23]. To examine whether expression levels
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of these proteases in primary cancer cells are correlated with clinical outcomes, we ana-
lyzed pharmacogenomic data from a multicenter study in which the survival of patients
with multiple myeloma was correlated with genome-wide transcript levels [24]. The pa-
tients in the dataset were either treated with the proteasome inhibitor bortezomib or with
dexamethasone. Only two of the twenty mitoproteases showed a significant correlation
with cancer survival in the presence of proteasome inhibitor. High expression of LONP1
and OSGEPL1 (O-sialoglycoprotein endopeptidase-like protein 1) in multiple myeloma
cells were both associated with more aggressive outcomes and a 1.9- and 1.8-fold shorter
median survival, respectively (Figure 1B). Expression levels of these two mitoproteases had
no impact on the survival of patients that were treated with dexamethasone (not shown).
These results suggest a possible role of high LONP1 and OSGEPL1 expression in resistance
to proteasome inhibition.

Figure 1. Mitochondrial proteases in multiple myeloma: (A) 20 intrinsic proteases have been de-
scribed in mitochondria [22,23]. Based on their impact on clinical outcomes in multiple myeloma,
this study focuses on LONP1 and OSGEPL1 (asterisks); (B) The transcript levels of the 20 intrinsic
mitoproteases in primary multiple myeloma cells were determined based on [24], and the survival of
patients with cancer cells expressing each individual mitoprotease either within the top or the bottom
quarter was compared in the cohort receiving bortezomib treatment. Only differential expression
of LONP1 and OSGEPL1 showed a significant impact on clinical outcomes, with higher expression
correlating with a more aggressive cancer and a 1.9- and 1.8-fold shorter median survival, respec-
tively. No difference was observed in the cohort receiving dexamethasone treatment (not shown).
The indicated p-values were calculated with the Gehan–Breslow–Wilcoxon test and significance was
confirmed with the Mantel–Cox test.
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2.2. Regulation of LONP1 and OSGEPL1 Genes in Multiple Myeloma Cells

To better understand the transcriptional networks in which LONP1 and OSGEPL1
function, we analyzed the genome-wide co-expression relationships of these two genes in
multiple myeloma cells of 747 patients [25]. In primary multiple myeloma cells, LONP1 was
more than five-fold higher expressed at the transcript level than OSGEPL1 and, importantly,
showed a four-fold higher distribution spread between samples (Figure 2A). We examined
the regulatory context of these two genes by analyzing their pairwise Pearson’s correlation
coefficients to all other expressed transcripts. Significant co-regulation was defined for
genes that had correlation coefficients above those at the ultimate maximal curvature (vertex
or knee point) of the waterfall plot (Figure 2B, Supplementary Table S1). Both genes showed
co-regulation with nuclear-encoded mitochondrial genes and, interestingly, nucleolar genes.
However, only LONP1 displayed co-regulation with proteasomal subunits (Figure 2C).
LONP1 expression correlated with a significant number of 20S core and 19S regulatory
proteasome subunits: ADRM1, PSMA5, PSMB1, PSMB2, PSMC1, PSMC2, PSMC4, PSMD3,
PSMD7, PSMD11, PSMD12, PSMD14, PSME3, PSMG3, RAD23A, and USP14.

We next sought to investigate how mitochondrial protease expression changes upon
protein stress outside of mitochondria. Specifically, we determined how inhibition of
the proteasome impacts mitoproteases. If the organelle-specific proteases can indeed
compensate for the proteasome, we would expect increased expression of these enzymes
upon drug treatment of cells. Using the synthetic proteasome inhibitor lactacystin and
the clinically approved inhibitor bortezomib, we observed similar changes in transcript
levels of the 20 mitoproteases in the multiple myeloma cell line MM.1S. While OSGEPL1
expression was diminished upon treatment, LONP1 was consistently the most up-regulated
mitoprotease in cells treated with both proteasome inhibitors (Figure 3A).



Cancers 2021, 13, 843 5 of 19

Figure 2. Transcriptional regulon of LONP1 and OSGEPL1: (A) Next-generation RNA-sequencing
data from multiple myeloma cells of 747 patients [25] show five-fold higher median expression and
a four-fold higher interquartile range of LONP1 compared to OSGEPL1. **** p < 0.001 determined
by two-sided Mann–Whitney U-test; (B) We compared genes that most correlate with these two
mitoproteases by calculating the Pearson’s correlation coefficient to each of the other 35,134 annotated
genes. Defined as significant were correlations above the upper vertex point in the shown waterfall
plot (black box). A list of genes correlating with LONP1 and OSGEPL1 mRNA expression is provided
in Supplementary Table S1; (C) Only LONP1 had significant co-regulation with proteasome subunits,
especially with PSMA5, PSMB1, and PSMB2. The p-values for the indicated gene-ontology terms
enriched within significantly correlated genes were calculated with the functional annotation tool
DAVID (https://david.ncifcrf.gov; access date 5 November 2020) [26,27].

The implication that LonP1 might be involved in shared pathways with the ubiquitin-
proteasome system is notable, given that the yeast ortholog of LonP1 (PIM1) can facilitate
degradation of cytosolic protein aggregates that are too large for the proteasome to han-
dle [19]. These results therefore suggest that LonP1 might partially compensate for loss of
proteasome function by pharmacological blockade. However, a caveat of this interpretation
is the possibility that some proteasome inhibitors might inhibit LonP1 directly. The tran-
scriptional up-regulation of this mitoprotease might represent a feedback mechanism
to compensate for impaired mitochondrial protein homeostasis, rather than a response
to increased protein stress outside of mitochondria. Indeed, both lactacystin and borte-
zomib have been described to partially crossinhibit LonP1 [20]. However, the clinical
proteasome inhibitor carfilzomib has been described as proteasome-specific and does not
inhibit LonP1 [28]. A superposition of bortezomib and carfilzomib shows that the latter
is incompatible with binding to the predicted bortezomib-binding site of human LonP1
(Figure 3B), consistent with other reports [29]. The fact that multiple myeloma cells treated
with carfilzomib showed increased LONP1 expression indicates that the up-regulation
of this mitoprotease is a result of proteasome inhibition, and not in response to LonP1
inhibition (Figure 3C and Supplementary Figure S1). OSGEPL1 was down-regulated or un-

https://david.ncifcrf.gov
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changed following proteasome inhibition (Figure 3D), making it unlikely that this protease
compensates for proteasome inhibition.

2.3. The Interplay of LonP1 and Proteasome Activities in Multiple Myeloma Cells

Proteasome inhibition has a wide range of effects and the increased expression of
LonP1 could be caused by the general elevation of transcription of stress-response genes.
To test whether LonP1 and the proteasome are instead functionally connected, we designed
a set of pharmacological experiments to probe the physiologic relationship between these
two protease complexes.

The essential protease LonP1 forms a homohexamer that resides in the mitochondrial
matrix [29,32,33]. The synthetic triterpenoid CDDO-Me is a specific inhibitor of this
protease without effect on the proteasome [34,35]. CDDO-Me displays potent anticancer
activity in preclinical studies of B cell lymphomas. We determined the lethal concentration
at which 50% of multiple myeloma cells died in vitro (LC50) following CDDO-Me treatment
of two multiple myeloma cell lines [36]. The LC50 was determined to be 721 nM for MM.1S
and 548 nM for MOLP-8 cells (Figure 4A. If carfilzomib is truly a proteasome-selective
drug and LonP1 and the proteasome both cooperate in protein homeostasis, then we
hypothesize that dual inhibition of these proteases should result in significantly increased
cytotoxicity. The highly potent and proteasome-specific drug carfilzomib in combination
with the LonP1-inhibitor CDDO-Me should synergistically enhance protein stress within
multiple myeloma cells, while bortezomib, a baseline inhibitor of LonP1 and less potent
proteasome inhibitor, may not derive a synergistic benefit with addition of CDDO-Me.
We applied the Chou-Talalay approach and calculated the combination index of carfilzomib
with CDDO-Me or bortezomib with CDDO-Me [37,38]. As predicted, the combination
index of carfilzomib and CDDO-Me was <1, indicating synergy between the two drugs.
In contrast, the combination index of bortezomib and CDDO-Me was =1, indicating an
additive relationship between both drugs (Figure 4B). These pharmacological experiments
confirm reports that bortezomib functionally acts as a dual inhibitor of both the proteasome
and LonP1 [20]. Thus, adding the LonP1 inhibitor CDDO-Me only modestly increases
the cytotoxicity of bortezomib. In contrast, carfilzomib only inhibits the proteasome, and
the cytotoxic efficacy of carfilzomib can be drastically increased by combining it with the
LonP1 inhibitor CDDO-Me (Figure 4C). Similarly, we observed that the combination of
sublethal concentrations of CDDO-Me with proteasome inhibitors drastically increased
the level of caspase 3 cleavage (Supplementary Figure S2). This suggests that a synergistic
effect between these two drugs might enhance the degree of intrinsic apoptosis.
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Figure 3. Cont.
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Figure 3. The effect of proteasome inhibition on mitoprotease expression: (A) The MM.1S multiple
myeloma cell line was treated for six hours with the synthetic proteasome inhibitor lactacystin (6
µM) or bortezomib (60 nM), and RNA expression changes were quantified compared to DMSO
control-treated cells by RNA-sequencing. The expression changes of the mitoproteases were plotted
from most strongly up- to strongly down-regulated. While LONP1 is highly up-regulated following
treatment, OSGEPL1 is down-regulated; (B) Structure of the Lon protease with bortezomib. The
top left panel depicts the superposition between unliganded human mitochondrial LonP1 (PDB:
7KSM) and Meiothermus taiwanensis LonA bound to bortezomib (PDB: 4YPM) [29,30]. Human LonP1
is shown as an orange cartoon with transparent surface. LonA is shown as a grey cartoon with
bortezomib as stick model. Because of a steric clash, LonP1 must undergo a conformational change
upon drug binding. The top right panel shows a model of bortezomib-binding based on the crystal
structure of the LonA complex. Lon is shown as a cartoon and transparent surface with bortezomib
shown as a stick model. Residues involved in bortezomib binding are conserved between human
LonP1 and bacterial LonA. The bottom left panel shows a predicted model of carfilzomib-binding to
Lon. Carfilzomib (PDB: 4QW6.H) was superposed onto bortezomib as seen in the crystal structure of
the LonA complex [31]. LonA is shown as a cartoon and transparent surface while carfilzomib (green)
and bortezomib (yellow) are shown as stick models. The bottom right panelshows that carfilzomib
binding is incompatible with the bortezomib-bound structure and results in steric clashes with
Lon, which are indicated by the yellow circles; (C) RT-qPCR confirmation of LONP1 up-regulation.
Increased LonP1 expression was also observed at the protein level using immuno-fluorescence
microscopy (Supplementary Figure S1). Brightness levels of LonP1-specific staining were normalized
to DAPI staining and measured in 20 randomly chosen cells. Significantly increased mitochondrial
LonP1 staining was observed in MM.1S and MOLP-8 cells following proteasome inhibition. **
p < 0.01, *** p < 0.001 by unpaired Student’s two-tailed t-test; (D) We observed OSGEPL1 down-
regulation upon treatment of MM.1S and partial down-regulation in MOLP-8 cells with bortezomib
and carfilzomib. MM.1S and MOLP-8 cells were treated for six hours with 10 nM or 20 nM bortezomib,
respectively. Carfilzomib treatment was performed for six hours at 20 nM. * p < 0.05, ** p < 0.01, and
*** p < 0.001 by unpaired Student’s two-tailed t-test.
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Figure 4. Additive and synergistic effects of LonP1 and proteasome inhibitors: (A) Determination
of the cytotoxic range of the LonP1 inhibitor CDDO-Me in MM.1S cells in acute toxicity assays
(24 h treatment). We used the more potent methyl-ester derivative of CDDO (CDDO-Me) in all
experiments. Concentrations of up to 300 nM had no toxic effect as measured by XTT assay (shown
here) and by acridine orange and propidium iodide staining (not shown). The individual data points
indicate averages and the error bars standard deviations. Applying the LonP1-specific inhibitor
CDDO-Me at sublethal concentrations (300 nM) in MM.1S cells strongly increased the cytotoxic
effect of carfilzomib, but only mildly increased the effect of bortezomib; (B) Isobologram analysis
indicates synergy between CDDO-Me and carfilzomib, but only additive effects between CDDO-Me
and bortezomib. These experiments were performed in MM.1S cells and confirmed with adjusted
concentrations in MOLP-8 cells. * p < 0.05 by unpaired Student’s two-tailed t-test. The individual
data points indicate averages and the error bars standard deviations; (C) Model of proposed drug
effects on the proteasome and on LonP1.

One concern is that CDDO-Me can exhibit off-target effects [39]. In particular, CDDO-
Me has been described as inhibiting the NF-κB pathway, which is relevant for growth of
myeloma cells [40–42]. However, an analysis of NF-κB target genes shows no repression of
this pathway in MM.1S and MOLP-8 cells upon treatment with CDDO-Me (Supplementary
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Figure S3). This drug is therefore unlikely to increase cell death in combinatorial treatment
due to inhibition of the NF-κB pathway.

These experiments do not address whether LonP1 and the proteasome act in the same
functional pathways. If the mitochondrial protease LonP1 can aid the proteasome and
engage in the degradation of extramitochondrial cytosolic proteins, then the overexpression
of LonP1 should temper the effects of proteasome inhibition. The clinical and pharmacoge-
nomic data from the Mulligan et al. study (Figure 1B) show aggressive growth of multiple
myeloma under proteasome inhibition when LonP1 is highly expressed. However, these
results can be differently interpreted: patients with multiple myeloma cells expressing
high levels of LonP1 are more resistant to bortezomib (causality), or higher expression of
LonP1 is an epiphenomenon in cancers that show more aggressive growth under therapy
(correlation). To distinguish between these two possibilities, we transduced the clonal
MM.1S and MOLP-8 multiple myeloma cell lines with mock virus or with a lentivirus to
overexpress LonP1 and tested the impact of this protease on proteasome inhibition.

LonP1 is an essential protein and genetic knockouts are not viable. Also, strong
overexpression was toxic in several cell lines that we tested. However, MM.1S and MOLP-
8 cells tolerated a modest two- to three-fold up-regulation of the mitoprotease without
impacting overall growth or cell morphology (Figure 5A). The acute cytotoxicities of
bortezomib and carfilzomib were significantly reduced by 10% and by 25%, respectively,
when myeloma cells overexpressed LonP1 (Figure 5B,C). The effects on cell growth in the
presence of these drugs were even stronger. LonP1-transduced MM.1S cells displayed >30%
higher numbers after four days of growth in the presence of bortezomib or carfilzomib at
LC50 concentrations (Figure 5D). Similar results were obtained for modified MOLP-8 cells
(Figure 5B,E).

These data clearly show that LonP1 can partially antagonize proteasome inhibition.
While the results with bortezomib could be interpreted as direct antagonism toward the
LonP1-directed inhibitory effect where LonP1 simply acts as a “drug sink” for bortezomib,
carfilzomib does not bind to this mitoprotease. The fact that LonP1 counteracts carfil-
zomib therefore indicates that the proteasome and LonP1 engage in overlapping functions,
and that LonP1 can to some degree compensate for proteasome inhibition (Figure 6 and
Graphical Abstract). Furthermore, LonP1 showed up to 15-fold differences in expression
levels among primary multiple myeloma samples (Figure 2A), indicating that this mitopro-
tease might contribute to clinically relevant resistance mechanisms or the emergence of
relapsed/refractory multiple myeloma.
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Figure 5. Cont.
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Figure 5. Effect of LonP1 overexpression on proteasome inhibition: (A) MM.1S cells were stably
transduced with lentivirus to overexpress human LonP1. Compared to mock-transduced cells,
LonP1 expression was 2.5-fold increased at the RNA level. *** p < 0.001 by unpaired Student’s
two-tailed t-test. Based on immunoblot, LonP1 expression was 1.6-fold up-regulated at the protein
level. Lane 1 contains lysate from MM.1S control cells, and lane 2 the equal amount of lysate of LonP1-
transduced MM.1S cells. We confirmed the increase in LonP1 protein expression by quantitative
immunofluorescence microscopy in MM.1S and MOLP-8 cells (Supplementary Figure S4). LonP1-
transduced cells grew at a comparable rate to wild-type cells and show similar morphology following
staining with Mitotracker Red CMXRos (red) and DAPI (blue). Scale bar = 10 µm. The individual
data points indicate averages and the error bars standard deviations; (B) Shown are exemplary
viability curves of MM.1S and MOLP-8 cells with or without overexpression of LonP1. Cells with
higher levels of LonP1 showed a right shift, indicating partial resistance to drug treatment. The
individual data points indicate averages and the error bars show standard deviations; (C) An
analysis of five independent experiments as shown in Figure 5B ndicates that the LC50 of bortezomib
and carfilzomib in acute toxicity assays (24 h) was increased by 10% and 25%, respectively (p =
0.002 and p < 0.02 by paired Student’s two-tailed t-test) in MM.1S cells overexpressing LonP1; (D)
Monitoring cell growth over the duration of four days in the presence of LC50 levels of bortezomib
and carfilzomib (3.3 nM and 13.3 nM, respectively) showed that LonP1-transduced MM.1S cells grew
significantly better (* p < 0.05 and ** p < 0.01 determined by unpaired Student’s two-tailed t-test at
day 4). Since carfilzomib does not directly inhibit LonP1, these results suggest that the mitoprotease
supports functions otherwise performed by the proteasome. The individual data points indicate
averages and the error bars show standard deviations; (E) Live single-cell tracking of 20 MOLP-8
cells per genotype and treatment (80 cells in total). Immobilized cells were continuously analyzed
by brightfield microscopy over the course of 24 h to determine viability in the presence of 12 nM
bortezomib or 30 nM carfilzomib. Untreated control cells were 100% viable. LonP1-overexpressing
MOLP-8 cells were significantly more resistant to treatment (p < 0.05 based on both Log-rank test
and Gehan–Breslow–Wilcoxon test).
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Figure 6. Model of LonP1 action in multiple myeloma.

3. Discussion

Despite promising advances in drug development and clinical therapies, multiple
myeloma remains an incurable cancer, and all current treatment regimens eventually lead
to drug resistance. The nature of resistance likely involves several different mechanisms,
and mitochondria have been identified as a central organelle that contributes to refractory
disease upon proteasome inhibition [10]. However, the molecular mechanisms that are
involved in the emergence of resistant cancer clones are ill-defined.

Since their approval for the treatment of multiple myeloma, proteasome inhibitors
have become the drugs of choice in several first-line chemotherapy combinations. The pro-
teasome is a barrel-shaped threonine protease complex containing the active sites PSMB1,
PSMB2, and PSMB5. Pharmacological inhibition of the PSMB5 subunits by drugs such as
bortezomib or carfilzomib leads to the accumulation of poly-ubiquitinated proteins that
cannot be properly degraded by the proteasome [43]. LonP1 is a serine protease that pri-
marily resides in the mitochondrial matrix and has a similar shape as the core proteasome.
LonP1 is encoded in the nucleus and imported into the organelle following translation by
cytosolic ribosomes. Even though the main effects of mitochondrial proteases pertain to
mitochondrial protein housekeeping, several lines of evidence suggest that mitoproteases
can also engage in extra-mitochondrial protein quality control. First, the mitoprotease
HTRA2/OMI can leak out from the intermembrane space to degrade cytosolic proteins [18].
Second, the cancer-dependency map, a collection of large-scale loss-of-function screens,
provides evidence that LonP1 and proteasomal subunits converge in a common path-
way [44]. Third, a study in yeast discovered that the LONP1 ortholog PIM1 can effectively
degrade cytosolic protein aggregates that cannot be removed by the proteasome [19].

In light of these studies, a concept emerges that mitochondria are more than metabolic
hubs. Equipped with powerful proteases, they are capable of roaming the cytoplasm to
engulf proteins and contribute to protein quality control outside their own boundaries.
Such a model would also explain why the more potent irreversible second-generation
drug carfilzomib only shows disappointing results when used for the treatment of re-
lapsed/refractory multiple myeloma that is resistant to the reversible first-generation in-
hibitor bortezomib [45]. The enhanced clinical effect of carfilzomib compared to bortezomib
is likely due to the more forceful inhibition of the proteasome by the former drug [43,46].
We hypothesize that the effectiveness of carfilzomib in particular would benefit from
combining it with a synergistic LonP1 inhibitor.

Novel functions of LonP1 continue to be discovered. For instance, a recent publica-
tion describes chaperone-like activity, suggesting that LonP1 might alleviate proteostatic
stress through refolding of proteins in addition to degradation [47]. Also, future studies
are needed to determine the specificity of cytosolic protein recognition by mitochondrial
proteases, to investigate the role of ubiquitination, and to establish the location of this
interaction. Previous evidence suggests that proteases can leak out of mitochondria, even
though this activity seems more likely for proteases in the outer compartments. For matrix
proteases such as LonP1, it is possible that they act in the cytosol prior to mitochondrial
import. Although not mutually exclusive, active import of cytosolic proteins into the mito-
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chondrial matrix may be required based on studies in yeast [19]. This raises the prospect
that inhibiting certain mitochondrial transporters may synergize in chemotherapies that
aim to perturb cytosolic or nuclear protein quality control. It certainly makes the ancient
LonP1 protease, an enzyme that is conserved in all kingdoms of life, a promising new
target for the treatment of multiple myeloma [48].

4. Materials and Methods
4.1. Survival Analysis

The survival times of participants in the study by Mulligan et al. [24] were compared
based on individual expression levels of the 20 mitoproteases indicated in Figure 1A.
Transcript data were obtained from Gene Expression Omnibus entry GSE9782. Differences
in survival for patients whose expression levels for each of the target genes ranked in the
top versus bottom quarter were deemed significant when <0.05 based on both Log-rank
test and Gehan–Breslow–Wilcoxon test (calculated with GraphPad Prism version 9.0).

4.2. Drug Treatments

The proteasome inhibitors bortezomib and carfilzomib were obtained from Sell-
eckchem (Houston, TX, USA, #PS-341 and #PR-171, respectively). Lactacystin was pur-
chased from Cayman Chemical (Ann Arbor, MI, USA, #70980) and 2-Cyano-3,12-dioxo-
oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) was purchased from Sigma-
Aldrich (St. Louis, MO, USA, #SMB00376).

4.3. Transcript Analysis

Expression levels of LONP1 and OSGEPL1 in primary myeloma cells were com-
pared to all other transcripts in 747 patients. The data was part of the CoMMpass
study by the Multiple Myeloma Research Foundation (MMRF), release IA10 [25] (https:
//research.themmrf.org; access date 20 October 2020). Gene expression was normalized
with Cufflinks as FPKM (fragments per kilobase million) [49]. The gene-ontology analysis
was performed with the DAVID database [26]. Mitochondrial protease expression levels in
MM.1S myeloma cell lines following treatment with 6 µM lactacystin or 60 nM bortezomib
for six hours were compared to mock-treated cells (DMSO at 0.1% v/v). RNA was extracted
with the RNeasy mini kit with RNAse-free DNaseI on column treatment (Qiagen, Hilden,
Germany, #74134 & #79254) and quantified by paired-end RNA-sequencing on an Illumina
HiSeq2500, as previously published [50]. RNA-seq datasets have been deposited with the
Gene Expression Omnibus (GEO accession number GSE166122). The heatmap was con-
structed with GraphPad Prism version 9.0 following normalization of data with Cufflinks
and Cuffdiff version 2.1.1 [49]. RT-qPCR was performed with the iTaq Universal SYBR
Green One-Step Kit (Bio-Rad, Hercules, CA, USA, #1725151) according to manufacturer’s
instructions on a Bio-Rad CFX96 real time PCR instrument. The following primers were
used:

• β-actin (F-5’-CATGTACGTTGCTATCCAGGC; R-5′-CTCCTTAATGTCACGCACGAT);
• LONP1 (F-5′-ATGGAGGACGTCAAGAAACG; R-5′-GATCTCAGCCACGTCAGTCA);
• OSGEPL1 (F-5′-AAAACAGGTGGGATTGTTCCTC; R-5′-AGTAAGTGCATGAGCCTCCAT);
• CD40 (F-5′-ACTGAAACGGAATGCCTTCCT; R-5′-CCTCACTCGTACAGTGCCA);
• COX2 (F-5′-TAAGTGCGATTGTACCCGGAC; R-5′-TTTGTAGCCATAGTCAGCATTGT);
• ICAM-1 (F-5′-ATGCCCAGACATCTGTGTCC; R-5′-GGGGTCTCTATGCCCAACAA);
• IL-6 (F-5′-CCTGAACCTTCCAAAGATGGC; R-5′-TTCACCAGGCAAGTCTCCTCA);
• IRF3 (F-5′-AGAGGCTCGTGATGGTCAAG; R-5′-AGGTCCACAGTATTCTCCAGG).

4.4. Computational Modeling

In silico modeling was done using the LSQ and SSM superpose routines, and manual
fitting in Coot [51] using the atomic coordinates of human mitochondrial LonP1 (PDB:
7KSM) [30], and the LonA protease domain in complex with bortezomib (PDB: 4YPM) [29].
Atomic coordinates for carfilzomib were derived from PDB: 4QW6.H [31]. Carfilzomib
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and bortezomib were aligned using C47 of carfilzomib and B26 of bortezomib as anchor.
All structure figures were generated using the PyMOL Molecular Graphics System version
1.7.0.3 (Schrödinger, LLC, New York City, NY, USA).

4.5. Cytotoxicity Assays

MM.1S and MOLP-8 cells were obtained from the repositories ATCC (#CRL 1974) and
DSMZ (#ACC 569), respectively. Cells were grown in humidified incubators with 5% CO2
in recommended growth medium and regularly tested for mycoplasma contamination.
For acute cytotoxicity assays, 30,000 cells were seeded in fresh medium per well in 96-well
plates with the indicated final concentration of drugs at 100 µL total volume. After 24 h,
cell viability was measured with the XTT cell proliferation kit (Roche, Indianapolis, IN,
USA, #11465015001) and a Bio-Tek (Winooski, VT, USA) PowerWave XS microplate reader
using the 450 nm (readout) and 630 nm (reference) absorbance filters with the Gen5 version
2.09 software. For long-term cytotoxicity assays, 500,000 cells per well were plated in fresh
medium in 6-well plates in the absence or presence of LC50 concentrations of bortezomib
(3.3 nM) or carfilzomib (13.3 nM). At days 2 and 4 after careful mixing, 100 µL aliquots of
cells per condition were removed, and viable cells were counted based on acridine orange
and propidium iodide staining (Nexcelom Bioscience, #CS2-0106) with a Cellometer Auto
2000 (Nexcelom Bioscience, Lawrence, MA, USA). Medium or drugs were not replenished
during this assay. All experiments were confirmed in >3 biological replicates, and all
measurements were taken as triplicates or quadruplicates.

4.6. Generation of Transgenic MM.1S and MOLP-8 Cells

MM.1S and MOLP-8 cells were infected with lentivirus-encoding human LonP1,
cloned into the vector pLVX-EF1α (Takara Biosciences, Nojihigashi, Japan, #631982),
and sorted to 100% purity by FACS following ZsGreen1 expression with a BD FACSAria II
cell sorter. A virus containing the empty pLVX construct was used as control.

4.7. Microscopy

Mitochondria were stained using MitoTracker Red CMXRos (Thermo Fisher, Waltham,
MA, USA, #M7512). In short, one million MM.1S control or LonP1-transduced cells were
taken up in 0.4 mL fresh medium containing 1 µM MitoTracker Red CMXRos and applied
onto glass slides pretreated with Cell-Tak (Corning, Corning, NY, USA, #354240) for 30 min
in a humidified incubator with 5% CO2. Afterwards, unsettled cells were washed off with
PBS and adherent cells were permeabilized and fixed with PBS, 0.2% Triton-X100, and 4%
formaldehyde solution (Thermo Fisher, Waltham, MA, USA, #28906) for 10 min at room
temperature. After washing with PBS, cells were mounted and counterstained with DAPI
(Invitrogen, Waltham, MA, USA, #P36935). Microscopy was performed with a Zeiss CD7
live cell imager at 100x magnification, and pictures were processed for deconvolution with
identical settings using the ZEN Pro 3.0 software. Immunofluorescence microscopy was
performed on Cell-Tak-immobilized myeloma cells, following fixation and permeabiliza-
tion as described above. We used antibodies against cleaved caspase 3 (Cell Signaling
Technology, Danvers, MA, USA, #9664), against LonP1 (Abcam, Cambridge, MA, USA,
#ab224316), and against β-tubulin (Cell Signaling Technology, Danvers, MA, USA, #86298)
at 1:500 dilutions overnight in the fridge after blocking with 10% (w/v) BSA. Secondary
antibodies were employed at room temperature for one hour at 1:1000 dilutions (Invitrogen,
Waltham, MA, USA, #A11005 and #A11034). Consistent exposure and intensity settings
were used for quantitative microscopy. Fourteen z-stacks were taken at 100x magnification,
and deconvolution was performed using the nearest-neighbor approach, followed by or-
thogonal projection at maximum settings (ZEN Pro 3.0). Brightness was quantified for the
specified channel using the FIJI software (https://imagej.net/Fiji/Downloads; download
date: 23 May 2019) and with DAPI as reference. Settings were adjusted to MM.1S and
MOLP-8 cell lines but left consistent within each cell type. Live single-cell tracking was
performed within the humidified incubation unit of the CD7 microscope at 37 ◦C with 5%
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CO2 on Cell-Tak treated optical 24 well plates at 20x magnification (Greiner, Frickenhausen,
Germany # 662892). No cell toxicity was observed in DMSO mock-treated MOLP-8 cells
during the 24 h observation time. Pictures were taken every 30 min.

4.8. Immunoblotting

Proteins were separated by SDS-PAGE under reducing conditions and then semi-dry
transferred onto polyvinylidene difluoride (PVDF) membranes for 7 min using a Bio-Rad
Turbo Transfer system. Then, PVDF membranes were blocked with 5% milk in TBST.
Western-blot analysis against LonP1 was carried out using a rabbit polyclonal anti-LonP1
antibody (Abcam, Cambridge, MA, USA, #ab224316, diluted 1:1,000, overnight at 4 ◦C) with
β-actin rabbit monoclonal antibody (Cell Signaling Technology, #8457, employed 1:1,000)
as a loading control. Following incubation with HRP-conjugated goat antirabbit secondary
antibody (Abcam, Cambridge, MA, USA, #ab6721 at 1:6000 dilution for 75 min), HRP-
conjugated proteins were detected with the SuperSignal West Pico PLUS chemiluminescent
substrate (Thermo Scientific, Waltham, MA, USA, #34577) and visualized using the Bio-Rad
(Hercules, CA, USA) ChemiDoc imaging system.

5. Conclusions

In this study, we provide evidence that the mitochondrial matrix protease LonP1
causes partial resistance to proteasome inhibition in multiple myeloma. In particular,
treatment with more specific second-generation proteasome inhibitors such as carfilzomib
may benefit from a dual approach and combinatorial use with LonP1 inhibitors.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/4/843/s1, Table S1: Excel file listing genes that correlate and anti-correlate with LONP1
and OSGEPL1 in primary multiple myeloma cells, Figure S1: Proteasome inhibition increases LonP1
expression in MM.1S and MOLP-8 cells: Immuno-fluorescence microscopy of multiple myeloma
cell lines following 24 hours of treatment with 1 nM bortezomib or 5 nM carfilzomib. Pictures
were taken at 100× magnification (scale bar = 10 µm), Figure S2: Increased apoptosis in MM1.S
cells treated with a combination of CDDO-Me and proteasome inhibitors: Cells were treated for
24 hours with sublethal concentrations of CDDO-Me (300 nM) and/or 3 nM bortezomib or 15 nM
carfilzomib. Combined treatment shows strikingly higher levels of apoptosis, as indicated by
immuno-fluorescence detection of cleaved caspase 3. Pictures were taken at 20× magnification (scale
bar = 100 µm) for panoramic view and 100× (scale bar = 10 µm) for depiction of an apoptotic cell,
Figure S3: The NF-κB pathway does not appear to be suppressed by CDDO-Me treatment: MM.1S
cells were treated for six hours with 500 nM CDDO-Me, 10 nM bortezomib, or 20 nM carfilzomib.
MOLP-8 cells were treated for six hours with 500 nM CDDO-Me, 20 nM bortezomib, or 20 nM
carfilzomib. RNA was extracted and the expression of NF-κB target genes was assayed by RT-qPCR.
* p < 0.05, ** p < 0.01, and *** p < 0.001 by unpaired Student’s two-tailed t-test. Not all target genes
tested were expressed in MOLP-8 cells. Target genes are based on a resource by the Gilmore lab:
https://www.bu.edu/nf-kb/gene-resources/target-genes/, Figure S4: Higher LonP1 expression
in stably transduced MM.1S and MOLP-8 cells: Cells infected with a lentivirus encoding human
LONP1 show significantly higher levels of expression of this mitoprotease. Top: representative
immuno-fluorescence pictures at 100×magnification (scale bar = 10 µm). Bottom: quantification of
LonP1 signal using DAPI as reference, as measured in 20 randomly chosen cells. *** p < 0.001 by
unpaired Student’s two-tailed t-test.
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