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Abstract: Although cancer is traditionally considered a genetic disease, the epigenetic abnormal-
ities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation,
have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epi-
genetic changes occur more frequently, and cellular epigenome is more susceptible to change by
environmental factors. Excess cancer risks are positively associated with exposure to occupational
and environmental chemical carcinogens, including those from gasoline combustion exhausted
in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for
gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4–
Trimethylbenzene, 2–methylnaphthalene and toluene significantly contribute to PMI of the gasoline
blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the
genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put
into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes
for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons,
etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to
diminished cancer initiation and progression through altered cellular epigenetic landscape. The
present review summarizes the most important findings in the literature on the association between
exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic
impacts of biofuels.

Keywords: biofuels; benzene; BTEX; BTX; COVID-19; carcinogens; DNA methyltransferases; DNMT;
DNA methylation; ethanol; epigenotoxicity; gasoline combustion; genotoxicity; histone modification;
HAT; histone acetyltransferases; histone deacetylases; HDAC; microRNAs; PAHs; PM emission;
ten–eleven translocation methylcytosine dioxygenases; TET

1. Introduction

Air pollution, containing harmful or poisonous substances, is a worldwide threat to
human health, even at low doses. A major source of air pollution in urban areas is the
combustion of diesel and gasoline fuels emitting >75% of atmospheric pollutants [1–3]. A
considerable and growing literature demonstrates that human exposure to transportation-
related pollutants causes many cancerous and noncancerous diseases, such as cardiopul-
monary aberrations, reproductive dysfunction, neurodegenerative disorders, leukemia and
lung cancer [2], thus increasing mortality and morbidity rates. Pollutants from transporta-
tion (Table 1) are a complex mixture of gaseous and solid components, including carbon
monoxide, carbon dioxide, nitrogen oxides, volatile organic compounds (VOCs), polycyclic
aromatic hydrocarbons (PAHs), secondary reaction products, and particulate matter (PM),
and others [4]. Emissions from gasoline vehicles were selected for the major topic in this
review. Gasoline constitutes the largest share of transportation fuels. It contains over
250 different hydrocarbons, and the defined adjustments to the hydrocarbon mix of the
fuel will change the emissions profile and thereby the health impact of the fuel, which we
consider in this paper.
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Many hydrocarbons in gasoline fuel are volatile organic compounds that are added
to give gasoline well-defined combustion properties in engines. A subgroup of those
volatile organic compounds, the aromatic hydrocarbons (e.g., benzene, toluene, xylene,
ethylbenzene), are added to gasoline fuel due to their high octane rating, which prevents
engines from premature combustion (knocking) and damage. Aromatics, however, are a
large source of PM emissions via two principal pathways: a) incomplete combustion leads
to soot emissions from the tailpipe, and b) secondary organic aerosol formation, which in
turn contributes to ultrafine particle formation in the PM2.5 (less than 2.5 micrometers in
size) category. Aromatic compounds of low molecular weight like benzene, toluene, and
xylene contribute to indirect PM emissions. A subgroup of aromatics, the polycyclic aro-
matic hydrocarbons (PAHs) contribute to direct PM formation if they are of low molecular
weight, while their high molecular weight components form indirect PM.

PM emission assessments from gasoline have recently received greater attention, since
modern gasoline direct-injection engines (GDI) show an increase in that emissions group.
In many countries including the U.S., ethanol produced from corn, sugarcane, or cellulosic
materials is being increasingly added to gasoline. Ethanol has a very high-octane rating
and it therefore substitutes and dilutes aromatics in gasoline. Thus, replacing aromatics
with ethanol is generally shown to reduce PM emissions [1]. Conversely, some studies
have shown that ethanol can lead to an increase in acetaldehyde emissions. The cancer
risks due to the reduced PM and PAH emissions from aromatics substitution with ethanol
while considering a potential increase in acetaldehyde are a focus of this review.

Table 1. List of major compounds emitted from vehicle engine exhaust.

Acrolein Inorganic Sulfates and Nitrates

Ammonia Methane
Benzene Methanol

1,3–Butadiene Nitric acid
Carbon monoxide Metals (e.g., lead and platinum)

Formaldehyde/Acetaldehyde Nitrous acid
Formic acid Nitrogen oxides

Heterocyclics and derivatives Oxides of nitrogen
Hydrocarbons (C1–C18) and derivatives Polycyclic aromatic hydrocarbons and Derivatives

Hydrocarbons (C14–C35) and derivatives Sulfur oxides
Hydrogen cyanide Toluene
Hydrogen sulfide Nitrated hydrocarbons

PM has been documented as a human carcinogen (group I, IARC, 2013) [5]. Transpor-
tation-derived PM increases the incidence of human diseases [6,7], and cohort studies
in the U.S. and Europe have found an association of exposure to transportation-derived
PM with cardiopulmonary-related diseases and cancers [8–12]. PAHs display toxicity and
mutagenicity [13,14]. Gasoline and diesel emissions are different in their carcinogenic PAHs
that are widespread environmental contaminants from incomplete combustion of organic
materials. The International Agency for Research on Cancer (IARC) has classified diesel
engine emissions as carcinogenic to humans (Group 1), and gasoline engine emissions as a
possible carcinogen to humans (Group 2B) [1]. As many health outcomes have not been
examined, there is clearly a need for more thorough evaluation of the impacts of gasoline
exhaust on transportation-related health effects.

Epidemiological and experimental studies suggested that exposure to chemicals from
gasoline exhaust increases the incidence of multiple cancers [15–22], like hematologic
malignancies, lung cancer, or prostate cancer. Mechanistically, the epigenome and genome
may be equally important in carcinogenicity, but the genotoxicity of chemical agents and
exposure-related transcriptomic responses have been more comprehensively investigated.
Compared with genetic changes, epigenetic modifications are more susceptible to change
by environmental stimuli (e.g., air pollutants) and arise rapidly. Further, epigenetic al-
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terations are early indicators of genotoxic and non-genotoxic carcinogen exposure. Thus,
epigenetic mechanisms may be more reasonable to explain how environmental chemi-
cals induce cancer and other diseases. To date, DNA methylation aberrations are the
most commonly studied, followed by abnormal changes of non-coding RNAs and histone
modifications [23]. However, there exists a debated literature regarding the carcinogenic
potential of air pollutants derived from gasoline combustion, and the epigenetic alterations
of air pollutants-associated human malignancies. Importantly, research has shown that
blending ethanol into gasoline and its indirect substitution effect on harmful carcinogens
benefits human beings, including a likely decrease of cancer risk and occurrence. However,
almost all studies regarding ethanol’s direct health effects and the underlying molecular
mechanisms focus on ethanol/alcohol drinking/consumption. Therefore, much of the
existing literature on ethanol’s impacts on toxicity and epigenetics is not relevant or ap-
propriate for comparisons with the effects of exposure to gasoline combustion emissions.
Because the dosages and concentration of ethanol emissions (from gasoline) inhalation are
really low, the underlying epigenetic base could be totally different or even opposite when
compared to those underlying ethanol drinking/consumptions. The purpose of this review
is to describe the crucial aspects of epigenetic aberrations, and to outline the ways in which
environmental chemicals can affect this cancer hallmark. The overall aim was to make sci-
entists aware of (1) the increasing need to delineate the underlying mechanisms via which
chemicals at low doses can induce epigenetic changes, thus promoting carcinogenesis; (2)
the potential benefits and the underlying molecular mechanisms of blending ethanol into
gasoline; and (3) the different or even opposite outcomes obtained from chronic/heavy
alcohol drinking studies when compared with ethanol inhalation.

2. Carcinogenic Potential of Chemicals Associated with Air Pollution from Gasoline

The chemical mixture emitting from gasoline combustion that constitutes the main car-
cinogenic concerns consists of benzene, toluene, xylene, butadiene, 1,2,4–Trimethylbenzene,
2–methylnaphthalene, acetaldehyde, and many PAHs (Table 1). In general, epidemiolog-
ical and experimental evidence supports the carcinogenic potential of these chemicals,
even exposure to low doses [15–22]. Among them, benzene, presented in gasoline (1% by
volume), is widely known as one of the predominant air pollutants in the environment,
particularly in proximity to gas stations and in areas of high vehicular traffic [24], and has
attracted the most attention. Benzene has been classified as a group 1A carcinogen [25].
Findings from many studies support that workers exposed to benzene have higher inci-
dence of hematological malignancies, primarily acute myeloid leukemia (AML), chronic
lymphocytic leukemia (CLL), and myelodysplastic syndrome (MDS) [26–43]. There is
some limited evidence showing that benzene exposure has been causatively linked with
increased risk of lung cancer [44–46], breast cancer (in animal model) [47–49], prostate
cancer [50], kidney cancer [51], or bladder cancer [52]. Some studies on humans have
shown that benzene is one of the risk factors for the development of breast cancer [24]. A
case-control study by Petralia et al. [53] indicated an association between breast cancer
risk and occupational exposure to benzene in women. In addition, Costantini et al. [54]
conducted an epidemiological cohort study of female workers using benzene-based glues
in a shoe factory in Italy. Their findings suggested that chronic exposure to benzene can be
one of the risk factors for breast cancer. Thus, there is adequate evidence supporting that
benzene is carcinogenic to human.

Further studies also examined the role of butadiene, toluene, xylene, 1,2,4–trimethyl-
benzene, acetaldehyde, 2–methylnaphthalene and many PAHs emitting from gasoline
exhaustion in cancer incidence and mortality. Limited studies in a population-based in-
vestigation showed that occupational exposure to one or more of these agents (butadiene,
toluene, xylene) may be associated with lung cancer, higher risks of overall prostate cancer
and an increased risk of hematological malignancies [16,18,19]. As a single agent, studies in
workers and animals exposed to toluene generally suggest that toluene and xylene may not
be carcinogenic [55]. The International Agency for Research on Cancer (IARC) determined
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that toluene is not classifiable as to its carcinogenicity in humans. While no direct human
evidence is available, there is recent evidence of carcinogenicity of toluene and xylene
at high concentrations in experimental animals. Limited studies provide evidence of an
association of occupational exposure to toluene and the risk of bladder cancer [52]. How-
ever, several studies did suggest that exposure to 1,3–butadiene (emissions) is associated
with excess cancer risks, including hematological malignancies, in human and mouse
models [56–60]. Regarding the PAHs that are currently classified as human carcinogens,
excessive exposure to PAHs often results in elevated incidence of cancers [61], such as
lung cancer [21,62], a disease with the highest cancer mortality, and bladder cancer [62],
even functions as a key cofactor in HPV-mediated carcinogenesis [63]. Finally, a couple of
studies revealed that 1,2,4–trimethylbenzene, acetaldehyde and 2–methylnaphthalene are
carcinogenesis in squamous epithelium [22,64–66]. Under the cancer guidelines (2005) of
the U.S. Environmental Protection Agency (EPA), the human and animal data are insuffi-
cient to determine the carcinogenic potential of 1,2,4–trimethylbenzene in humans. Further,
based on the Agency for Toxic Substances and Disease Registry (ATSDR), there is no direct
evidence in humans that naphthalene and 2–methylnaphthalene can induce cancerous
transformation, although some studies showed that exposure to 2–methylnaphthalene
leads to pulmonary alveolar proteinosis but does not possess unequivocal carcinogenic
potential in B6C3Fj mice [67]. Notably, any future epidemiological observations of cancer
risks that are associated with toluene or xylene exposure should take into consideration
the suspected effects of benzene impurities. Finally, findings from animal studies should
be interpreted cautiously. We should be aware that differences may exist among animal
species, and between animals and humans, in the metabolism of, and sensitivity to, xylene.
Conditions of exposure to xylene in animal and human studies, both occupational and
experimental, are usually different.

3. The Positive Effects on Human Health of Blending Ethanol into Gasoline

Gasoline contains a large amount of added aromatic hydrocarbons, because these
chemicals have relatively high-octane values, thereby serving as anti-knock agents in
vehicle engines. Certainly, some aromatics are toxic compounds. Further, combustion
emissions account for more than 50% of fine particle PM2.5 air pollution and most of the
primary particulate organic matter [2]. Gasoline combustion emissions are a ubiquitous
source of exposure to complex mixtures of PM and non-PM pollutants. Human exposure to
combustion emissions has been studied in populations in developed countries, like Europe,
Japan, and the United States, and increasingly in developing countries, like China, Brazil,
and Argentina. The findings have identified many mutagenic and carcinogenic chemi-
cals [2]. Due to the severe health impacts of air pollutants from transportation emissions,
developing and finding alternative fuel sources to reduce the vehicular emissions have
been hot topics. Robust evidence indicates that blending ethanol into gasoline is beneficial,
because: (1) ethanol does not have aromatic compounds. It therefore substitutes and dilutes
aromatics in gasoline. The U.S. EPA has shown that ethanol use (biofuels) substitutes for a
host of toxic aromatics in gasoline; (2) ethanol has a higher octane number than gasoline,
which can improve the energy efficiency; (3) ethanol alters the distillation curve leading
to an adjustment of the distillation properties of the fuel. This effect further reduces the
formation of toxic emissions in a vehicle. Ethanol volumetrically dilutes multiple harmful
gasoline compounds (e.g., benzene, toluene, xylene, butadiene, and polycyclic aromatic
hydrocarbons, etc.) [68]; (4) Previous studies [69] revealed that an increase in the ethanol
content in the fuel blends reduces the emissions of some regulated gases, carbon monoxide
(CO) and total hydrocarbons (THC); and (5) emerging evidence suggests that by blending
ethanol into the gasoline, all PHAs are decreased with more reductions when ethanol
blending is higher [70]. Such positive impacts are further supported by the findings of
Munoz et al. [70], showing that ethanol blending reduces genotoxic emissions. For example,
compared with that of E0, particle number emissions with E10 and E85 are lowered by 97
and 96%; CO emission is decreased by 81 and 87%; emission of selected PAHs is lowered
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by 67–96% with E10 and by 82–96% with E85, and the genotoxic potentials drop by 72
and 83%, respectively. Given that air pollutants emitted from gasoline combustion have
carcinogenic potential, remarkable reduction of air pollutants by biofuels could decrease
the risk and occurrence of human cancers. Another benefit of biofuels is the reduction of
COVID-19 infection, because recent studies and analysis [71–73] showed that exposure
to PM could increase the susceptibility and severity of COVID-19 patient symptoms, for
example, an increase of only 1 µg/m3 in PM2.5 is associated with an 8% increase in the
COVID-19 death rate, and there is a positive correlation between exposure to PM and
COVID-19 virus spread [74,75]. However, the molecular mechanisms to explain such posi-
tive association of PM with COVID-19 are lacking. Finally, although biofuels have ethanol
vapor in the air (usually very low ethanol concentrations), this may not have negative
effects on human health, because a clinical trial (NCT04554433) suggests that breathing
ethanol could be beneficial for patients with COVID-19, as it reduces surface tension on
the alveoli and markedly decreases sputum formation. The inflammatory and dangerous
effects on patients can be controlled by the actual used concentrations.

4. Overview of Epigenetic Mechanisms in Cancer Development and Progression

Typical epigenetic mechanisms include DNA methylation, histone modifications
(acetylation, methylation, phosphorylation, etc.) and microRNA expression, which criti-
cally regulate expression of oncogenes and tumor suppressor genes (TSGs) [76–80]. The
concept that aberrant epigenetics is a key regulator for cancer initiation, development,
maintenance and progression has been undoubtedly established, which has also been
thoroughly and systematically reviewed [76,77,81–91]. As such, this review mainly focuses
on the findings from our groups and the molecular mechanisms by which the abundance
of epigenetic modulators are abnormally regulated in cancers. Further, benzene is the most
broadly studied chemical in air pollutants, and it is clearly considered a carcinogen, induc-
ing leukemia, breast cancer and lung cancer. Thus, we will mainly discuss the contribution
of aberrant epigenetics to the pathogenesis of leukemia, lung cancer and breast cancer.

4.1. DNA Methylation and Cancer

DNA methylation involves a covalent chemical modification of DNA, which is in-
stalled mainly by DNA methyltransferase (DNMT) 1, 3a and 3b. In the presence of
S–adenosyl–methionine (SAM) that serves as a methyl donor, a methyl group is added
by DNMTs to the C–5 position of cytosine residues, yielding 5–methylcytosine (5mC). In
general, DNMT 3a and 3b are mainly de novo enzymes, while DNMT 1 acts as both main-
tenance DNMT, which propagates the methylation patterns to the daughter cells (through
cell division), and de novo DNMT (non-cell cycle activity) that initiates DNA methylation
in cancer cells [92–94]. DNMTs are overexpressed [95–98], and TSGs are frequently silenced
via promoter DNA hypermethylation in cancers [99,100]. In addition, DNA methylation
binding proteins critically regulate DNA methylation dynamics in controlling target ex-
pression whereby cancer pathogenesis [101–103]. Because TSGs are master regulators of
cell proliferation and survival, silencing of TSG may confer a significant advantage to
cancer growth [95,96,104–106], as supported by the fact that TSG silencing predicts poor
prognosis in cancers [95–97,100,104,106–111]. Importantly, DNA methylation, particularly
CpG hypermethylation at TSG promoters, arises at the early stage of cancer or at the
“pre-tumorigenic” phase, and the DNA methylation levels are increased in accordance with
cancer development and progression. Concomitantly, aberrant DNA methylation serves as
a key hallmark of cancers, including leukemia [98,100,107,112–114], breast cancer (luminal
types, HER2 overexpressing, basal-like, etc.) [112–116], and lung cancer [117–120].

Due to gene overexpression or mutations in cancers [105,112,113,121,122], DNA
methyltransferases (DNMTs) become hyperactive, leading to DNA hypermethylation
in the promoters of TSGs. For example, DNMT 3a mutations are prevalent in cancers
and such mutations decrease DNA methylation levels, which is linked with higher re-
lapse rates and an inferior overall survival, and promotes transformation of hematopoietic
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cells [123–127]. Further, changes in DNMT gene levels are in parallel with DNA methyla-
tion amount [96–98,106,111]. On the other hand, once methylated, the modified cytosine
(5mC) can go through a stepwise methylcytosine dioxygenase-mediated oxidation process
to form 5–hydroxymethylcytosine (5hmC), 5–formylcytosine (5fC) and 5–carboxylcytosine
(5caC) [128–131], promoting locus-specific reversal of DNA methylation. The ten–eleven
translocation (TET) methylcytosine dioxygenases (TET1/2/3) catalyze the conversion of
5mC to 5hmC, resulting in active and passive DNA demethylation [132–136]. Analo-
gous to DNA methyltransferases (DNMTs), the enzymatic activities of TETs are subjected
to be regulated by gene mutations (i.e., TET 2) [137–140] and abnormal gene expres-
sion [141,142]. Such dysregulated TET activities are strongly associated with cancer patho-
genesis [137,141,143]. In general, TETs serve as TSGs, as supported by showing that levels
of TET expression and 5hmC are decreased in a wide range of cancers [140,142,144,145].
However, emerging evidence also supports an oncogenic role of TETs [140], as supported by
the fact that TET1 is upregulated in adenocarcinoma and squamous cell carcinomas [146],
and reduction of 5hmC content is associated with decreased survival rate [147]. While TET
(i.e., TET2) mutations frequently occur in hematological cancers [128,148,149], missense
and truncating mutations in the TET genes are also observed in solid tumors. However,
the mutation rate is relatively low (0.1–10%) [128], suggesting that changes in TET gene
expression are more essential in determining TET functions in solid cancers.

Although it is well appreciated that aberrant expression of DNA methyltransferases
(DNMTs) and ten–eleven translocation methylcytosine dioxygenases (TETs) induces aggres-
sive breast cancer [112–116], lung cancer [96,106] and leukemia, etc. [97,98,109–111,141],
how they are dysregulated in cancers [140,141,150] is largely unclear. Thus, investigations
of the molecular mechanisms involved in gene dysregulation have been always active. Our
studies revealed that abnormal DNMT expression may be attributed to cell-autonomous
signaling, including microRNAs [98,100], nucleolin [98], Sp1/NFkB (nuclear factor kappa
B) [107], AML1/ETO [114], cytokines [104], and/or protein kinases, etc. [96,110]. Impor-
tantly, we demonstrated that upregulation of fatty acid-binding protein 4 (FABP4) by envi-
ronmental stimuli (i.e., high-fat diet, obesity) upregulates DNMT1, but not DNMT3a and
DNMT3b, partially through activation of the IL–6/STAT3 signaling in cell non-autonomous
manner in leukemia cells [112]. Further, environmental stress mediated by chemotherapy
and molecular-targeted therapy also changes DNMT gene expression [99,106,108,110]. In
agreement with the outcomes from cancer therapies, a few studies showed that down-
regulation of TET1 expression or upregulation of DNMT1 by air pollutants is observed,
resulting in DNA hypermethylation and TSG silencing [151–153]. However, thorough in-
vestigations are necessary to address whether and how environmental chemicals emitting
from gasoline, particularly biofuels, contribute to abnormal expression of DNMTs and
TETs in cancers.

4.2. Histone Modifications and Cancers

Histone posttranslational modifications provide a fundamental way to regulate chro-
matin structure, thus affecting gene transcription, DNA damage repair, DNA replication,
and other cellular processes. These many modifications include phosphorylation [154–156],
ubiquitination [157,158], methylation [159–163], acetylation [164–166], and so on. The
essential roles of these modifications in tumorigenesis and cancer metastasis have been
well documented and widely reviewed [167–170]. Among them, the deacetylation and
acetylation of histones have attracted the most attention in understanding the causes of can-
cers, identifying diagnostic, prognostic, and therapeutic biomarkers, as well as developing
reagents for cancer therapies.

Histone acetylation is determined by a balanced activity of histone acetyltransferases
(HATs) and histone deacetylases (HDACs). HATs are enzymes that acetylate conserved
lysine amino acids by transferring an acetyl group onto lysine residues of histone protein,
forming ε–N–acetyl lysine. However, histone deacetylation is achieved by HDACs, includ-
ing HDAC 1–11 and SIRT1–7. Altered expression and mutations of HDACs or HATs change
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their catalytic activities [171–174], resulting in an imbalance of histone acetylation and
deacetylation, whereby aberrant expression of oncogenes or TSGs leading to cancer initia-
tion, development, and progression. Because dysfunction of HDACs and HATs by aberrant
gene expression serves as diagnostic and prognostic biomarkers [175], multiple HDAC
inhibitors have entered into clinic, favorable outcomes have been achieved [176–178].
However, as a single agent, HDAC inhibitors have shown limited therapeutic efficacy, sup-
porting a combination therapy with other reagents, like DNA methylation inhibitors, for a
better management of cancers [179,180]. Further, the catalytic activities of HATs have been
reported to be hyperactive in many human diseases ranging from cancer and inflammatory
diseases to neurological disorders, through enhanced acetylation of histone or non-histone
proteins [181,182]. Thus, HAT inhibitors [183–185], like bisubstrate inhibitors, natural prod-
uct derivatives and small molecules, have been developed [186]. Despite their therapeutic
potential, gaps remain between the biological outcomes of inhibitors from in vitro, even
animal, studies and their potential use as therapeutic reagents in human patients. As the
altered activities of HDACs and HATs from abnormal gene expression are more essential
in determining cancer cell fate, further elucidating the molecular mechanisms by which
these enzymes are dysregulated in cancer cells may advance our understanding of cancer
and developing new inhibitors.

4.3. MicroRNAs and Cancers

MicroRNAs, initially discovered in 1993 [187], are small RNAs (containing about
22 nucleotides) without coding regions, and in general, function as negative gene regula-
tors [188]. However, microRNAs are indeed similar to coding genes, which are transcribed
by RNA polymerase II as long primary transcripts characterized by hairpin structures
(pri–microRNAs), and processed into the nucleus by RNAse III Drosha into 70–100 nts-long
pre–miRs [189]. As microRNA regulatory mechanisms are frequently altered in human
cancers, abnormal expression of microRNAs is prevalent in all cancers [190]. First, anal-
ogous to protein-coding genes, ours and other studies demonstrate that microRNAs are
transcriptionally regulated by genetic and/or epigenetic mechanisms, including chromo-
somal abnormalities (AML1–ETO) [191–193], SP1/NFkB [194,195], histone deacetylases
(HDACs) [194,196,197], DNA methyltransferases (DNMTs) [198,199], and/or environmen-
tal factors (diet, lifestyle, fine particulate air pollution) [200–203] and many others. For
example, the microRNA–34 family was downregulated by a mechanism that involves
promoter DNA methylation [204–206]. Although not as frequently as dysregulation, mi-
croRNAs are also subjected to the regulation of mutations or deletion [207,208]. Second,
miR dysfunction crucially regulates tumor growth and cancer metastasis [100,193,207,208].
To date, the role of microRNAs in cancer pathogenesis and drug resistance has been well
documented and broadly reviewed [82,84,188,194]. Many microRNAs (i.e., microRNA–
21, microRNA–155, microRNA–19a) function like oncogenes (oncomiRs) [188,209,210],
enhancing tumorigenesis and cancer metastasis when overexpressed [210]; other microR-
NAs (i.e., microRNA–15, microRNA–16, microRNA–29b) [211] are tumor suppressors
losing expression or functions in cancer cells [100,194,208,212]. Further, certain microRNAs
(microRNA–22) have dual activities promoting or inhibiting tumor growth [213]. The
critical contribution of microRNA deregulation to cancers is further strengthened by the
facts that aberrant expression of microRNAs serves as potential biomarkers for cancer
diagnosis, prognosis and therapeutic targets [100,194], and microRNAs themselves or
their anti-nucleotides have been used to develop cancer therapeutics [83,214]. Mechanisti-
cally, microRNAs regulate cancer cell survival and proliferation by posttranscriptionally
and negatively controlling their target gene expression. These cellular processes occur
through binding of microRNAs to the 3′–untranslated regions (3’–UTR) of their targets
(oncogenes, TSGs) [100,188], resulting in translational inhibition or degradation of target
mRNAs, thereby suppressing gene expression. Notably, one microRNA can bind to more
than one species of mRNA target, or multiple species of microRNAs can bind to the same
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mRNA targets [215], supporting the complexity of microRNAs-initiated regulation of genes
whereby cancerous diseases.

It is worth noting that aberrant DNA methylation, abnormal histone modifications
and microRNA dysregulation do not function individually, but cooperatively contribute
to the development, maintenance and progression of cancers [216–218]. As shown in
Figure 1, this functional cooperation may result from the reciprocal regulation of their
expression levels [218], for example, microRNA–DNA methylation loop [219,220], and in-
terplay between microRNAs and histone deacetylases (HDACs) [221]. Further, in addition
to having enzymatic activities, all DNA methyltransferases (DNMTs), histone deacetylases
(HDACs) and ten–eleven translocation methylcytosine dioxygenases (TETs) have enzyme-
independent functions. For instance, TET and DNMT or HDAC form a complex that
binds target promoters up- or down-regulating target gene expression [222,223]. HDAC
and DNMT form a complex through protein physical interaction to induce chromatin
remodeling, thus altering gene expression [224]. Moreover, DNMT and HDAC together
are also recruited by other transcriptional factors, such as AML1–ETO, to repress target
gene expression [111,225,226]. Given that cancers are systematic diseases, and as many
genes/pathways are involved in the initiation and progression of cancers simultaneously,
future studies may need to focus more on the interplay/cooperation among DNA methyla-
tion, histone modifications and microRNA dysregulation, in both understanding cancers
and developing cancer therapies.

Figure 1. Crosstalk among epigenetic regulators determines cancer cell fate. Left: HDACs, DN-
MTs and TETs cooperatively regulate DNA methylation and his-tone modification change target
expression; Right: HDACs, DNMTs, TETs and unknown factors form complex binding target pro-
moters controlling their levels; * microRNA deregulation feedback to inhibit epigenetic regulators.?,

unknown factor; ↑ upregulation; ↓ downregulation;
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5. Epigenetic Effects Associated with Carcinogenic Chemicals from Gasoline

The major epigenetic modifications (e.g., DNA methylation, histone acetylation) are
susceptible to change by environmental stimuli [99,104,227,228], likely bridging the gaps
between human cells and their microenvironments. This offers possible explanations for
how intercellular factors change intracellular epigenetic landscape, altering tumor behav-
iors and increasing cancer risk. Carcinogenesis is a stepwise process of accumulation
of genetic and epigenetic abnormalities that lead to such as malignant transformation.
Although some cancer initiation and progression may be attributed to identifiable muta-
tions in critical genes [229], a wide range of changes take place through largely unknown
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transitions. Mounting evidence suggests that initiation of carcinogenesis and cancerous
lesions have an epigenetic basis [230], and the epigenetic alterations are equally important
as the genetic mutations in transforming normal cells to tumor cells [231,232]. The key roles
that the altered DNA methylation play in carcinogenesis as nongenotoxic mechanisms
have been the subject of previous reviews [231,232]. This also includes the suggestion from
the U.S. EPA’s proposed Cancer Risk Assessment Guideline, which refers explicitly to a
role of DNA methylation aberrations in carcinogenesis.

Although many environmental factors, such as diet, lifestyles, therapeutic reagents,
and chemicals, have been found to alter intracellular epigenetic signature, this review will
focus on air pollutants emitting from gasoline combustion, including benzene, toluene,
xylene, butadiene, 1,2,4–Trimethylbenzene, and 2–methylnaphthalene. In general, epi-
demiological and experimental studies support a carcinogenic potential of these chem-
icals, even at low doses [15–22]. Although genetic changes have been broadly studied
in carcinogenic chemicals, as described in Figure 2, epigenetic alterations, due to their
dynamic, rapid and reversible features, could be the first event followed by gene mutations
leading to cancerous transformation. For instance, hypermethylation-silenced TSGs and
hypomethylation-induced oncogene overexpression are plausible mechanisms that could
underlie cancer initiation [233]. Mechanistically, promoters of DNA repair genes (e.g.,
MLH1, MGMT) can become methylated, which may lead to microsatellite instability and
increased G-to-A transitions. Higher 5–mC content has higher potential to generate genetic
mutations through the spontaneous deamination of 5–mC to thymine [234].

Figure 2. Air pollutants may induce malignant transformation via epigenetic aberrations. Chemicals
from gasoline exhausts enter the human cells and modulate epigenetics through multiple mech-
anisms (e.g., abnormal levels of SAM and cytokine; unknown pathways), leading to malignant
transformation. In human cells, left: HDACs, DNMTs and TETs cooperatively regulate DNA methy-
lation and histone modification, thus changing target expression; right: HDACs, DNMTs, TETs and
unknown factors (?) form complex binding target promoters, determining their levels; * microRNA
deregulation feeds back to negatively modulate the expression of all epigenetic regulators.
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5.1. Benzene Induces Epigenetic Changes

Benzene is one major chemical from gasoline combustion and a demonstrated carcino-
gen. However, the mechanism underlying benzene-induced malignant transformation (e.g.,
hematotoxicity, lung cancer, breast cancer) has not been fully elucidated. Numerous in vitro
and in vivo investigations revealed that benzene exposure modifies epigenetic marks, and
most of these studies have centered on DNA methylation. Only a few studies have explored
the contribution of environmental chemicals to changes in histone modifications and mi-
croRNA expression. This is supported by showing that alterations of DNA methylation
patterns in normal and malignant cells mediate toxicity from benzene [24,36,235–237], includ-
ing global DNA methylation as measured by DNA methylation changes in long interspersed
nuclear element–1 (LINE–1) and AluI repetitive elements (a significant reduction in LINE–1
and AluI; loss of global DNA methylation) [36], as well as gene-specific/promoter DNA
methylation [238] [MAGE–1, p15, p16, ERCC3; poly(ADP–ribose) polymerases–1 (PARP–1);
Hypermethylation in p15 and p16; hypomethylation in MAGE–1] [29,36,239–241], which
leads to downregulation of genes with promoter DNA hypermethylation. Secondary to
studies in DNA methylation is the investigation of histones showing that benzene exposure
alters the histone protein (H4, H3) modifications, such as a decrease of histone acetylation
and increase of histone lysine methylation (H3K4me3), at a global level and in the gene pro-
moters (topoisomerase IIα (Topo IIα)) [31,236,242,243]. Concomitantly, histone deacetylase
(HDAC) inhibitors, for instance trichostatin A and MCP30, are able to relieve benzene-
induced hematotoxicity [31]. Although not as frequent as changes in DNA methylation and
histone acetylation, exposure to benzene also dysregulates microRNAs in vitro and in vivo,
serving as a possible biomarker to manage benzene exposure [244–247].

There are several possible reasons why benzene exposure alters DNA methylation in
human cells. First, benzene enhances nitric oxide production in the bone marrow, thus in-
ducing a posttranscriptional increase in DNMT activities. Second, reactive oxygen species
and oxidative DNA damage produced by benzene may reduce binding affinity of the
methyl–CpG binding protein 2 (MBD2), thereby changing 5mC levels. Third, DNA strand
breaks induced by benzene exposure may increase DNMT binding affinity at specific
sites. Fourth, a significant decrease in mRNA levels of DNA methyltransferase (DNMT) 1,
3a, 3b and MBD2 was observed post exposure to benzene alone or BTX [19,248], particu-
larly benzene-induced DNMT3b upregulation [32]. It is still largely unclear how benzene
changes DNMT gene expression. Although Rothman et al. did not find changes in IL–6
levels in peripheral blood from workers exposed to benzene [249], Gillis et al. did show that
benzene metabolites can stimulate the production of chemokines, the proinflammatory cy-
tokines TNF–alpha and IL–6, and the Th2 cytokines IL–4 and IL–5 [250]. Given our studies
showing that IL–6 is a key regulator in DNMT1 gene expression [97,109], benzene-altered
DNMT expression may take place through abnormal IL–6 production, which warrants
comprehensive studies. Few studies are found to investigate the impacts of benzene on
the expression of HDACs and ten–eleven translocation methylcytosine dioxygenases as
well as the physical and functional interactions among HDACs, DNMTs and ten–eleven
translocation methylcytosine dioxygenases in cancerous transformation.

5.2. The Impacts of Toluene, Xylene, 1,3–Butadiene, 1,2,4–Trimethylbenzene and
2–Methylnaphthalene on Epigenetics in Cancers

Although toluene, xylene and butadiene are major chemicals emitting from gasoline
combustion, compared with benzene, far fewer experiments have been conducted to exam-
ine their potential to be carcinogens and their regulatory roles in aberrant epigenetics. It
has been shown that exposure to BTX, VOCs, BTEX or TEX containing toluene and xylene
changes microRNA expression and DNA methylation patterning [19,251–253]. However, it
is difficult to exclude the impacts from benzene. As a single agent, exposure to toluene,
even at low levels, has been found to change DNA methylation levels [254–256]. Hong
et al. showed that twenty-six genes are upregulated and hypomethylated, while 32 genes
are downregulated and hypermethylated using in vivo samples [254]; changes in histone
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modifications (acetylation pattern of histones H3 and H4) [257,258] and microRNA expres-
sion are also observed [251]. For instance, Lim et al. found 54 differentially expressed
microRNAs in HL–60 cells and exosomes upon toluene exposure [252]. Further, xylene ex-
posure is reported to alter gene expression and DNA methylation [254,259,260]. In addition,
1,3–Butadiene (BD) is a common environmental pollutant that is classified as carcinogenic
to humans. Studies also showed that exposure to BD changes DNA methylation and/or his-
tone methylation in mouse models [15]. Notably, all these findings result from occupational
exposure, but not mimicking studies from gasoline combustion exposure. Few studies
have observed changes in microRNA levels and expression of DNA methyltransferase,
histone deacetylase, or ten–eleven translocation methylcytosine dioxygenase genes post
exposure to toluene, xylene, and 1,3–butadiene.

5.3. Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are common air pollutants resulting from incomplete combustion of organic
materials (e.g., fossil fuels), which contain two or more fused benzene rings arranged
in various configurations. They are well-documented genotoxicants and potential car-
cinogens. Increasing evidence suggests that prenatal exposure to PAHs reduces global
genomic methylation [261–264]. This is further supported by showing that changes in
gene-specific and global DNA methylation may be the causative mechanisms of PAH-
related health effects [265–267]. The methylation of key genes related to breast cancer, like
retinoic acid receptor beta (RARβ) and adenomatosis polyposis coli tumor suppressor
(APC), has been associated with the presence of PAH adducts in breast tumor tissue and
various sources of PAH exposure [268,269]. Additional genes that display altered DNA
methylation due to PAH exposures play a role in insulin resistance [270] and cancer [267].
All the genes described above show PAHs-related DNA hypermethylation, suggesting a
potential role for PAHs as an environmental factor that can silence gene expression via
epigenetic mechanism at site-specific loci. Consistently, Yang et al. [267] reported that PAH
exposure induces CpG site-specific hypermethylation of the p16(INK4α) gene. The degree
of p16(INK4α) methylation is related to the levels of internal exposure. Thus, p16(INK4α)
hypermethylation might serve as an important biomarker for PAHs exposure and for early
cancer diagnosis. The studies of PAH-mediated DNA methylation highlight the impacts of
hydrocarbon mixtures, supporting a role for the aberrant epigenome in PAH-associated
carcinogenicity. In addition, Zhang et al. reported that H3K36me3 can be an indicator of
PAH exposure [271], and microRNA expression is changed upon PAH exposure [272,273].
However, no studies have been found to address whether PAH exposure changes the ex-
pression of DNA methyltransferase, histone deacetylases and/or ten–eleven translocation
methylcytosine dioxygenase genes, which warrant systematic investigations.

6. Conclusions and Outlook

The review aims to summarize the evidence for a contributory role of air pollutants
emitting from gasoline combustion to cancer burden and the molecular mechanisms involved
with a focus on aberrant epigenetics. Epidemiological and experimental data support that
exposure to benzene, toluene, xylene, butadiene and/or PAHs may increase the risk of
cancer development and promote cancer growth and metastasis. For benzene, the evidence
could be classified as sufficient and consistent; for toluene, xylene, butadiene, or PAHs,
further in vitro and in vivo studies are necessary to make an accurate conclusion. Increasing
evidence supports that blending ethanol into gasoline (biofuels) reduces emissions of toxic
chemicals including secondary aromatics. It can be concluded that ethanol blending in
gasoline is beneficial to human health, given that toxic/carcinogenic chemicals are signifi-
cantly reduced due to displacement by ethanol. Mechanistically, we conclude that benzene
exposure alters global and gene-specific DNA methylation as well as the expression of DNA
methyltransferases, histone deacetylases or microRNAs in human normal and cancer cells,
with a suggestive conclusion that other chemicals in gasoline have similar impacts. Regard-
ing the histone modifications, tentative conclusions could be made that exposure to benzene,
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toluene, xylene, butadiene and/or PAHs changes histone acetylation and lysine methylation.
Given that blending ethanol into gasoline reduces chemicals that induce DNA methylation
aberrations, biofuels could have positive effects on reducing cancer burden through restoring
key antineoplastic features of aberrant epigenome in human cells.

Importantly, whether and how inhalation of ethanol vapor or exhaust products is
harmful to human health remains largely elusive. Given the difficulty in mimicking ethanol
inhalation from vapor or exhaust products, and because no reports are found to investigate
the epigenetic effects of ethanol inhalation, we are unable to draw any definitive conclusions
or make absolute comparisons between the epigenetic effects of the inhalation of ethanol
exhaust emissions and gasoline exhaust emissions. There is a need for larger and longitudi-
nal studies in vitro and in vivo, which mimic the real exposure to chemicals (particularly
the concentrations/doses) from gasoline combustion, to demonstrate their biological and
epigenetic potential. Further, because epigenetic controllers (DNA methyltransferases
(DNMTs), histone deacetylases (HDACs), ten–eleven translocation methylcytosine dioxy-
genases (TETs), microRNAs) have functional and regulatory interplays, future studies
need to put more efforts into focusing on the contributions of chemicals to the cooperative,
but not individual, roles of these epigenetic controllers in cancer development. As gene
dysregulation of epigenetic controllers occurs more frequently than mutations, more efforts
are needed to address whether and how chemicals from gasoline combustion modulate
the expression levels of DNMTs, HDACs and TETs. In addition to the classical epigenetic
modifications (DNA methylation, histone acetylation), RNA/DNA N6–methyladenosine
(m6A) represents a new epigenetic code, and critically regulates various biological pro-
cesses [274–277], including cancers [278–280]. In vitro and in vivo studies are needed to
investigate whether and how exposure to chemicals from engine exhaust regulates m6A
levels and its modulators, which may change the rate of cancer initiation. Finally, given
that epigenetic alterations are associated with viral infection, and because air pollutants
from gasoline combustions induce epigenetic changes, studies focusing on the crosstalk
among air pollutants, COVID—19 and aberrant epigenetics should be initiated, which may
find answers for why exposure to PM increases COVID-19 spread and transmission.
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