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Gastric cancer (GC) is the 3rd leading cause of death from cancer and the 5th most common cancer worldwide.,e detection rate
of GC among Tibetans is significantly higher than that in Han Chinese, probably due to differences in their living habits, dietary
structure, and environment. Despite such a high disease burden, the epidemiology of gastric cancer has not been studied in this
population. Molecular markers are required to aid the diagnosis and treatment of GC. In this study, we collected gastric tissue
samples from patients in Tibet with chronic nonatrophic gastritis (CNAG) (n� 6), chronic atrophic gastritis (CAG) (n� 7), gastric
intraepithelial neoplasia (GIN) (n� 4), and GC (n� 5). ,e proteins in each group were analyzed using coupled label-free mass
spectrometry. In addition, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and
protein interaction networks were used to analyze the differentially expressed proteins (DEPs) among groups. DEPs were
quantified in comparisons of GC versus CNAG (223), GC versus GIN (100), and GIN versus CNAG (341). GO and KEGG analyses
showed that the DEPs were mainly associated with immunity (GC versus CNAG) and cancer proliferation and metastasis (GC
versus GIN, and GIN versus CNAG). Furthermore, the expression levels of cell proliferation and cytoskeleton-related proteins
increased consistently during cancer development, such as ITGA4, DDC, and CPT1A; thus, they are potential diagnostic markers.
,ese results obtained by proteomics analysis could improve our understanding of cancer biology in GC and provide a rich
resource for data mining and discovering potential immunotherapy targets.

1. Introduction

GC is the fifth most common cancer and the third leading
cause of cancer mortality globally, and it is a highly het-
erogeneous disease at the genetic and molecular levels [1, 2].
,e number of GC cases in Asia accounts for more than half
of the global cases, especially those in East Asia. ,e factors
associated with GC include a high-salt diet, low intake of
fruits and vegetables, smoking, and a family history of GC
[3]. In addition, etiological factors, including a variety of
genetic and epigenetic changes, are related to the GC process

[4]. GC mainly develops through atrophic gastritis and
intestinal metaplasia in a precancerous state. Cancer de-
velops via a series of mucosal changes from nonatrophic
gastritis to atrophic gastritis, intestinal metaplasia (IM), and
GIN to GC [5, 6]. ,e prognosis of advanced GC is still very
poor, but an early prognosis of GC can ensure long-term
survival [7]. Precancerous lesions of gastric carcinoma
comprise a class of GC that is closely related to changes in
gastric mucosal pathology, with a key role in the progression
of normal gastric mucosal cells into gastric cancerous cells
[8]. It is not clear whether some or all of these lesions are
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directly involved in the development of GC. Early effective
intervention is important for preventing and controlling GC
[9]. ,erefore, determining the relationship between pre-
malignant lesions and the development of GC has important
clinical significance for the early detection and treatment of
GC.

Reliable biomarkers and potential therapeutic targets are
highly desirable for understanding and treating GC, and
they have been investigated widely [10]. High-throughput
omics techniques can be used to study the development of
GC and the associated molecular mechanisms with un-
precedented speed and in great detail [11]. Many previous
studies of GC focused on the genome and transcriptome
levels. GC-driven genes and abnormal regulatory pathways
have been determined at the genome and transcription
levels, thereby greatly improving our understanding of GC
[12]. Genomic changes should be translated into changes at
the protein level to affect the phenotype [13]. Proteomics can
be used to study the characteristics of cells, tissues, or bi-
ological proteins, such as protein expression levels and
posttranslational modifications [14]. Proteomics analysis has
proven to be a convenient and effective method for dis-
covering cancer biomarkers and therapeutic targets [15].
Planque et al. [16] identified five candidate lung cancer
biomarkers by combining proteomic analysis of four lung
cancer cell lines with informatics analysis of lung-related
diseases. ,e combined proteomic and transcriptomic
analysis provides a means of understanding gastric devel-
opment and its relationship to GC occurrence [17].
Quantitative proteomics could be used for the accurate
classification of triple-negative breast cancer (TNBC) sub-
types [18]. Quantitative proteomics could help to identify the
proteins related to drug resistance [19, 20].

Previous studies have analyzed tumor tissues from pa-
tients with colon [21], breast [22], and ovarian cancer [23]
using mass spectrometry (MS) proteomics, and the results
obtained in these studies can provide additional supple-
mentary information for genomics research. In general,
most studies of GC have focused on a single or small group
of proteins or specific pathways [24–27].

,ese studies have greatly improved our understanding
of GC, but proteins are highly dynamic and interactive.
Large protein sets can regulate tissue growth through highly
coordinated changes in their expression levels and play
important roles in organ functioning [13]. Previous studies
have identified lncRNA and mRNA that are differentially
expressed between CAG and CNAG samples, providing
useful information for identifying potential biomarkers for
the diagnosis of CAG [28]; meanwhile, quantitative iTRAQ
proteomics has shown that actin-binding proteins and
Notch pathway-related proteins are differentially expressed
between CAG and CNAG [14]. ,ere has been extensive
research on CNAG and CAG, but other processes involved
in the development of GC need further research.

GIN is widely regarded as a precancerous lesion that
should be closely followed or treated endoscopically [29, 30].
,e prognosis of patients with gastric cancer can be greatly
improved by early diagnosis and endoscopic resection of
GIN [30]. However, it is barely known how protein

expression patterns might differ and the molecular basis of
different functions in the process of GC.

In the present study, we collected tissues from CNAG,
CAG, GIN, and GC and determined DEPs using proteomics
methods, as well as functional annotation by bioinformatics
and disease association analysis. We aimed to determine the
possible molecular regulation mechanisms involved in the
occurrence and development of GC by identifying DEPs, as
well as discovering candidate molecules for use as
biomarkers.

2. Methods

2.1. Clinical Tissue Samples. Samples were obtained from
patients with CAG, GC, CNAG, and GIN at Qinghai Pro-
vincial Tibetan Medical Hospital in Qinghai from January
2018 to December 2020. Subjects with any of the following
medical histories were excluded: hypertension, diabetes,
coronary heart disease, other tumors, radiotherapy, che-
motherapy, or other drug therapy. Patients who met the
requirements in combination with history, cytological ex-
amination, and pathological biopsy results were included.
Five biopsies were obtained in accordance with the updated
Sydney system [31], two biopsies each from the corpus and
antrum, and a single biopsy from the angle of the stomach.
,e protocol was approved by Qinghai Provincial Tibetan
Medical Hospital Research Ethics Committee. We collected
written informed consent from all participating patients.
Among the included 22 patients, 6 were diagnosed with
CNAG, 7 were CAG, 4 were diagnosed with GIN, 5 were
diagnosed with GC (Table 1and Supplementary Material 1).
Cancer tissues were taken from the core area of the tumor,
and we avoided including necrotic and adjacent noncan-
cerous tissues. All samples were verified by pathologists at
the hospital’s pathology laboratory. All samples were rapidly
frozen in liquid nitrogen and stored at −80°C for protein
extraction.

2.2. Protein Extraction and Trypsin Digestion. Total proteins
were extracted from the tissues as described previously by Li
et al. [17]. Samples were minced and lysed in buffer (pH 8.0)
containing 8M urea, 100mM Tris hydrochloride, and
protease and phosphatase inhibitors (,ermo Fisher Sci-
entific, Rockford, IL, USA). ,e tissue lysates were centri-
fuged for 10min at 12000× g and 4°C before collecting the
supernatants to determine the protein concentration using a
bicinchoninic acid protein assay kit (Pierce, ,ermo Sci-
entific, Germany). Next, approximately 100 μg of protein per
sample was reduced with 10mM dithiothreitol (Sigma-
Aldrich, St Louis, MO, USA) at 56°C before cooling the
sample to room temperature and incubating with 20mM
iodoacetamide (Sigma-Aldrich, St Louis, MO, USA) in the
dark for 30min. ,e samples were digested with sequencing
grade trypsin (Sigma-Aldrich, St Louis, MO, USA) for 24 h
at 37°C, and all reactions were terminated with 10% (v/v)
trifluoroacetic acid after digestion. Finally, the tryptic
peptides were centrifuged to purify the peptides in C18 spin
columns (Millipore, Waltham, MA, USA) with nine
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fractions using a stepwise increasing acetonitrile concen-
tration gradient (6%, 9%, 12%, 15%, 18%, 21%, 25%, 30%,
and 35%) under basic conditions (pH 10), before analyzing
with liquid chromatography–MS/MS (LC-MS/MS). General
workflow for functional proteomics analyses in CNAG,
CAG, GIN, and GC (Figure 1(a)).

2.3. LC-MS/MS Analysis. LC-MS/MS analysis was per-
formed as previously described [32,33]. Peptide samples
were fractionated by high-pressure liquid chromatography
(HPLC; ,ermo EASY-nLC System, Waltham, MA, USA),
where mobile phase A comprised 0.1% (v/v) formic acid in
Milli-Q water and B comprised 0.1% formic acid in 100%
acetonitrile. Peptides were eluted by HPLC with a mobile
phase B gradient of 5–35% at a flow rate of 600 nL/min for
75min. ,e samples were then analyzed with Orbitrap
Fusion, Orbitrap Fusion Lumos, and Q Exactive Plus mass
spectrometers (,ermo Fisher Scientific, Rockford, IL, USA)
coupled to an EASY-nLC 1000 nanoflow LC system
(,ermo Fisher Scientific, Rockford, IL, USA). MS/MS
analysis was performed in the data-dependent mode. One
full scan (300–1400m/z, R� 60,000 at 200m/z) was followed
by up to 20 data-dependent MS/MS scans with higher-en-
ergy collision dissociation (target 2×103 ions, maximum
injection time 40ms, isolation window 1.6m/z, normalized
collision energy of 27%).

2.4. Peptide Identification and Protein Quantification. ,e
raw MS files were processed as described in a previous study
[34]. Briefly, raw files were searched against the human
National Center for Biotechnology Information (NCBI)
Refseq protein database (Homo_sapiens_9606_SP_20201214.
fasta, 20395 sequences) usingMascot 2.3 (Matrix Science Inc.,
Boston, MA, USA, version 2.2.1). ,e mass tolerance was set
to 20 ppm for precursor ions, 50 ppm for product ions col-
lected by QExactive HF, and 0.5Da for product ions collected
by Fusion. KR is a proteolytic cleavage site and it allows up to
two missed cleavages. ,e database search engine set cystine
carbamoyl methylation as a fixed modification and N-acet-
ylation and methionine oxidation as variable modifications.
In all of the identified peptides, peptide ions with a charge
state of +1 or >4 and a different ratio for proteins of <2.0-fold
or >0.5-fold were excluded, and the false discovery rate was
adjusted to 1%. Intensity-based absolute quantification
(iBAQ) was applied for protein quantification, and the iBAQ
values were converted into iFOT values (fraction of total,
iBAQ value of each protein divided by the sum of all iBAQ
values of all proteins in the sample) as described previously
[35]. ,e IFOT values were used to quantify low-abundance
proteins. ,e false discovery rate for proteins was equal to the
ratio of the number of assembled proteins from decoy

database searches relative to the number of assembled pro-
teins from target database searches.

2.5. MS Platform Quality Control (QC). ,e trypsin in the
tissue lysates was tested as a QC standard for MS. ,e QC
standard was produced and operated using the same
methods and conditions with the same software and GC
parameters. We evaluated quantitative protein repeatability
using three statistical analysis methods: Pearson’s correla-
tion coefficient, principal component analysis (PCA), and
relative standard deviation.

2.6. Bioinformatics and Statistical Analysis. Limited selec-
tions were used to screen label-free quantitative data before
DEPs analysis, as follows: (1) proteins with the same
peptide found in two to three samples were included; (2)
the protein identification confidence was set to 95%, and
the false positive rate was less than 5% in the database; (3)
the difference ratio of proteins was more than the 2.0-fold
and the p-value was less than 0.05. , DEPs were analyzed
based on the GO secondary annotations. DEPs were
classified using the GO database according to molecular
function, cellular component, and biological process cat-
egories, and the significance of each protein function
classification was determined using Fisher’s exact test. To
identify representative proteins in each tissue sample and
determine their biological significance, we also conducted
comparisons using the KEGG database (http://www.
genome.jp/kegg/) to identify possibly enriched pathways.
In addition, protein interaction network analysis and an-
alyses of the similarities and differences in the DEPs be-
tween groups were conducted to identify the functional
properties of the DEPs and their relevance to the research
goal. For each category, a two-tailed Fisher’s exact test was
employed to test the enrichment of the DEPs against all
identified proteins. ,e GO with a corrected p-value < 0.05
was considered significant. KEGG database was used to
identify enriched pathways by a two-tailed Fisher’s exact
test to test the enrichment of the DEPs against all identified
proteins. ,e pathway with a corrected p-value < 0.05 was
considered significant. ,ese pathways were classified into
hierarchical categories according to the KEGG website. For
further hierarchical clustering based on differentially
expressed protein functional classification, we first collated
all the categories obtained after enrichment along with
their p values and then filtered for those categories which
were at least enriched in one of the clusters with p val-
ue < 0.05. ,is filtered p value matrix was transformed by
the function x � −log10 (p value). Finally these x values
were z-transformed for each functional category. ,ese z
scores were then clustered by one-way hierarchical

Table 1: Baseline characteristics of the patients included in this study.

Patient demographics CNAG (n� 6) CAG (n� 7) GIN (n� 4) GC (n� 5)
Age (years± SD) 43.50± 12.48 54.71± 8.61 48.50± 13.17 57.2± 5.67
Sex (male, %) 66.66 71.42 75.00 80.00
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clustering (Euclidean distance, average linkage clustering)
in Genesis. After comparing the DEPs in different groups
with the STRING (v.11.0)(https://string-db.org) protein
network interaction database, the interactions between the
DEPs were obtained based on a confidence score >0.7 (high

confidence). ,e protein-protein interactions (PPI) of
dysregulated proteins predicted by STRING showed that
most could interact with each other. STRING analysis
showed that the DEPs formed strong networks with dy-
namic clusters.
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Figure 1: (a) General workflow of MS-based quantitative proteomics and bioinformatics analyses. (b) Two-dimensional scatter plot
obtained by principal component analysis showing the distribution of all the quantified protein.samples. (c) Detection of the precision of
proteins extracted from tissues.
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3. Results

3.1. Protein Identification in Gastric Tissue Samples. We
identified 100, 223, and 341 dysregulated proteins using

Proteome Discoverer 1.4 in the comparisons of GC versus
GIN, GC versus CNAG, and GIN versus CNAG, respectively
(Figure 2). PCA and the Pearson’s correlation coefficient
indicated good quantitative repeatability (Figures 1(b) and
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Figure 2: (a) Histogram showing the numbers of upregulated and downregulated differentially expressed proteins in different comparison.
(b) Venn diagrams showing differences and similarities of the proteins identified in the three comparisons. ,e numbers of proteins
represent those with more than twofold difference in expression in three comparisons, and the numbers of proteins shared in two or three
cases. (c) Volcano plots showing the differentially expressed proteins determined in the comparisons of GC versus GIN, GC versus CNAG,
and GIN versus CNAG.
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Figure 3: Continued.
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1(c)). We determined the expression levels of 100 proteins in
GC versus GIN, where 41 proteins were upregulated, and 59
proteins were downregulated. ,e expression levels of 223
proteins were determined in GC versus CNAG, where 85
proteins were upregulated, and 138 proteins were down-
regulated. ,e expression levels of 341 proteins were de-
termined in GIN versus CNAG, where 205 proteins were
upregulated, and 136 proteins were downregulated (Figure 2
and Supplementary Material 2).

3.2. Subcellular Structural Localizations of DEPs. ,e de-
velopment of GC is strictly regulated by a series of signaling
events and effectors. We conducted analyses to further in-
vestigate the functions of the DEPs. ,e subcellular locali-
zation indicated that the DEPs were annotated as
cytoplasmic for GC versus GIN (Figure 3(a)). For GC versus
CNAG, the results showed that the upregulated proteins
were located in the cytoplasm and nucleus, and the
downregulated proteins were located in the cytoplasm and
extracellular areas (Figure 3(b)). For GIN versus CNAG, the
upregulated proteins were annotated as located in the cy-
toplasm and nucleus, and the downregulated proteins were
located in the cytoplasm, extracellular areas, and nucleus
(Figure 3(c)). ,e cytoplasm is the main site for biochemical
reactions. ,ese results indicate that proteins in the cyto-
plasm and nucleus may play important roles in the devel-
opment of GC.

3.3. Functional Annotations of DEPs Using GO.
Furthermore, the DEPs quantified in each group were sta-
tistically analyzed based on GO primary annotations. ,e
DEPs were classified into three categories (biological pro-
cess, cellular component, and molecular function) based on

GO annotations to assess the biological roles of the proteins
from different perspectives. ,e GO enrichment analysis
results for the DEPs were similar for GC versus GIN
(Figure 4(a)), GC versus CNAG (Figure 4(b)), and GIN
versus CNAG (Figure 4(c)), where they were mostly asso-
ciated with a cellular process and biological regulation, and
the molecular functions of these proteins were mainly re-
lated to catalytic activity and binding (Figure 5).

3.4. GO Enrichment Analysis. For GC versus GIN, DEPs
were mainly involved in the regulation of blood circulation
and epithelial cell development in the biological process
category, related to the Golgi apparatus in the cellular
component category, and mainly related to T cell receptor
binding and transferase activity in the molecular function
category. For GC versus CNAG, DEPs were mainly involved
in actin-myosin filament sliding and glycoprotein metabolic
process in the biological process category, related to im-
munoglobulin complex, circulating and endoplasmic re-
ticulum chaperone complex in the cellular component
category, and mainly related to immunity and protein
synthesis in the molecular function category. For GIN versus
CNAG, the DEPs were related to substrate adhesion-de-
pendent cell spreading and regulation of leukocyte prolif-
eration in the biological process category, related to the
phagocytic cup in the cellular component category, and
mainly related to MHC class II receptor activity and cell-cell
adhesion mediator activity in the molecular function cate-
gory (Figure 6).

3.5. KEGG Pathway Enrichment Analysis. KEGG enrich-
ment analysis for GC versus GIN showed that the proteins
were mainly involved in fatty acid metabolism and
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biosynthesis. For GC versus CNAG, the DEPs were enriched
in aminoacyl-tRNA biosynthesis and insulin resistance. For
GIN versus CNAG, the DEPs were enriched in intestinal
immunity and inflammation, tryptophan metabolism, reg-
ulation of actin cytoskeleton, and extracellular matrix-re-
ceptor interaction (Figure 7).

3.6. Protein-Protein Interaction Network Analysis. ,e
cluster for GC versus GIN was mostly related to energy
metabolism, cancer metastasis, and invasions, such as
LAMTOR1 and TOM1 (Figure 8(a)). ,e cluster identified
for GC versus CNAG contained proteins related to cell
proliferation and migration, such as HSPD1, TOMM40,
TIMM13, and TIMM8A. GTF2F2, RRP12, WDR75, GLMN,
and WDR43 (Figure 8(b)). ,e cluster for GIN versus
CNAG was mainly related to cell proliferation, cell migra-
tion, and invasions, such as PYGB, FABP5, ITGA4, ITGA9,
RBX1, ARF6, PAK4, GIT1, and COMMD8 (Figure 8(c)).

3.7. Enrichment Clustering Analysis. As shown in the clus-
tered heatmap in Figure 9, the expression levels of proteins
associated with cancer migration and gastric carcinogenesis
were elevated during cancer development, where the sig-
naling pathways for these proteins included gastric carci-
nogenesis and cancer migration. By contrast, the expression
levels of immune and cytosolic factor-related proteins were
decreased during cancer development, and these proteins

were enriched in cellular pathways related to the comple-
ment system and immune system. According to our analysis,
the expression levels of neutrophil-mediated, leukocyte-
mediated, and immune-associated proteins were decreased
from CNAG to CAG, whereas the expression levels of these
proteins increased gradually during cancer progression.
,ese immune-related proteins were mainly associated with
transcriptional misregulation in cancer and the IL-17 sig-
naling pathway. ,e expression levels of proteins related to
lipid metabolism were higher in the GIN versus CNAG
group than in the GC versus CNAG group, and these
proteins were strongly associated with the Jak-STAT sig-
naling pathway and steroid hormone biosynthesis. ,e
expression levels of cancer migration-associated proteins
were lowest in GIN, whereas the expression levels of these
proteins were elevated during the progression from GIN to
GC. ,ese proteins activated pathways associated with
complement and coagulation cascades and cancer
migration.

4. Discussion

GC is one of the most common cancers throughout the
world, and it has a high mortality rate (5). Early diagnostic
screening and providing effective drug intervention targets
are reliable methods for the detection and treatment of GC.
However, the related molecules and regulatory mechanisms
for GC are unclear, especially the key signaling pathways and
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Figure 4: Classifications of the proteins identified using the GO database: (a) GC versus GIN; (b) GC versus CNAG; and (c) GIN versus
CNAG.
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optimum early markers and targets. In this study, we used
proteomics to investigate gastric tissue samples collected
from GC, GIN, CAG, and CNAG patients and identified
DEPs related to GC to detect potentially important mo-
lecular and signaling networks, carcinogenic mechanisms,
and specific biomarkers for GC diagnosis and treatment.

CNAG is the most common type of chronic gastritis, and
the risk of CAG is increased for patients with CNAG [36]. In
this study, we identified and quantified a higher number of
dysregulated proteins for GC versus CNAG. Further analysis
showed that all of these dysregulated proteins had cancer-
related associations, such as PDIA5 [37], DEF6 [38], MZB1
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Figure 5: Clustered heatmap analysis of the differential proteins in CNAG, CAG, GIN, GC groups. Each column represents the protein
information of one group of samples, and each row represents the relative expression level of each protein.
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[39], TXNDC5 [40], YARS2 [41], MGST1 [42], and PIH1D1
[43]. Previous studies have shown that these proteins are
associated with metastasis, invasion, proliferation, drug
resistance, and a poor cancer prognosis. For GC versus
CNAG, 36 DEPs were also related to specific tissues and
tumors nearby, thereby indicating the reliability of our
experimental results (9) (Figure 10). For the first time, our
data analysis showed that WDR43 and WDR75 were as-
sociated with the development of GC. WD repetitive
structural domains have biological functions via the epi-
genetic regulation of gene transcription, and the aberrant
expression of WDR5 has been observed in various types of
human cancers, including prostate cancer, breast cancer, and
leukemia [44]. Previous studies have shown thatWDR62 can
be used as a diagnostic and prognostic biomarker for various
cancers, and it is closely associated with infiltration by
various immune cells [45]. For CNAG versus GC, KEGG
analysis showed that aminoacyl-tRNA biosynthesis and
insulin resistance were activated, thereby suggesting that the
development of CNAG to GC may involve changes in ad-
hesion proteins and cytoskeletal proteins. ,e expression
levels of caveolin-1 and E-cadherin were significantly less in
GC than in CNAG [46]. Protein-protein interaction analysis
also showed that the protein interaction network for CAG
involved proteins related to cell proliferation and migration,
such as HSPD1, TOMM40, TIMM13, TIMM8A, GTF2F2,
RRP12, WDR75, GLMN, and WDR43. ,us, the abnormal
expression of proteins related to cell growth, proliferation,
and migration may increase the likelihood of CNAG de-
veloping into GC.

For GIN versus GC, 100 DEPs were quantified, including
SCAMP3 [47], USP3 [48], PIH1D1 [49], ACSF3 [50], INPP1
[51], VPS53 [52], and EPHA2 [53]. ,ese proteins are

associated with protein synthesis, the ubiquitinase system,
cellular autophagy, and cancermigration, thereby suggesting
that these proteins can interact with each other to control
cell fates. Kocevar et al. [54] analysis of 30 different proteins
with roles in GC development, including metabolism, de-
velopment, death, cellular communication, and transport,
also partially supported our results. KEGG analysis showed
that the signaling pathways activated in GIN were related to
the complement system, platelets, and autophagy, thereby
suggesting that GIN involves inflammation and mucosal
injury. ,e protein interaction network obtained between
GIN and GC also involved LAMTOR1, and thus GIN may
involve aberrant cellular autophagy.

For GIN versus CNAG, 341 DEPs were quantified by LC-
MS/MS, and GO enrichment analysis showed that their
molecular functions mainly included protein binding, the
cellular components were mainly intracellular, and the bi-
ological processes mainly involved cellular processes and
biological regulation. KEGG analysis identified roles for
focal adhesion, the PI3K-Akt signaling pathway, and ex-
tracellular matrix−receptor interaction; thus, the develop-
ment of GIN may involve abnormal cytoskeletal changes,
cell proliferation, and migration. ,e protein interaction
network included PYGB, FABP5, ITGA4, ITGA9, RBX1,
ARF6, PAK4, GIT1, and COMMD8, which are associated
with cell proliferation, cell migration, and invasion, thereby
indicating that the expression of proteins associated with
metastasis and invasion occurs during cancer development
from CNAG to GIN.

To further understand the changes in protein expression
from CNAG to CAG, GIN, and GC, we performed coex-
pression analysis, and the results showed that the expression
levels of proteins associated with cancer migration and
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gastric carcinogenesis increased consistently during
cancer formation and progression, such as ITGA4, DDC,
and CPT1A. ITGA4 is an adhesion molecule that is ac-
tively involved in cellular extravasation [55]. Lympho-
vascular invasion (LVI) and nerve invasion (PNI) are two
important pathological parameters, and ITGA4 is a re-
liable marker for the simultaneous detection and diag-
nosis of LVI and PNI, where it has been detected in colon,
prostate, esophageal, lung, kidney, uterine, tongue,
bladder, and liver cancers [56]. DDC is an enzyme in-
volved in the biosynthetic pathway for the neurotrans-
mitters dopamine and serotonin. DDC can be used to
detect peritoneal micrometastases of GC with good sen-
sitivity and specificity, especially for poorly differentiated
adenocarcinomas [57]. ,e enzyme CPT1A resides in the

outer mitochondrial membrane, and it catalyzes the re-
versible transfer of acyl groups between coenzyme A
(CoA) and L-carnitine to convert acyl-CoA esters into
acyl-carnitine esters [58]. CPT1A-mediated fatty acid
oxidation promotes the metastasis of colorectal cancer
cells by inhibiting anoikis [59]. Our findings also sug-
gested that the expression levels of immune-related
proteins were decreased, such as GMPR and HLA-DPB1.
Lower expression of the HLA-DPB1 gene may lead to
increased aggressive disease in adult adrenocortical tu-
mors [60]. GMPR is closely associated with the formation
of an invasive footprint, in vitro invasion, and the growth
of melanoma cells [61]. ,e results obtained in previous
studies combined with our findings indicate that the
growth and invasion of cancer cells are important

Up regulation
Down regulation

Degree

(c)

Figure 8: Association networks of dysregulated proteins: (a) protein-protein interaction network for GC versus GIN; (b) protein-protein
interaction network for GC versus CNAG; and (c) protein-protein interaction network for GIN versus CNAG.
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processes in GC formation and progression. Iuga et al.
[32]suggested that upregulated proteins are more suitable
as potential biomarkers than downregulated proteins
during the development of GC. ,erefore, we consider
that the combination of ITGA4, DDC, and CPT1A could
be used as potential diagnostic markers for GC. However,
the value and utility of these protein molecules as po-
tential biomarkers are still debatable and need to be fully
validated.

In this study, we found that immunity, cell proliferation,
and metastasis-related proteins may play important roles in
the occurrence and progression of GC, and they are potential
diagnostic markers for GC. Further studies are needed to
verify whether these DEPs can be used as diagnostic markers
for GC and whether they are targets for GC treatment.
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5. Conclusion

Our findings provide a valuable resource for the early di-
agnosis and treatment of GC. Immunity, cell proliferation,
and metastasis-related proteins related proteins are associ-
ated with the development and progression of GC.,eDEPs
were mainly associated with immunity (GC versus CNAG)
and cancer proliferation and metastasis (GC versus GIN and
GIN versus CNAG). ITGA4, DDC, and CPT1A are po-
tentially diagnostic markers for GC.
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