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Iodoacetic acid (IAA) is one of the most common water disinfection byproducts

(DBPs). Humans and animals are widely and continuously exposed to it. Many

species of water DBPs are harmful to the reproductive system of organisms.

Nevertheless, the potential effects of IAA exposure on testosterone and

spermatogenesis in vivo remain ambiguous. Spermatogenous cells are the site

of spermatogenesis, Leydig cells are the site of testosterone synthesis, and Sertoli

cells build the blood–testis barrier (BTB), providing a stable environment for the

aforementioned important physiological functions in testicular tissue. Therefore,

we observed the effects of IAA on spermatogenic cells, Leydig cells, and Sertoli

cells in the testis. In this study, we found that oral administration of IAA (35mg/kg

body weight per day for 28 days) in male mice increased serum LH levels and

reduced sperm motility, affecting average path velocity and straight line velocity

of sperm. In addition, IAA promoted the expression of γH2AX, a marker for DNA

double-strand breaks. Moreover, IAA downregulated the protein expression of

the scavenger receptor class B type 1 (SRB1), and decreased lipid droplet transport

into Leydig cells, which reduced the storage of testosterone synthesis raw

materials and might cause a drop in testosterone production. Furthermore,

IAA did not affect the function of BTB. Thus, our results indicated that IAA

exposure affected spermatogenesis and testosterone synthesis by inducing

DNA damage and reducing lipid droplet transport.
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Introduction

In recent years, male fertility has generally shown a downward trend (Agarwal et al.,

2021), and the effect of endocrine disruptors is one of the reasons (Kahn et al., 2020).

There are many types of endocrine disruptors, and water disinfection by-products (DBPs)

are one of them. DBPs are chemical contaminants formed by the reaction between organic
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matter and disinfectants. Research proves that water DBPs

disrupt ovarian function and spermatogenesis, and produce

adverse reproductive outcomes (Gonsioroski et al., 2020a)

because many species of these are cytotoxic, neurotoxic,

genotoxic, carcinogenic, and teratogenic (Kali et al., 2021).

Haloacetic acid disinfection by-products (HAA-DBPs) are a

class of water DBPs. Iodoacetic acid (IAA) is one type of HAA-

DBPs. It is also used in the research of organic synthesis, dye

industry, and plant resources, where people are exposed to a large

dose of poisoning environment. Research has shown that IAA is

the most genotoxic of all HAA-DBPs studied to date (Dong et al.,

2019), which was more cytotoxic and genotoxic than their

chlorinated and brominated analogues in primary human

lymphocytes (Escobar-Hoyos et al., 2013). After inoculation

into BALB/C nude mice, IAA transformed NIH3T3 cells into

tumorigenic lines and formed aggressive fibro sarcomas, which

demonstrated that it had a biological activity consistent with a

carcinogen (Wei et al., 2013). IAA potentially disrupted the

thyroid endocrine system by down-regulating the mRNA and

protein expression levels of the thyrotropin receptor (TSHR) and

the sodium/iodide symporter (NIS) (Xia et al., 2018). Moreover,

IAA reduced cell viability significantly in the mouse primary

hepatocytes (Wang et al., 2018).

For the adult female mice, IAA, as a

hypothalamic–pituitary–gonadal axis toxicant, affected the

pituitary directly and increased mRNA levels of kisspeptin

(Kiss1) significantly in the arcuate nucleus (Gonzalez et al.,

2021). Research demonstrated that IAA had reproductive and

developmental toxicity (Long et al., 2021). Another study

reported that IAA exhibited the most potent estrogenic

activity (Kim et al., 2020). In vivo, IAA altered estrous

cyclicity, ovarian gene expression, and estradiol levels in mice

(Gonsioroski et al., 2021). Meanwhile, IAA inhibited follicle

growth, decreased cell proliferation, and altered

steroidogenesis in vitro (Jeong et al., 2016; Gonsioroski et al.,

2020b). In the Comet assay, IAA resulted in DNA damage in

sperm (Ali et al., 2014). However, the effect of IAA on the testis in

vivo is not yet fully understood. Particularly, its effect on

spermatogenesis and testosterone synthesis has not been

elucidated.

To observe the effects of IAA on the male reproductive

system and to test the mechanism, we constructed a model of

IAA exposure by gavage and observed several common

indicators of Leydig cells, Sertoli cells, and spermatogenic cells

from the gene expression and protein levels. For spermatogenic

cells, γH2AX, DAZL, and VASA were observed; for Leydig cells,

scavenger receptor class B type 1 (SRB1), steroidogenic acute

regulatory protein (STAR), P450 side-chain cleavage enzyme

(CYP11A1), and cytochrome P450 17A1 (CYP17A1) were

detected; and for Sertoli cells, WT-1, N-cadherin, and β-
catenin were recorded. In addition, the levels of FSH, LH, and

testosterone in the mouse serum were also determined.

Materials and methods

Materials and reagents

IAA was purchased from Sigma-Aldrich (Shanghai

Warehouse, China). Antibodies for STAR (8449s) and

CYP11A1 (14217s) were procured from Cell Signaling

Technology, Inc. Antibody for CYP17A1 (14447-1-AP) was

purchased from Wuhan SANYING Proteintech (Wuhan

Warehouse, China). The other antibodies were obtained from

Abcam (Shanghai, China) including DAZL (ab34139), VASA

(ab13840), γH2AX (ab81299), SRB1 (ab217318), Wilms tumor-1

(WT-1) (ab89901), N-cadherin (ab18203), β-catenin (ab16051),

and tubulin (ab7291).

Animals and treatments

All animals used in the experiment were male 8 -week-old

C57BL/6 mice, purchased from Vital River Laboratory Animal

Technology Co., Ltd. (Beijing, China). They were randomly

divided into two groups, with free access to water and food.

After 1 week of acclimatization, the control group (8 mice)

received treatment via gavage with a matching volume of

double distilled H2O, and the experiment group (10 mice) was

administered IAA at 35 mg/kg via oral gavage daily. The dosage

and duration of IAA were referred to the previous literature (Xia

et al., 2018). All mice were adapted to a 12-h light/dark cycle at

22–25°C. They were weighed twice a week, and doses were

adjusted according to their bodyweight. After treatment for

28 days, all the mice were anesthetized, the blood was

collected, and the caudal part of the epididymis was used for

the evaluation of sperm parameters. Then the testis samples were

removed quickly for the subsequent analyses. One testis was fixed

in Bouin’s solution for the histopathological examination and

immunofluorescent staining, and the other testis was frozen in

liquid nitrogen and stored at −80°C until used for the assessment

of mRNA and protein expression.

All animal experiments were approved by the Animal Ethics

Committee of Shandong Provincial Hospital and performed

according to the Shandong Provincial Hospital Animal Care

and Use Committee.

Sex hormone analysis

The level of luteinizing hormone (LH) in the serum was

measured by the ELISA kit from CLOUD-CLONE CORP.

(Wuhan, China). Testosterone and follicle stimulating

hormone (FSH) in the serum were measured by the ELISA kit

from Cusabio (Wuhan, China). The operating procedure was

strictly in accordance with the kit instructions.
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Sperm quality

The cauda part of the right epididymis of each mouse was

collected and cut into pieces with scissors to release sperms into

an M199 culture medium (containing 1% BSA). The cultures

were maintained in a humidified chamber (37°C, 5% CO2

incubator) for 5 min. A total of one hundred microliters of

each sample was taken and diluted four times. Then thirty

microliters of the sample were used for the following assay.

Five pictures were taken per sample. Then the data were

quantified by computer-aided sperm analysis (CASA,

Hamilton-Thorne, Shanghai, China), and the appurtenant

software was used to assess sperm concentration, motility,

progressive, quantity, average path velocity, straight line

velocity, and curvilinear velocity.

Hematoxylin-eosin staining

The testis was immersed in Bouin’s fluid fixative for 24 h,

transferred to 70% ethanol, and placed into an automated tissue

processor for gradient ethanol dehydration. The samples were

embedded in paraffin wax and cut into 3 μm sections. Then the

testicular specimens were deparaffinized with xylene and ethanol,

stained with hematoxylin and eosin, dehydrated, and mounted.

Afterward, the morphological changes of the testis were observed

FIGURE 1
Effects of IAA exposure on general condition and serum hormone levels in mice. During the IAA exposure, the body weights of the mice were
recorded twice a week. Only weekly values are shown in the graph (A). Pictures of mice and testis (B), testicular weight (C), and the relative weight of
testis (D) between the two groups were recorded after sacrifice. Hematoxylin-eosin (H&E) sections of testicular tissue of mice were also recorded
and the pathological morphology was observed (E). After IAA exposure, serum FSH, LH, and testosterone levels of mice were detected by ELISA
(F–H). Data are presented as the mean ± SEM. * Significant differences compared to control (p < 0.05).
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under a microscope to complete the image collection and

analysis.

RNA extraction and real-time PCR

Total RNA was extracted from testicular tissue (10 mg) with

TRIzol reagent (Takara, Tokyo, Japan) according to the

manufacturer’s instructions. A Prime-Script RT Reagent Kit

(Takara, Japan) was used to reverse-transcribe RNA into

cDNA, and SYBR Premix Ex Taq (Takara, Japan) was used to

perform a quantitative real-time polymerase chain reaction

(PCR) utilizing a Thermal Cycler Dice Real-Time System

(Takara, Japan). The program used to analyze the abundance

of different genes was 95°C for 5 min, 40 cycles of 95°C for 10 s,

60°C for 10 s, and 72°C for 10 s, followed by a melting curve from

95 to 60°C, and cool to 37°C for 10 s. β-actin was employed as an

endogenous control to normalize the data, and the 2-ΔΔCt
calculation method was employed to analyze them. The qPCR

primers used are listed in Supplementary Table S1.

Western blotting

Mouse testicular fragments were lysed with ice-cold

radioimmunoprecipitation assay buffer (RIPA buffer)

supplemented with protease and phosphatase inhibitors

(Shenergy Biocolor Bioscience & Technology Company,

Shanghai, China), subjected to ultrasound pyrolysis, and

centrifuged at 15,000 g for 15 min. Total protein was quantified

using the BCA protein assay. After denaturation, proteins were

separated by sodium dodecyl sulphate-polyacrylamide gel

electrophoresis (SDS-PAGE) on 10%–12% polyacrylamide gels

under reducing conditions. Separated proteins were electro

transferred onto a polyvinylidene difluoride membrane

(Millipore, Billerica, MA, United States) and blocked-in with

5% non-fat powdered milk containing 0.1% Tween 20 for 1 h.

Next, to detect γH2AX, VASA, DAZL, SRB1, STAR, CYP17A1,

CYP11A1, WT-1, N-cadherin, and β-catenin proteins (antibodies

listed in Supplementary Table S2), the membrane was incubated

with the respective primary antibodies at 4°C overnight.

Thereafter, the membranes were washed briefly with TBST,

incubated in the anti-rabbit or anti-mouse IgG secondary

antibody conjugated to horseradish peroxidase (1:5000) for 1 h

at room temperature, and visualized by a HyGLO HRP detection

kit (Denville, NJ, United States). Protein expression levels were

quantified with Fluor Chem Q SA software.

Immunofluorescence

For fluorescent microscopy, paraffin sections of the testis were

deparaffinized with xylene, hydrated with a series of alcohol

solutions, and washed three times in phosphate-buffered saline

(PBS). The specimens were immersed in EDTA antigen repair

buffer and heated in a microwave oven for 25 min. Then they were

cooled for 60 min, washed three times with PBS, and incubated

with 5% donkey serum for 60 min at room temperature.

Afterward, the slides were incubated with their respective

primary antibodies overnight. The next day, the sections were

washed three times with PBST and then incubated with FITC-

conjugated donkey anti-rabbit IgG (1:1000; Thermo Fisher) for 1 h

at room temperature. After a final wash in PBST, nuclei were

stained with DAPI, the slides were visualized under a fluorescence

microscope, and the photos were taken and analyzed.

Statistical analysis

All data were analyzed with SPSS 25.0 and were expressed as

the mean ± standard error of the mean (SEM). Outliers were

removed by the ROUT’s test using GraphPad outlier calculator

software. Means were compared using unpaired Student’s t-test

for comparisons between two groups, and a two-tailed value of

p < 0.05 was considered statistically significant.

Results

Effects of iodoacetic acid on testicular
morphology and hypothalamus pituitary
gonadal axis hormones

Compared with the control group, a slight decrease in body

weight was observed after the IAA exposure for 28 days (Figures

TABLE 1 Sperm parameters.

CON IAA p value

VAP (μm/s) 87.10 ± 4.40 80.65 ± 7.12 0.040*

VSL (μm/s) 63.94 ± 5.27 57.79 ± 5.91 0.035*

VCL (μm/s) 184.93 ± 9.50 177.69 ± 16.19 0.281

ALH (μm) 8.98 ± 0.51 9.03 ± 0.51 0.822

BCF (Hz) 36.09 ± 0.71 35.91 ± 1.21 0.719

LIN (%) 36.62 ± 2.92 35.40 ± 2.37 0.340

STR (%) 70.75 ± 3.45 69.70 ± 2.58 0.471

Concentration (M/ml) 9.63 ± 1.92 8.21 ± 1.69 0.116

Motile (%) 53.63 ± 9.50 56.00 ± 11.10 0.638

Progressive (%) 20.00 ± 4.57 17.80 ± 5.35 0.369

Rapid sperm (%) 11.63 ± 5.40 39.70 ± 6.57 0.621

Medium sperm (%) 41.13 ± 5.09 15.50 ± 8.06 0.262

Slow sperm (%) 0.65 ± 0.26 0.95 ± 0.41 0.097

Static sperm (%) 46.38 ± 9.50 44.00 ± 11.10 0.638

*Significant differences compared to the control (p < 0.05).
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1A,B). The relative weight of testis was calculated by testes weight

(mg)/body weight (g), but there were no significant reductions in

the testis weight and its relative weight between two groups

(Figures 1C,D). As shown in Figure 1E, no evidence of atrophy

and vacuoles was seen in the experimental group. The testis tissue

presented a normal testicular morphology and complete

seminiferous tubules, and also possessed different stages of

spermatogonium, spermatocyte, and spermatozoa in the

seminiferous tubules. IAA did not alter the pathology and

morphology of the testicular tissues. To clarify the effect of

IAA exposure on sex hormones, serum FSH, LH, and

testosterone levels were detected. There was no significant

difference in the FSH level between the two groups

(Figure 1F). However, a significant increase in the LH level

was observed versus control (p = 0.020, Figure 1G). Although

there was no significant reduction in the testosterone level, a

descending trend was observed compared with the control group

(p = 0.166, Figure 1H).

Effects of iodoacetic acid exposure on
sperm motility

To observe the effect of IAA exposure on sperm motility,

various indicators of sperm motility and concentration were

tested (as listed in Table 1). As observed in our results, there

were no significant changes in the following sperm parameters,

such as sperm concentration, motile, progressive, and curvilinear

velocity (VCL). But the average path velocity (VAP) and straight

line velocity (VSL) of sperm decreased significantly compared

with the control group. We also tested the sperm ratios as rapid,

medium, slow, and static. There were no statistical differences in

these indicators between the two groups; however, there was a

clear increasing trend in the proportion of slow motile sperm.

Effects of iodoacetic acid exposure on
markers of spermatogenic cells

Spermatogenesis is an important physiological function of

testicular tissue. To observe the effects of IAA exposure on

spermatogenic cells, the gene expression and protein levels of

relevant indicators during spermatogenesis were examined. As

shown in Figure 2A, no significant changes were observed in the

spermatogenesis indicators Dazl, Vasa, Plzf, c-Kit, Stra8, Sycp1,

Sycp3, Tnp2, and Piwil1 at the mRNA level between the two

groups. But IAA treatment significantly increased γH2AX

expression compared to no treatment. All seminiferous

tubules contain γH2AX spermatocytes at respective steps in

development. Meanwhile, γH2AX is a marker of the DNA

damage response and replication stress. Although IAA

exposure did not change the protein levels of VASA and

DAZL compared to the control (Figures 2B,C,F,G), the

protein level of γH2AX was observed increasingly by Western

Blot (WB) and immunofluorescence staining experiments

(Figures 2B–E).

Effects of iodoacetic acid on cholesterol
transport and testosterone synthesis-
related enzymes

To evaluate the effect of IAA exposure on testosterone

synthesis, changes in gene expression, protein levels of these

enzymes and LDs were examined. The results demonstrated that

IAA exposure decreased LD storage in Leydig cells (Figures

3A,B). SRB1, as a high-density lipoprotein receptor, is

responsible for the transport of LDs. In our study, although

the gene expression did not change between the two groups

(Figure 3C), there was a decrease in the protein level (Figures

3D–G). Compared with the control group, a mild decrease in

Cyp11a1mRNA expression was observed, as shown in Figure 3C.

However, its protein level showed no significant difference

between the two groups (Figures 3D,E,H,I). The steroidogenic

acute regulatory (STAR), as a key enzyme in testosterone

synthesis, tended to decrease in the experiment group, but the

differences failed to reach statistical significance (Figures 3D,E).

In the immunofluorescence staining experiment, it showed no

difference versus control (Supplement Figures 1A,B). Also, no

changes were observed in the gene expression of Cyp17a1,

Cyp19a1, 3β-hsd, and Lhcgr between the two groups (Figure 3C).

Effects of iodoacetic acid on blood–testis
barrier function in Sertoli cells

To assess the effect of IAA exposure on Sertoli cells, changes

in genes and proteins of WT-1 and some indicators of tight

junctions were examined. As shown in Figure 4A, there were no

differences at the genetic level between the two groups on Wt-1,

Claudin-11, Nectin-2, Zo-2, β-catenin, Jam-A, N-cadherin, and

Connexin-43. The protein levels of WT-1, N-cadherin, and β-
catenin also did not perform a statistical difference compared

with control (Figures 4B–E).

Discussion

It is well known that endocrine disruptors have a direct

impact on gonads and long-term reproductive health (Delbes

et al., 2022). IAA has a negative influence on the female

reproductive system, while the effects on the male

reproductive system have not been systematically studied.

From the perspective of the physiological structure of the

testis, the male reproductive system mainly includes

spermatogenic cells, Leydig cells, and Sertoli cells (Mäkelä
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et al., 2019). Therefore, we mainly observed the effect of IAA on

its function from these three aspects. In our study, IAA exposure

had no apparent effect on Sertoli cell function, but it exacerbated

DNA damage in spermatogenic cells and reduced cholesterol

storage in Leydig cells by reducing the protein expression of

SRB1. In addition, IAA also affected sperm motility, slowing

FIGURE 2
Changes of spermatogenesis-related indexes were observed from gene expression and protein level, respectively. The expression of the
following genes, such as Dazl, Vasa, Plzf, c-Kit, H2ax, Stra8, Sycp1, Sycp3, Tnp2, and Piwil1, in the testis tissue of the two groups were detected by
real-time PCR (qRT-PCR) technology (A). Also, the changes of protein levels such as VASA, DAZL, and γH2AX between the two groups of mice were
observed by Western Blot (B,C) and immunofluorescence staining experiments (D–G). * Significant differences compared to the control
(p < 0.05).
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down VAP and VSL. Furthermore, it caused dysfunction of the

hypothalamic–pituitary–gonadal axis, especially the increase in

LH in serum.

We found that the body weight in the experimental group

showed a slight decrease. This may be mainly due to the effect of

IAA on gastric acid secretion (Cheng et al., 2001), which finally

FIGURE 3
Lipid droplet storage in Leydig cells and changes in testosterone synthase from gene expression and protein levels were examined. Cholesterol
storage in Leydig cells between the two groups was visualized by BODIPY staining (A,B). The relative mRNA levels of the following indicators, Lhcgr,
Srb1, Star, Cyp17a1, Cyp11a1, 3β-hsd, and Cyp19a1, were detected by qRT-PCR (C). Also, the protein levels of cholesterol transporter SRB1 and
testosterone synthase STAR, CYP11A1, and CYP17A1 were observed byWestern Blot (D,E) and immunofluorescence staining experiments (F–I).
* Significant differences compared to the control (p < 0.05).
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caused the mice to lose weight. To observe the effect of IAA on

sex hormones in vivo, we measured the levels of FSH, LH, and

testosterone in the serum. In our study, FSH did not change

compared to the control group, but LH showed a significant

increase versus control. Research showed that in adult female

mice, IAA did not alter LHβ expression, while it reduced FSHβ-
positive cell number and FSHβ mRNA expression at a dose of

10 mg/kg in vivo (Gonzalez et al., 2021). The inconsistent

results might be due to the difference in dosage and time of

medication. Given that testosterone varies widely between

individuals, we did not remove outliers. Although there was

no difference in testosterone between the two groups, there was

a descending trend in the experimental group. We inferred that

IAA exposure caused a decrease in testosterone but increased

LH through negative feedback, thus maintaining normal levels

of testosterone.

To observe the effect of IAA on sperm, we examined

changes in relevant sperm parameters, such as sperm

concentration, motility, progressiveness, VAP, VSL, VCL,

ALH, and BCF. Among them, VAP and VSL showed a

significant decrease compared to the control group. We

deduced that was because IAA inhibited the glyceraldehyde-

FIGURE 4
Changes of BTB-related indexes were detected from gene expression and protein level. Relative mRNA levels between the two groups, Wt-1,
Claudin-11, Nectin-2, Zo-2, β-catenin, Jam-A, N-cadherin and Connexin-43, were observed (A). The protein levels of WT-1, N-cadherin, and β-
catenin were also observed by Western Blot (B,C) and immunofluorescence staining experiments (D,E). * Significant differences compared to the
control (p < 0.05).
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3-phosphate dehydrogenase (GAPDH), which was the key

target of IAA (Hall et al., 2020) and one of the key enzymes

in glycolysis, reduced cellular ATP levels (Dad et al., 2018), and

ultimately slowed down sperm motility.

Sperm production is one of the most important functions of

the testis. Spermatogenesis is a complex developmental process

that consists of three stages: mitosis, meiosis, and

spermiogenesis (Zhao J. et al., 2021). To observe the effect of

IAA on spermatogenesis, protein levels of DAZL, VASA,

γH2AX, and related gene expression changes were detected.

Phosphorylated histone H2AX (γH2AX) is a hallmark of

chromatin remodeling in male meiosis (Abe et al., 2020).

Meanwhile, it is a sensitive marker for DNA double-strand

breaks (DSBs) (Arnould et al., 2021), and a number of studies

have regarded it as a marker of DNA damage (Guo et al., 2021;

Zhang et al., 2021; Wang et al., 2022). Increased expression of

γH2AX levels at the gene expression and protein level are

detected, indicating that DNA damage is exacerbated after

IAA exposure. DAZL, which is crucial for normal

spermatogenesis, plays an important role in primordial germ

cell formation, and genetic loss of DAZL causes infertility in

both sexes of mice (Li et al., 2019). In our study, changes in

DAZL gene and protein levels were not observed. VASA

(DDX4/MVH), as the hallmark of meiotic cells at the stage

from pachytene spermatocytes to round spermatids, is essential

for male gametogenesis (Lin et al., 2017). It also showed no

difference between the two groups in our study. Plzf and Kit are

essential in maintaining spermatogonial stem cell proliferation

(Mao et al., 2017; Yu et al., 2022). Stra8 (Sun et al., 2022),

Sycp1 and Sycp3 (Dunce et al., 2018), and Tnp2 (Gustafson

et al., 2020) play important roles in different stages of meiosis.

Also, knockout of the Piwi gene in mice and human causes

sterility (Gou et al., 2017). Fortunately, with the exception of

H2AX, IAA exposure did not cause changes in the other genes

described previously.

The second important function of the testis is testosterone

biosynthesis. In order to observe the effect of IAA on

testosterone, we focused on the changes in cholesterol and

key enzymes in cholesterol transport and testosterone

synthesis. SRB1 is a cell surface HDL receptor that mediates

HDL-cholesteryl ester (CE) uptake, and it promotes the

transport of CEs to Leydig cells and stores them as lipid

droplets (LDs), which are used for the synthesis of

testosterone in testis tissue (Shen et al., 2018). In our study,

the content of cholesterol in Leydig cells decreased in the IAA-

exposed group. This was because IAA affected LD transport by

reducing the protein expression of SRB1, although IAA did not

alter the gene expression of it. We infer that IAA causes changes

in SRB1 protein levels through post-transcriptional translation

or epigenetic modification, which, of course, requires further

experimental validation. At the same time, we also detected a

series of key enzymes in testosterone synthesis, such as STAR,

CYP11A1, CYP17A1, and 3β-HSD. Except for the decrease of

Cyp11a1 at the gene level, other indicators did not show

significant differences both in gene expression and at the

protein level. However, STAR, one of the most critical

enzymes regulating testosterone synthesis (Zhao L. et al.,

2021), showed a significant downward trend at the protein

level, which further corroborated our conclusion that

testosterone had declined during the medication. In Leydig

cells, LHCGR acts as an LH receptor to sense the control of

testosterone synthesis by the hypothalamic–pituitary–testicular

axis (Holota et al., 2020). Gene expression of Lhcgr did not

change between the two groups. In addition, the gene level of

Cyp19a1, a key enzyme that converts testosterone to estrogen,

was examined, and did not change compared to control. This

means IAA does not influence the conversion of testosterone to

estrogen in male mice.

An important function of Sertoli cells is to form the BTB,

which forms the microenvironment for spermatogenesis and

protects spermatogenic cells from autoimmune reactions. To

assess the function of the BTB, we examined the expression of

WT-1, N-cadherin, and β-catenin. WT-1, expressed in all

Sertoli cells, is essential for germ cell survival and

spermatogenesis (Gupta et al., 2021). N-Cadherin is a

protein with greater connection flexibility, which is highly

expressed in testis tissue (Verón et al., 2021). At the same

time, in other tissues, it is often regarded as highly correlated

with tissue migration, and is even used as one of the indicators

of tumor aggressiveness (He et al., 2021). β-Catenin is also a

characteristic protein of the BTB, and its abnormal

accumulation can lead to impaired testicular junction

integrity, which can lead to abnormal structures and

functions of the BTB (Lei et al., 2021). In our study, the

gene expression and protein levels of WT-1, N-cadherin, and

β-catenin were not different between the two groups. As

important components of tight junctions, such as claudin11

(She et al., 2021), Nectin-2 (Bronson et al., 2017), Zo-2 (Otani

et al., 2019), Jam-A (Ebnet, 2017), and Connexin 43 (Liang

et al., 2019), they all play a key role in maintaining the integrity

of the BTB. Fortunately, there were no statistically significant

differences in their gene levels.

In conclusion, in male mice, IAA reduced sperm motility,

exacerbated DNA damage, and decreased storage of LDs, the

raw material for testosterone synthesis. Of course, a deeper

mechanism is needed in further research. At present, the

adverse health consequences of endocrine disruptors have

been known to all sectors of society (La Merrill et al.,

2020), and various countries are also formulating some

corresponding regulatory measures (Kassotis et al., 2020).

However, little attention has been paid to water DBPs such

as IAA. It not only affects the health of frontline workers

producing such materials but also has long-term human

contact in the form of water DBPs. Given that these

endocrine disruptors have toxic effects on humans and

even transmit their toxic effects to offspring in a genetic or
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epigenetic manner (Lombó and Herráez, 2021), laws and

regulations on the control of them should be formulated as

soon as possible. Also, we should try to find other healthier

disinfection methods to replace chlorine-containing

disinfectants to reduce their harm to the reproductive

system and even human health.
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