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Background.  The emergence of novel variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
demands fast and reliable detection of such variants in local populations. 

Methods.  Here we present a cost-efficient and fast workflow combining a prescreening of SARS-CoV-2-positive samples using reverse 
transcription polymerase chain reaction melting curve analysis with multiplexed IP-RP-HPLC-based single nucleotide primer extensions. 

Results.  The entire workflow from positive SARS-CoV-2 testing to base-specific identification of variants requires about 24 
hours. 

Conclusions.  We applied the sensitive method to monitor local variant of concern outbreaks in SARS-CoV-2-positive samples 
collected in a confined region of Germany.

Keywords.   mutation screening; SARS-CoV-2; SIRPH; SNuPE; variants of concern.

During the ongoing coronavirus disease 2019 (COVID-19) 
pandemic, recent reports of new severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) variants with changes in 
viral functionalities or pathogenic aspects have caused major 
concern. Since December 2020, several emerging variants of 
concern (VOCs) with increased transmission were reported 
from UK (B.1.1.7), South Africa (B.1.351), Brazil (P.1), and 
India (B.1.617). To allow for the timely adaptation of public 
health interventions, it is of utmost importance to monitor and 
precisely follow the ingression and distribution of these VOCs 
as quickly as possible. They are each characterized by a set of 
mutations that can be used for variant monitoring. B.1.1.7, 
B.1.351, and P.1 are characterized by the spike protein muta-
tion N501Y. In addition, B.1.351 and P.1 also share the mutation 
E484K, but are discriminated by the mutation V1176F, which is 
only present in P.1 [1–3]. The amino acid substitution E484K 
in the receptor-binding domain of the spike protein was re-
ported to be associated with immune escape from neutralizing 

antibodies, which is especially worrisome regarding vaccination 
or reinfection [4]. More recently, E484K has also been reported 
in some B.1.1.7 strains [5]. B.1.617, which is characterized by 
the mutations L452R and P681R, divides into 3 sublineages. 
B.1.617.1 and B.1.617.3 show the mutation E484Q, which ap-
parently has similar functional consequences as E484K [6].

The gold standard for the identification of virus variants is 
sequencing of full viral genomes. Currently, reverse transcrip-
tion polymerase chain reaction (RT-PCR) melting curve anal-
ysis approaches followed by confirmation through viral genome 
sequencing are widely used. However, the required time for 
next-generation sequencing (NGS) and the extra costs call for 
faster and more cost-effective test systems. Previously, we pro-
posed a pooling approach for high-throughput RT-PCR testing 
to identify SARS-CoV-2 infection in large cohorts of asymp-
tomatic people [7]. Here we extend this strategy to obtain a 
fast and accurate base-specific detection of VOCs by com-
bining a sequential RT-PCR-based melting curve analysis as a 
prescreening approach of SARS-CoV-2-positive samples with 
a multiplexed IP-RP-HPLC-based single nucleotide primer ex-
tension approach (SIRPH) [8, 9]. This protocol allows a fast and 
comprehensive generation of “single base sequencing” signa-
tures for a relevant spectrum of VOCs to assign the variant lin-
eages within the (local) pandemic situation.

METHODS

SARS-CoV-2 (Pool) Testing and RT-PCR Melting Curve Analysis

Respiratory samples were tested individually (expected high pos-
itivity rate) or in pools (expected low positivity rate, 16 samples 
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per pool) performed with Biomek i5 Span8 (Beckman Coulter) 
by automated SARS-CoV-2 dual target RT-PCR (E and ORF1) 
using Cobas 6800 (Roche Diagnostics). To identify VOC candi-
dates, positive samples were extracted using RNAdvance Viral 
and Biomek i5 MC96 (Beckman Coulter) and subjected to N501Y 
RT-PCR melting curve analysis (VirSNiP SARS-CoV-2 Spike 
N501Y TibMolBiol). N501Y-positive cases were further tested 
for delH69/V70, E484K, and V1167F by additional melting curve 
RT-PCR (VirSNiP SARS-CoV-2 TibMolBiol). It should be noted 
that due to newly emerging variants we recently changed our VOC 
screening schedule. All SARS-CoV-2-positive samples are tested 
for N501Y, delH69/V70, and E484K using a multiplexed RT-PCR 
melting curve analysis (VirSNiP SARS del69,70 + 484K + 501Y). If 
positive for N501Y and E484K simultaneously, the sample is tested 
in addition for the presence of V1176F to differentiate between 
B.1.351 and P.1. Samples that test negative in the multiplexed 
RT-PCR melting curve analysis are followed up with an additional 
screening for L452R, E484Q, and P681R to identify B.1.617. All 
analyses were performed according to the manufacturers` instruc-
tions. The study was approved by the local ethics committee of the 
Saarland University Medical Center at Saarland Ärztekammer.

Reverse Transcription

Isolated RNA was reverse transcribed using random hexamer 
primers (NEB) and Maxima Reverse Transcriptase H- 
(ThermoFisher) following the manufacturer’s recommenda-
tions. cDNA from the same preparation was submitted to 
PCRs for single nucleotide primer extension (SNuPE) and NGS 
Library generation.

SNuPE and IP-RP-HPLC (SIRPH)

Two microliters of cDNA was used as the template in a 30-μL 
reaction in the presence of 3 mM of Tris–HCl (pH 8.8), 0.7 mM 
of (NH4)2SO4, 50  mM of KCl, 2.5  mM of MgCl2, 0.06  mM 
of each dNTP, 3 U HotFire DNA polymerase (Solis BioDyne), 
and 167  nM of primers (Supplementary Table 1). PCRs were 
performed at 95°C for 15 minutes followed by 35 cycles at 
95°C/60 seconds, 54°C (58°C for A570D + D614G)/30 seconds, 
72°C/30 seconds, and a final extension 72°C/5 minutes. Five 
μL of PCR products was treated with 1U of ExoCIAP (mixture 
of Exonuclease I [Jena Bioscience] and Calf Intestine Alkaline 
Phosphatase [Calbiochem]) for 30 minutes at 37°C. To inactivate 
the ExoCIAP enzymes, the reaction was incubated for 15 min-
utes at 80°C. Afterwards, 14 μL of primer extension mastermix 
(50 mM of Tris–HCl, pH 9.5, 2.5 mM of MgCl2, 0.05 mM of 
ddNTPs, 1.6 μM of each SNuPE primer, and 2.5 U of Termipol 
DNA polymerase [Solis BioDyne]) were added. Primer exten-
sion reactions were performed at 96°C for 2 minutes, followed 
by 50 cycles at 96°C/30 seconds, 50°C/30 seconds, and 60°C/20 
seconds. Separation of products was conducted on an XBridge 
BEH C18 2.5 µm 4.6 mm × 50 mm column (Waters) at 0.9 mL/
min at 50°C by continuously mixing buffer B (0.1 M TEAA, 

25% acetonitril) with buffer A (0.1 M TEAA) (Supplementary 
Table 2). HPLC runs for the entire set of potentially mutated 
sites (PMS) took ~60 minutes per sample. Mutations were de-
termined by relative retention times in comparison with the 
nonmutated reference.

Sanger Sequencing

Sanger sequencing of exemplary PCR products generated for 
SIRPH analysis was performed at Macrogen (Amsterdam) 
using 40  ng of purified PCR product and 10 pmol of corre-
sponding PCR primers.

Viral Genome Sequencing

NGS Libraries for viral genome sequencing were generated 
using the primer design from the ARTIC, version 0.3, protocol 
[10] modified for Illumina sequencing. We added Illumina-
compatible adapter sequences directly to the ARTIC primers 
(Supplementary Table 3). To obtain a more equal coverage, we 
introduced a third multiplex pool with 5 primer pairs covering 
difficult genomic regions (Supplementary Table 3). Multiplex 
PCRs were carried out as described in the ARTIC protocol. 
After purification, PCR products were submitted to an indexing 
PCR with TruSeq primers (Illumina) for 8 cycles. After final 
purification and normalization, samples were sequenced on a 
MiSeq (Illumina).

NGS Data Processing

Viral genome data were processed using CoVpipe (https://
gitlab.com/RKIBioinformaticsPipelines/ncov_minipipe). 
After trimming of adapter/primer sequences and low-quality 
reads (<Q30), reads were aligned to the SARS-CoV-2 refer-
ence NC_045512.2. Reads mapping to the human genome were 
excluded. Variant calling was performed with default param-
eters, and consensus sequences were masked for lowly cov-
ered sites (<20×). Visualization was achieved with Auspice and 
Nextstrain [11].

RESULTS

Single nucleotide primer extension coupled to IP-RP-HPLC 
detection (SIRPH) is a powerful and fast approach for point 
mutation analysis of known genomic variants. This assay is 
characterized by primers that anneal with their 3’-end directly 
adjacent to PMS. Using ddNTPs, the primer can only be ex-
tended by a single nucleotide complementary to the genomic 
information on the annealed DNA strand. Due to the incorpo-
ration of different bases in wild-type and mutant, extended pri-
mers differ in hydrophobicity, which allows their separation by 
IP-RP-HPLC. We adapted this approach for screening of VOCs 
in the SARS-CoV-2 genome in a multiplex assay that allows si-
multaneous detection of several mutations.

We first established the method on 80 SARS-CoV-2-positive 
samples collected in the southwest of Germany (Saarland) 
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from Nov/Dec 2020 for B.1.1.7, B.1.351, and P.1 (Figure 1A). 
We designed primers for our SNuPE assay (Figure 1B, C; 
Supplementary Table 1) to determine the nucleotide at the 
PMS D614G (nucleotide exchange: A→G in all clades ex-
cept 19A), N501Y present in all 3 VOCs (A→T), and the dis-
criminatory PMS A570D (C→A in B.1.1.7), P681H (C→A in 
B.1.1.7), T716I (C→T in B.1.1.7), E484K (G→A in B.1.351 and 
P.1), and V1176F (G→T in P.1). We also analyzed 2 local mu-
tations, L9P (T→C) and G172R (G→C), which we observed 
in a high frequency in NGS data of earlier samples (Sep/Oct 

2020) (Figure 1D) from Saarland to follow their further ingres-
sion and distribution.

Notably, mutations in close vicinity of each other that 
could be covered within the same PCR product (Figure 1C; 
Supplementary Figure 1) were assessed simultaneously in a 
multiplexed SNuPE reaction. After RNA extraction and reverse 
transcription, cDNA was used as a template for 4 different PCR 
reactions yielding PCR products harboring the PMS (Figure 
1B). In a following 1-tube reaction, PCR products were treated 
with exonuclease I and calf intestinal phosphatase (ExoCIP) to 
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Figure 1.  Multiplexed IP-RP-HPLC-based SIRPH. A, Phylogenetic tree of SARS-CoV-2 sequences derived from GISAID references (accessed on 01/29/2021) and sequencing 
data from Saarland (March–October 2020, available on GISAID using the identifiers listed in Supplementary Table 7) colored by clade. Variants of concern are found in clades 
20I/501Y.V1 (B.1.1.7), 20H/501Y.V2 (B.1.351), and 20J/501Y.V3 (P.1). B, SIRPH Workflow: Isolated RNA is reverse-transcribed, followed by a multiplexed PCR of regions of 
interest. After ExoCIP clean-up of residual dNTPs and primers, multiplexed SNuPE reactions are performed that are separated by IP-RP-HPLC. The whole workflow can be 
performed within 1 day. C, Exemplary SNuPE primer design (green) for the PMS (blue) A570D and D614G within a single PCR product (yellow). D, Distribution of the local 
mutations ORF9c:L9P (green) and ORF3A:G172R (yellow) in samples from Saarland (March–October 2020). E, Exemplary HPLC separation of SNuPE reactions at the PMS 
D614G showing a profile for wild-type (A) and mutation (G). Abbreviations: Mut, mutation; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2; SIRPH, single nucleotide primer extension approach; SNuPE, single nucleotide primer extension; Wt, wild-type.
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remove primers and nucleotides, heat-inactivated, and subjected 
to SNuPE followed by IP-RP-HPLC separation (Figure 1B) in 
96 sample formats. In these SNuPE reactions, we either assessed 
2 PMS at once (E484K, N501Y, P681H, T716I, L9P, G172R) or 
1 PMS (A570D, D614G) per reaction (Supplementary Figure 
1), resulting in a total of 5 HPLC runs per sample. In addition, 
different point mutations that occur at the same genomic posi-
tion such as E484K and E484Q can be discriminated within the 
same SNuPE reaction.

All 80 samples of our initial cohort showed the mutation 
D614G, which emerged early in the pandemic and is now pre-
dominant in samples from across the globe [12]. The PMS 
characteristic of the 3 analyzed VOCs (E484K, N501Y, P681H, 
T716I, A570D) were in concordance with the original SARS-
CoV-2 sequence (Supplementary Table 4). Our local mutations 
revealed interesting patterns over time (Supplementary Table 
4). The spread of the ORF9c mutation L9P dropped from 35.3% 
in Sep/Oct 2020 (n = 51) to 6.25% in Nov/Dec 2020 (n = 80), 
while the ORF3A mutation G172R remained more abundant 
(33.3% to 27.5%).

For validation, we performed full viral genome sequencing 
on all 80 samples (Ct values 12–26) (Supplementary Table 4). 
For variant calling, we only considered sites with coverage of 
at least 20 (Supplementary Table 4). Especially in the region 
harboring our local L9P variant, we observed high coverage-
related dropout rates in the sequencing data. Thus, we per-
formed additional validation of exemplary samples by Sanger 
sequencing (Supplementary Figure 2). All SNuPE results were 
in full concordance with viral genome sequencing and Sanger 
sequencing–based variant calling (Supplementary Table 4, 
Supplementary Figure 2), demonstrating the reliability and ro-
bustness of our SNuPE approach.

Inspired by these results, we developed a rapid screening 
strategy for prospective high-throughput SARS-CoV-2 and sub-
sequent VOC testing (Figure 2A). Asymptomatic individuals, 
that is, health care workers of the local university hospital, were 
screened by SARS-CoV-2 pool testing in pools of 16, while sam-
ples from symptomatic people or public health services (contact 
tracing) with expected positivity rates above 2% were investi-
gated by individual SARS-CoV-2 RT-PCR. Positive nucleic 
acid extracts were immediately subjected to N501Y mutation-
specific RT-PCR melting curve analysis to identify candidates 
of currently circulating VOCs. Subsequent SNuPE analysis was 
performed to clearly identify and assign the respective VOCs.

We applied this approach for a routine test on a large cohort 
to identify VOCs in Saarland generating reliable and highly 
accurate results. From 2059 pooled and 2987 individual respi-
ratory samples from nasopharyngeal swabs collected between 
January 25 and 31, 2021, 542 samples tested SARS-CoV-2 posi-
tive by RT-PCR. Within these, we identified 13 VOC candidates 
by RT-PCR melting curve analysis–based screening during this 
early phase of VOC introduction into Saarland. All candidates 

were submitted to SIRPH analysis for confirmation and further 
VOC assignment, revealing the presence of all characteristic 
mutations 501Y, 570D, 681H, and 716I in 12 out of 13 prede-
fined samples, clearly classifying them as B.1.1.7, while 1 sample 
was identified as B.1.351 (Figure 2B; Supplementary Table 5). 
The whole process lasted about 24 hours from positive RT-PCR 
testing to PMS sequence validation.

Now, we routinely use this approach for VOC screening in 
Saarland. Given the dynamic situation of the pandemic with 
newly emerging variants, we continuously adapt our SIRPH 
analysis to new VOCs such as the recent lineage B.1.617. We 
added an SIRPH assay for L452R and extended the E484 assay to 
discriminate between E484, E484K, and E484Q (Supplementary 
Figure 1, Supplementary Table 1), allowing the identification of 
B.1.617 lineages (Supplementary Table 6).

DISCUSSION

Our presented strategy shows that a combination of 
prescreening by (pooled) SARS-CoV-2 and subsequent 
RT-PCR melting curve analysis, together with a confirmatory 
SIRPH analysis, generates fast and reliable results to speed up 
monitoring of VOCs in larger cohorts. We demonstrate how 
this strategy can quickly be implemented for VOC monitoring 
to rationalize local public health interventions by supporting 
the tracing of VOCs. While whole-genome sequencing will re-
main the gold standard for virus monitoring and the detection 
of new mutations, the proposed screening by PCR/SIRPH has 
several advantages. First of all, the method is robust, fast (24 
hours), and very cost-effective compared with NGS confirma-
tion. Notably, it robustly calls regions with coverage dropouts 
in sequencing data (Supplementary Figure 2). It can even be ap-
plied to samples with low viral load (Ct 28–36) (Supplementary 
Table 6) that typically fail or result in low-quality data during 
sequencing. Furthermore, the method is flexible and can be 
implemented on a variety of existing RP-HPLC systems. In ad-
dition, we perform SNuPE assays as “1-tube” reactions that can 
be multiplexed. New mutation-specific assays can be rapidly 
established within 2 working days to include newly emerging 
variants, allowing for fast and precise population surveillance. 
The combined pool PCR/SIRPH approach can be used to flank 
sequencing surveillance programs; in Germany, only up to 
5% (or 10% when positive cases drop below 70 000 cases per 
week) of randomly chosen positive cases will be full genome–
sequenced. The emergence and spreading of local variants call 
for fast and thorough monitoring of the entire population in a 
timely manner. As time is crucial for surveillance, our method 
offers base-specific results in 1  day, as compared with NGS-
based sequencing, which usually requires up to 5 working days. 
Ongoing sequencing of full viral genomes in a proportion of 
samples will be used to screen for the development of new 
SARS-CoV-2 variants. In an iterative process, the information 
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gained by sequencing can be used to easily adapt the SIRPH 
approach to new VOCs that may emerge in the future course 
of the pandemic.
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Supplementary materials are available at Open Forum Infectious Diseases on-
line. Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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