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CRISPR screens are feasible in TP53
wild-type cells
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A recent study in Nature Medicine

(Haapaniemi et al, 2018) caused

concern amongst researchers and

investors alike after reporting that genome

editing with CRISPR may be less efficient in

human cells with intact p53 signalling.

The conclusion by Haapaniemi et al that

the p53-mediated DNA damage response

(DDR) hampers CRISPR-based functional

genomic dropout screens inspired us to

investigate this phenomenon more closely.

When performing a genome-scale CRISPR

screen in RPE1 cells, harbouring wild-type

TP53, Haapaniemi et al reported both a fail-

ure to detect essential genes and the enrich-

ment of single-guide RNAs (sgRNAs)

targeting TP53, CDKN1A (encoding p21) and

RB1 (pRb). This enrichment of sgRNAs

targeting the p53 axis was not observed in a

p53-deficient RPE1 cell line, where essential

genes were depleted as expected. From this,

together with a number of follow-up experi-

ments, the authors conclude that the p53

pathway is activated by CRISPR-induced

double-strand breaks (DSBs) leading to a cell

cycle arrest. Therefore, this presents an

obstacle to precision genome editing as well

as functional genomic screening in TP53

wild-type cells. This hypothesis would be

consistent with previous research showing

that a single DSB is sufficient for inducing a

prolonged p53-dependent arrest in normal

human fibroblasts (Di Leonardo et al, 1994;

Linke et al, 1996). It is also in line with the

complementary findings by Ihry et al (2018)

reporting that the p53-dependent response

to Cas9 toxicity reduces the efficiency of

human pluripotent stem cell (hPSC) genome

engineering and indicating that TP53 status

should be monitored in hPSC before and

especially after engineering.

We and others have performed genome-

wide screens in TP53 wild-type and p53-defi-

cient cell lines, including RPE1 cells (Hart

et al, 2015, 2017; Zimmermann et al, 2018).

In agreement with Haapaniemi and collea-

gues, sgRNAs targeting TP53, CDKN1A, RB1

and other p53 pathway genes became

enriched over the course of the RPE1 screen,

while sgRNAs targeting the negative p53

regulators MDM2 and MDM4 were depleted

(Fig 1A). Similar observations were also

made in other TP53 wild-type cell lines,

including HCT116 colon cancer cells and a

glioblastoma cell line, whereas HeLa cells

(non-functional p53 due to expression of the

E6 viral oncogene) and DLD1 cells (onco-

genic TP53S241F/� mutation Ahmed et al,

2013; Sur et al, 2009) do not show this

effect. While the assertion by Haapaniemi

et al is that DSBs induced by Cas9 editing

drive p53 activation in the wild-type back-

ground, this is not directly measured in their

(or our) experiments. In fact, similar enrich-

ments have been observed in large-scale

RNAi experiments, which do not rely on the

induction of DSBs (Giacomelli et al, 2018).

Haapaniemi et al also report that sgRNAs

targeting a set of ribosomal genes, largely

expected to be essential for cell growth,

failed to deplete in the wild-type TP53 RPE1

background, whereas they dropped out as

expected in their p53-deficient RPE1 cells.

From this, the authors conclude that a tran-

sient cell cycle arrest mediated by p53

explains the failure to detect essential genes

in the CRISPR screen. In contrast, we find

that gene-level dropout profiles are highly

correlated between all pairs of cell lines

(P < 2.2 × 10�16), regardless of their p53

status (Fig 1B), arguing against p53 hamper-

ing the depletion of essential genes.

We and others have developed methods

to evaluate the performance of functional

genomics screens (Hart et al, 2014, 2015,

2017), which have been used to quality-

control different sgRNA libraries (Sanson

et al, 2018). Applying these to a published

RPE1 screen (Hart et al, 2015), we find that

sgRNAs targeting essential genes such as the

ribosome or proteasome subunits, or “gold-

standard essential genes” (Hart et al, 2017),

deplete as expected (Fig 1C) and similar to

cell lines with non-functional TP53. These

results demonstrate that screens in immor-

talized and cancer cell lines with wild-type

TP53, including RPE1, still identify essential

genes targeted by the depleted sgRNAs.

To ensure that our results were not

unique to a small or biased dataset, or to a

specific CRISPR library, we examined the

dropout profiles of essential gene sets across

a compendium of 517 genome-wide CRISPR

screens in various cancer cell lines (Meyers

et al, 2017) (DepMap18Q4 version; https://

depmap.org/portal/) or 14 genome-wide

screens in AML cell lines (Wang et al,

2017). We found negligible differences in

the fold-change distributions of sgRNAs

targeting these gene sets between TP53 wild-

type and different categories of TP53 mutant

cell lines in the DepMap screens (Fig 1D,

data not shown for AML cell lines). Preci-

sion–recall curves based on the gold-stan-

dard gene sets show very high performance

(i.e. high precision and recall and therefore

a large area under the curve, AUC) across all

DepMap screens, with a mean AUC of 0.99,

regardless of p53 status. Critically, the

DepMap screens were performed using the
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Avana gRNA library (Doench et al, 2016),

indicating that our findings are not specific

to our own CRISPR libraries. Similarly, Ihry

et al (2019) reported successful genome-

scale CRISPR screens in a TP53 wild-type

human pluripotent stem cell line, despite

observing considerable p53-mediated Cas9

toxicity in these cells (Ihry et al, 2018),

which is in agreement with data from our

own laboratory in a comparable system

(Mair et al, 2019). In summary, while the

induction of a p53 response in TP53 wild-

type cells is not unexpected, it does not

hamper the screenability of TP53 wild-type

cells in general.

Finally, we obtained the raw data from

Haapaniemi et al, allowing us to generate

precision–recall curves using the gold-stan-

dard essential gene set (Hart et al, 2017) to

assess screen performance. We incorporated

the same analyses of four additional

published or unpublished RPE1 genome-wide

loss-of-function CRISPR screens performed in

three different laboratories, including one

screen carried out in a TP53-deficient back-

ground (Zimmermann et al, 2018) (Fig 1E).

Our original RPE1 screen (red) and the other

TP53 wild-type and TP53-deficient RPE1

screens show high performance, indicating

that, regardless of TP53 status, recovery of

the expected essential genes is feasible in

RPE1 cells. In contrast, the screen in TP53-

deficient RPE1 cells from Haapaniemi et al

shows moderate performance, while the

screen in TP53 wild-type RPE1 cells failed to

identify gold-standard essential genes with

any precision. The authors argue that this is

due to p53 signalling; however, that conclu-

sion is inconsistent with the RPE1 TP53

wild-type screens from other groups. In our

experience, such underperformance is more

likely due to poor editing efficiency. Haapa-

niemi et al selected their cells using func-

tional editing of the HPRT1 gene, which

does not require high or sustained Cas9

activity, and they did not directly report

editing efficiency of their cell line after the

initial selection process.

Haapaniemi et al and Ihry et al have

reported an important phenomenon in the

context of CRISPR–Cas9 genome editing,

and we echo support for monitoring TP53

status, especially with respect to cell engi-

neering for clinical applications. However,

we suggest key steps that should not be

ignored when publishing any CRISPR screen

results:

1 Prior to performing a CRISPR screen,

editing efficiency in the cell line system

to be screened should be assessed

using accepted protocols such as the

SURVEYOR assay or editing tests with

essential genes. Low editing efficiency

can easily yield results for positive

selection screens, but is not compatible

with measuring sgRNA dropout in

pooled screens.

2 Comprehensive assessment of screen

performance should be conducted using

established benchmarks and metrics,

such as reference standard essential

gene sets for pooled dropout screens.

3 Observations should be validated in

independent cell lines or clones, prefer-

ably with orthogonal methods or

through genetic “rescue” experiments

to establish the robustness of the

reported findings.
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Figure 1. Performance of CRISPR–Cas9 functional genomic screens with respect to TP53 status.
(A) Genome-wide CRISPR–Cas9 screens were performed in five established human cell lines. Heatmap shows
mean log2-fold change of all sgRNAs targeting the indicated p53 pathway genes. (B) Mean log2-fold change
scatterplots for all 17,236 genes targeted by the TKOv1 library for screens described in (A). Bottom triangle
indicates Spearman correlation between screen pairs. Red: cell lines with non-functional p53. Green: cell lines
with functional p53. (C) Mean log2-fold changes of all sgRNAs per gene are shown for the results of a CRISPR
screen with TP53wild-type RPE1 cells. Gene sets comprising gold-standard essential genes (essentials), ribosome
or proteasome subunits, or gold-standard non-essential genes (non-essentials) are highlighted. (D) Ratios of
CERES scores for reference gene sets between TP53 wild-type and mutant/non-functional cell lines across 356
cancer cell lines in the 18Q4 Avana (DepMap) dataset for which TP53 functional status was available in
Giacomelli et al (***FDR < 0.001, **FDR < 0.01, Wilcoxon rank sum test with multiple testing correction). (E)
Precision–recall curves based on the mean log2-fold change of sgRNAs using gold-standard essential and non-
essential genes across five RPE1 TP53 wild-type genome-wide CRISPR screens and two RPE1 TP53-deficient
(“null”) genome-wide CRISPR screens. The CRISPR libraries and source of the screens are indicated. Also see main
text for details and references.
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The application of gene editing technologies

to genome-wide functional genomics provides

an incredible opportunity to accelerate func-

tional annotation of the human genome with

high precision and accuracy. While we do not

disagree that CRISPR may evoke a p53

response in certain genotypes, examination of

hundreds of published genome-wide CRISPR

screens conducted independently by multiple

laboratories in different geographic locations

showed that major concerns are not warranted

when performing CRISPR screens in wild-type

TP53 cells. Therefore, we would like to rein-

force the notion of existing functional geno-

mics standards to quality-control genome-scale

screening data in order to avoid some of the

pitfalls that were discovered during the early

years of RNA interference screens.

Data availability

Complete code and data files are provided as

Dataset EV1.

RPE1 screening data: Gene Expression

Omnibus accession number GSE128210

(https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE128210).

Expanded View for this article is available online.
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