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Abstract: To expand the applications of graphene-based materials to biogas purification, a series of
reduced graphene oxide aerogels (rGOAs) were prepared from industrial grade graphene oxide using
a simple hydrothermal method. The influences of the hydrothermal preparation temperature on
the textural properties, hydrophobicity and physisorption behavior of the rGOAs were investigated
using a range of physical and spectroscopic techniques. The results showed that the rGOAs had a
macro-porous three-dimensional network structure. Raising the hydrothermal treatment temperature
reduced the number of oxygen-containing groups, whereas the specific surface area (SBET), micropore
volume (Vmicro) and water contact angle values of the rGOAs all increased. The dynamic adsorption
properties of the rGOAs towards hexamethyldisiloxane (L2) increased with increasing hydrothermal
treatment temperature and the breakthrough adsorption capacity showed a significant linear associa-
tion with SBET, Vmicro and contact angle. There was a significant negative association between the
breakthrough time and inlet concentration of L2, and the relationship could be reliably predicted with
a simple empirical formula. L2 adsorption also increased with decreasing bed temperature. Saturated
rGOAs were readily regenerated by a brief heat-treatment at 100 ◦C. This study has demonstrated
the potential of novel rGOA for applications using adsorbents to remove siloxanes from biogas.

Keywords: reduced graphene oxide aerogel; hexamethyldisiloxane; adsorption; hydrophobic-
ity; siloxane

1. Introduction

Biogas is an alternative energy source produced by the anaerobic digestion of organic
material. It can be produced from raw materials such as agricultural, food and munici-
pal waste products, and sewage sludge [1,2]. Due to its relatively high methane content
and calorific value, biogas has been widely investigated as a renewable energy source
for heating and power generation [3,4]. However, siloxanes, present at low concentra-
tions in biogas, can compromise the operation of biogas-to-energy facilities, presenting
technical challenges for its widespread use [5]. During combustion, siloxanes such as
hexamethyldisiloxane (L2) and octamethylcyclotetrasiloxane (D4) can form white deposits
(SiO2) on critical components, decreasing their performance and increasing the costs of
maintenance and operation [6,7]. Consequently, amounts of siloxanes in biogas must be
reduced below threshold levels (e.g., 10 mg siloxane/m3 of methane) prior to use in energy
applications [8–10].
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Materials currently used to reduce siloxanes in biogas include high efficiency ad-
sorbents such as activated carbon, silica and molecular sieves [5,11–13]. While these
adsorbents are relatively low cost, simple to use [14–16] and high in adsorption capacity,
their adsorption cycle performances are limited, restricting their practical applications. Pre-
viously, we developed a modified silica gel siloxane adsorbent with good recyclability and
found that its adsorption performance was affected by its textural properties, such as the
specific surface area (SBET), total pore volume (Vtot), micropore volume (Vmicro) and contact
angle [16–18]. Reduced graphene oxide aerogels (rGOAs) have good textural properties
and strong hydrophobicity [19–26], although their application to biogas siloxane removal
has not been reported. In addition, rGOAs were prepared using commercially available
industrial grade graphene oxide (IGGO) without any reducing agents. Compared with
traditional preparation methods [25], this strategy is simple, low cost, flexible, versatile,
readily scalable and insensitive to environmental conditions.

Hence, the aims of this study were to develop a novel siloxane adsorbent based
on readily obtained rGOAs for the purification of biogas, and determine the key factors
affecting its performance. An understanding of these factors will assist the future design of
rGOAs for gas phase dynamic adsorption applications.

2. Results and Discussion
2.1. Effects of Hydrothermal Temperature on Texture Properties and Hydrophobicity

The hydrothermal preparation process is illustrated in Figure 1 for rGOA-200. The
procedure involved three main steps: (1) sonication to obtain a 10 mg·L−1 IGGO precursor
dispersion (pH = 7.0); (2) partial hydrothermal reduction of oxygen-containing functional
groups distributed on the IGGO surface and promotion of rGO sheet self-assembly into
the rGO hydrogel; (3) lyophilization to minimize the capillary force and achieve the rGOA
three-dimensional (3D) network structure [27–29]. The hydrothermal synthesis temperature
was believed to be a significant factor affecting the textural properties and hydrophobicity
of rGOA materials [27,30–32]. Figure 2 shows the N2 adsorption–desorption isotherms
of IGGO and two representative rGOA composites (i.e., rGOA-120 and rGOA-200). The
calculated textural parameters from the N2 physisorption measurements of these mate-
rials are listed in Table 1. The shapes of the gas adsorption isotherms for rGOAs were
consistent with IUPAC type V curves with a type H3 hysteresis loop [8,33]. The shapes
of N2 adsorption-desorption isotherms were slightly increased at low relative pressures
(P/P0 < 0.4) and sharply increased at high relative pressure (0.93 < P/P0 < 1.0), indicating
the coexistence of slotted mesopores and macropores [16,34]. Compared with rGOAs,
IGGO had a significantly smaller N2 adsorption volume and exhibited a type III isotherm,
reflecting its relatively non-porous/macroporous structure [35].

Figure 1. Illustration of the preparation process of the reduced graphene oxide aerogel (rGOA).

Table 1 shows that Daver was reduced while SBET and Vmicro both increased with
increasing hydrothermal temperature. This monotonic behavior was not observed for Vtot,
which reached a maximum value of 0.45 cm3·g−1 for rGOA-140, indicating that the 3D
macroscopic assemblies of rGOA had a mesoporous/macroporous texture [16,22].

Figure 3 shows the contact angle analysis diagram for rGOA-200 demonstrating a
hydrophobic surface [36,37]. The contact angle, and hence the hydrophobicity, increased
with increasing hydrothermal temperature for all rGOAs (see Table 1).
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Figure 2. N2 adsorption–desorption isotherms.

Table 1. Textural properties and contact angles of the materials.

Adsorbent SBET, m2·g−1 Vmicro,
cm3·g−1

V tot,
cm3·g−1 Daver, nm Contact Angle, ◦

IGGO 7.4 0.011 0.23 124.3 76.6 ± 0.4
rGOA-100 10.7 0.010 0.19 71.0 118.1 ± 0.2
rGOA-120 36.7 0.014 0.26 28.3 119.9 ± 0.3
rGOA-140 59.0 0.021 0.45 30.5 123.5 ± 0.3
rGOA-160 61.4 0.024 0.32 20.9 124.2 ± 0.3
rGOA-200 79.6 0.031 0.39 19.6 128.7 ± 0.6

Figure 3. Image showing a water droplet on the surface of an rGOA-200 film.

2.2. XRD, SEM, TEM, Raman, Elemental and FTIR Analysis of rGOAs and IGGO

Figure 4 shows the XRD patterns obtained from IGGO, rGOA-120 and rGOA-200.
The sharp peak at 2θ = 11.6◦ (IGGO), corresponding to the (001) plane with an interlayer
spacing (d-spacing) of 0.76 nm, was typical of the separation between the layered IGGO
sheets [38]. The absence of this peak for both rGOA-120 and rGOA-200, and the appearance
of a new peak at ≈24◦ (d002 of ca. 0.37 nm), are both consistent with the combining of
graphene sheet structures during a hydrothermal reduction [30,39].
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Figure 4. XRD patterns of the materials.

The SEM images of IGGO and the two typical rGOA samples are given in Figure 5a–f.
Compared with IGGO, the rGOAs exhibited a rich macroporous 3D network structure and
more slit-like pores. Furthermore, TEM images of IGGO and rGOA-200 (Figure S1, Sup-
plementary Materials) illustrate the overlapping of transparent graphene nanosheets with
many wrinkles. IGGO had overlaps of multiple layers, whereas rGOA-200 exhibited only a
few layers after hydrothermal reduction. This morphology is also consistent with the N2
adsorption-desorption isotherm results. The Raman spectra of IGGO and the two typical
rGOA samples are given in Figure 6. The peaks located in the range of 2600–2800 cm−1 are
the 2D bands, which are another characteristic peak of graphene [40]. The rGOA showed a
fairly broad and up-shift 2D peak in the Raman spectrum, indicating its few-layer structure,
which was consistent with the TEM results. The increased ratio of the ID/IG bands for
rGOA-120 and rGOA-200 indicated that these structures were more disordered compared
to IGGO [37,40]. In general, the characteristic D (1350 cm−1) and G (1590 cm−1) bands
in the Raman spectra of graphite-based materials can be attributed to the lattice defects
and the in-plane stretching vibrations of sp2 hybridized atoms [41]. The increase in ID/IG
from IGGO→ rGOA was also consistent with removal of the oxygen-containing moieties
present in IGGO, and their removal was temperature dependent. These observations can be
further confirmed by the element analysis results (Table S1, Supplementary Materials). The
oxygen content in both rGOA-120 and rGOA-200 materials was significantly diminished
in comparison with IGGO, and rGOA-200 had less oxygen content than rGOA-120. The
changes to oxygen-containing groups in IGGO with hydrothermal temperature treatment
could be observed in the normalized FTIR spectra of IGGO, rGOA-120 and rGOA-200
shown in Figure 7. The intensities of the stretching vibration peaks at 1720 cm−1 (carbonyl
and carboxyl groups) and peaks at 3450 cm−1 (-OH stretching vibration) and 1400 cm−1

(-OH bending vibration) all decreased in the order IGGO > rGOA-120 > rGOA-200 [19].
Similarly, the characteristic band at 1040 cm−1 (C–O bending vibration) weakened in the
order IGGO > rGOA-120 > rGOA-200, indicating partial cleavage of C–O bonds during the
hydrothermal reduction. In addition, the intensities of the characteristic stretching vibra-
tions at 1640 cm−1 (C=C group) for both rGOA samples were significantly increased [42],
which is indicative of the restoration of the π-conjugation network of graphene following a
hydrothermal reduction [43].
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Figure 5. SEM images of IGGO (a,b), rGOA-120(c,d) and rGOA-200 (e,f).

Figure 6. Raman spectra of IGGO, rGOA-120 and rGOA-200.
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Figure 7. FTIR spectra of IGGO, rGOA-120 and rGOA-200.

2.3. Comparison of the Dynamic Adsorption Performances of Different rGOAs

L2 was chosen as a representative siloxane impurity in biogas to assess the adsorption
and regeneration performances of the adsorbents.

Figure 8 shows the adsorption breakthrough curves obtained at 20 ◦C for L2 with
IGGO and the five rGOA materials (the inlet concentration: Cin = 38.3 mg·L−1; the gas flow
rate: Vq = 0.01 L·min−1). The corresponding dynamic adsorption parameters (tB, QB and
Qm) calculated from these isotherm curves are given in Table 2. Compared with IGGO,
which had a very low removal efficiency for L2, the breakthrough curves obtained with each
rGOA were progressively shifted towards increased time with increasing hydrothermal
temperature. Consequently, the parameters tB, QB and Qm also increased with increasing
temperature, with rGOA-200 demonstrating the highest adsorption capacity (tB = 6.5 min;
QB = 24.7 mg·g−1; Qm = 27.4 mg·g−1). These trends were consistent with those obtained
from the N2 physisorption measurements (SBET, Vmicro) and contact angle analysis of
the adsorbents (see Table 1). Figure 9a–d show the relationships between QB and the
surface texture/hydrophobicity parameters SBET, Vmicro, Vtot and contact angle for the six
adsorbents, respectively. Inspection of the linear correlation coefficients (R2) for each fitted
line showed that SBET (R2 = 0.97; p < 0.05) and Vmicro (R2 = 0.89; p < 0.05) were significantly
associated with QB, indicating that these were important parameters for the adsorption of
L2. Since SBET is theoretically dependent on the abundance of micropores/mesopores in
the structure, it may be inferred that the mechanism of adsorption of L2 on rGOAs may be
dependent on capillary condensation and hydrophobic effects [16–18].

Table 2. Adsorption parameters of the adsorbents for L2.

Adsorbent tB
1, min QB

2, mg·g−1 Qm
3, mg·g−1

IGGO 1.1 4.4 7.1
rGOA-100 1.8 7.2 10.5
rGOA-120 3.0 12.3 14.1
rGOA-140 5.8 22.5 24.3
rGOA-160 6.0 23.1 25.4
rGOA-200 6.5 24.7 27.4

1 Breakthrough time (tB, min). 2 The L2 breakthrough adsorption capacity at tB (QB, mg·g−1). 3 The L2 adsorption
capacity at saturation (Qm, mg·g−1).
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Figure 8. Breakthrough curves of the adsorbents for L2.

Figure 9. Relationships between QB and SBET (a), QB and Vtot (b), QB and Vmicro (c) and QB and contact angle (d) for the
six adsorbents.
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2.4. Influences of Process Conditions on the Adsorption Performance of rGOA-200

An understanding of the correlation between the breakthrough time and inlet con-
centration is important for the industrial application of adsorbents [12,14,18,44]. Figure 10
shows the experimental relationship between tB and Cin from the adsorption of L2 by
rGOA-200 and the simulated curve fitting the experimental data. The results showed that
there was a significant negative association between tB and Cin (R2 = 0.97, p < 0.05), and
the relationship could be reliably predicted by Equation (1). This provided a theoretical
basis for potential industrial applications involving siloxane purification.

tB = 10.836 × e−
Cin
71 (1)

Figure 10. The effect of inlet concentration on breakthrough time.

The influence of bed temperature on L2 adsorption by rGOA-200 is given in Table
3. As the temperature decreased, tB, QB and Qm increased, demonstrating that siloxane
adsorption performance by rGOA-200 could be attained at low temperatures. This obser-
vation could be explained by the exothermic micropore filling and hydrophobic effects
of the rGOA materials [22,28,45]. Hence, lowering the temperature would promote both
mechanisms.

Table 3. Adsorption properties of rGOA-200 at different temperatures.

Entry Temp., ◦C tB, min QB, mg·g−1 Qm, mg·g−1

1 0 8.0 30.1 31.8
2 10 6.5 24.6 26.0
3 20 5.6 21.3 22.9
4 30 4.9 18.6 20.0
5 40 4.9 18.4 19.0
6 50 4.5 17.3 18.8

2.5. Recycling Performance of rGOA-200

L2 saturated rGOA-200 adsorbent could be regenerated by a simple heat-treatment at
100 ◦C for 30 min. Figure 11 shows the results obtained from five L2 adsorption-desorption
cycles, and Figure S2 shows that there was no residual L2 on the rGOA-200 after continuous
cycles. The performance of rGOA-200 was almost consistent after each cycle, indicating
that it had good reusability, mainly due to the physical adsorption mechanism. As can be
seen from Table 4, although the adsorption capacity of rGOA remained lower than those of
several carbon-based materials, its regeneration performance was the highest, with a more
than 99% regeneration efficiency.
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Figure 11. Adsorption breakthrough curves for L2 of rGOA-200 in the repeated cycles.

Table 4. Adsorption and regeneration capacities of different carbon materials for siloxanes.

Adsorbent Qm, mg·g−1 RE a, % Regeneration Method Reference

Activated
carbons 10–100 70–80 Four-step heating treatment at

80–160 ◦C [46]

Activated
carbons 60–878 50 Heating at 100–200 ◦C [47]

Activated
carbons 526 40–92 Advanced oxidation processes [48]

rGOA-200 32 >99 Heating at 100 ◦C This work
a Regeneration efficiency after 1 cycle (RE).

3. Experimental Section
3.1. Materials

All reagents were purchased from commercial suppliers and used without further
purification. IGGO was obtained from Hengqiu Graphene Technology Co., Ltd. (Suzhou,
China). Hydrochloric acid (36 wt%) was from Beijing Chemical Reagent Company (Beijing,
China). Tert-butanol (99.7 wt%) was from Yongda Chemical Co., Ltd. (Shandong, China).
L2 (99 wt%) was from Aladdin (Shanghai, China).

3.2. Preparation of rGOA Adsorbents

IGGO powder (0.6 g) was dispersed in hydrochloric acid (60 mL of 0.1 mol·L−1) for
1 h, washed thoroughly (deionized water) and reconstituted in deionized water to obtain a
10 mg·mL−1 dispersion. The IGGO dispersion was then sonicated for 1 h prior to sealing
aliquots (60 mL) into polytetrafluoroethylene lined containers (80 mL) and subjecting them
to hydrothermal treatments at 80, 100, 120, 140, 160 and 200 ◦C for 16 h in a thermostatic
oven [36]. IGGO dispersions formed hydrogels after hydrothermal treatments of >80 ◦C.
To protect the pore structure of the hydrogel, the material was soaked in tert-butanol for
6 h and pre-frozen prior to lyophilization (< 20 Pa, 24 h) [49–51]. The resultant adsorbents
were labelled rGOA-x, where x represented the hydrothermal temperature.

3.3. Characterization of IGGO and rGOA-x

Surface morphology analysis of the adsorbents was performed using a S-4800 scanning
electron microscope (SEM; Hitachi, Tokyo, Japan) and a transmission electron microscope
(TEM, Hitachi, Tokyo, Japan) operated at 120 kV. The N2 adsorption-desorption isotherms
were obtained from out-gassed samples (95 ◦C for 12 h) at −196 ◦C using a Kubo ×1000 high-
performance micropore analyzer (Beijing Builder Co., Ltd., Beijing, China) with the precision
of 0.001 m2·g−1. SBET, Vtot and Vmicro were calculated according to the Brunauer-Emmett-
Teller (BET) and Dubinin-Radushkevich equations. The Daver was obtained as 4Vtot/SBET,
based on the BET method at a relative pressure (P/P0) range of 10−5 < P/P0 < 0.98 [52]. The
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X-ray diffraction (XRD) spectra were obtained using a D8 Advance X-ray diffractometer
(Brucker AXS, Karlsruhe, Germany). Raman spectra were obtained with a 514 nm excitation
wavelength on an inVia™ Raman spectrometer (Renishaw, New Mills, UK). Elemental
analyses of C, H, and N was performed on a Vario EL III elemental analyzer (Elementar,
Langenselbold, Germany). The Fourier transform infrared (FTIR) spectra (KBr pellet
method) were acquired on a Nicolet 6700 spectrometer (Theromo Fisher, Waltham, MA,
USA). The contact angle was obtained from a water drop (3 µL) at room temperature
using a JY-PHb contact angle/interface system (Jinhe Instrumentation, Nanjing, Jiangsu,
China) and the sample was uniformly placed in the edge of the glass substrate with the
thickness < 0.1 mm. L2 concentration in the gas stream was measured using a 9790 gas
chromatography system equipped with a flame ionization detector (GC-FID; Zhejiang Fuli
Analytical Instrument Co., Ltd., Wenling, Zhejiang, China). Separation was carried out
isothermally (200 ◦C) on a 2.0 m × 2.0 mm I.D. column packed with poly divinylbenzene
porous beads (GDX-102, Aladdin, Shanghai, China) using N2 carrier gas (30 mL·min−1).

3.4. L2 Adsorption-Desorption Behavior

Dynamic gas adsorption tests were carried out on 0.1 g of adsorbent with 0.2 g of pine
chips mixed in evenly at 20 ◦C; the inlet concentration of L2 was 38.28 mg·L−1 at a total gas
flow rate of 0.01 L·min−1. The system was operated until the outlet concentration (Cout,t)
was equal to the inlet concentration (Cin), i.e., when the system had attained adsorption sat-
uration, and the corresponding breakthrough curves were obtained by plotting Cout,t/Cin
versus t. Adsorbent performance was evaluated by the following indicators: (i) break-
through time (tB, min), defined by Cout,t/Cin = 0.05; (ii) the L2 breakthrough adsorption
capacity at tB (QB, mg·g−1); and (iii) the L2 adsorption capacity at saturation (Qm, mg·g−1).
QB and Qm were calculated from Equation (2) [16]:

Qt =
VqCin

m

∫ t

0

(
1−Cout,t

Cin

)
dt, (2)

where Vq was the gas flow rate (L·min−1), m was the adsorbent weight (g), Cin was the inlet
concentration (mg·L−1) and Cout,t was the outlet concentration (mg·L−1) at an adsorption
time t (min). According to this equation, a fixed time point t corresponded to a unique
Qt. When t was equal to tB, QB could be obtained. Similarly, when t corresponded to the
saturation point, i.e., where Cout,t/Cin ≈ 1, Qm could be obtained.

Desorption characteristics were determined by heating the saturated sample in situ at
100 ◦C for 30 min under continuous N2 purge and monitoring the residual concentration of
L2 by GC-FID. A total of five adsorption-desorption cycles were carried out to determine
the recycling performance of the adsorbent.

4. Conclusions

A series of hydrophobic and porous rGOA materials were successfully prepared from
IGGO using a simple hydrothermal method. Surface morphology analysis showed that
the rGOAs had a macroporus 3D network structure. Spectroscopic analysis (XRD, FTIR,
Raman) confirmed a non-crystalline nature and attenuation of oxygen-containing groups
following the reduction of IGGO to rGOAs. The SBET, Vmicro and water contact angle of
each rGOA increased with increasing hydrothermal temperature treatment of IGGO. Ad-
sorption breakthrough experiments revealed that the adsorptive performance of the rGOAs
for L2 increased with increasing hydrothermal treatment temperature. QB showed a signif-
icant linear association with SBET (R2 = 0.97, p < 0.05) and Vmicro (R2 = 0.89, p < 0.05), indi-
cating that they were important parameters for the adsorption of L2. rGOA-200 exhibited
the highest adsorption of all rGOAs towards L2 at 20 ◦C (tB = 6.5 min, QB = 24.7 mg·g−1,
Qm = 27.4 mg·g−1). Values of tB, QB and Qm all increased with decreasing bed temperature.
Saturated rGOA-200 was readily regenerated by a brief heat-treatment at 100 ◦C.
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Supplementary Materials: The following are available online, Figure S1: TEM images of rGOA-200
and IGGO, Figure S2: FTIR spectra of samples processed by different treatments, Table S1: Elemental
contents of IGGO, rGOA-120, rGOA-200.
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