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ABSTRACT

Improved bioassays have significantly increased the
rate of identifying new protein-protein interactions
(PPIs), and the number of detected human PPIs has
greatly exceeded early estimates of human interac-
tome size. These new PPIs provide a more complete
view of disease mechanisms but precise understand-
ing of how PPIs affect phenotype remains a chal-
lenge. It requires knowledge of PPI context (e.g. tis-
sues, subcellular localizations), and functional roles,
especially within pathways and protein complexes.
The previous IID release focused on PPI context,
providing networks with comprehensive tissue, dis-
ease, cellular localization, and druggability annota-
tions. The current update adds developmental stages
to the available contexts, and provides a way of as-
signing context to PPIs that could not be previously
annotated due to insufficient data or incompatibility
with available context categories (e.g. interactions
between membrane and cytoplasmic proteins). This
update also annotates PPIs with conservation across
species, directionality in pathways, membership in
large complexes, interaction stability (i.e. stable or
transient), and mutation effects. Enrichment analy-
sis is now available for all annotations, and includes
multiple options; for example, context annotations
can be analyzed with respect to PPIs or network pro-
teins. In addition to tabular view or download, IID
provides online network visualization. This update is
available at http://ophid.utoronto.ca/iid.

INTRODUCTION

Protein-protein interaction (PPI) data have numerous ap-
plications in molecular biology and biomedicine. Com-
mon problems addressed with the help of PPI networks in-
clude identifying disease genes (1,2), predicting gene func-
tion (3,4), associating genetic variants with traits (5) and
identifying drug treatments (6,7). Biomolecular studies in-
creasingly use PPI networks as part of their bioinformatics
analysis, alongside tools such as pathway and Gene Ontol-
ogy (8,9) enrichment. These applications are enabled by a
large variety of network visualization and analysis meth-
ods, including approaches based on ‘guilt-by-association’
(3,10), network flow (11,12) and more recently, deep learn-
ing (13,14).

However, the effectiveness and useability of PPI net-
works are hampered by several factors including false pos-
itive and false negative errors, absence of interaction con-
text and characterization (e.g. stability), and network com-
plexity. False positive rates of early high-throughput PPI
studies have been estimated at over 50% (15,16), and also
pose a challenge for PPIs supported by a single detec-
tion method in a single small-scale study (17). However,
recent high-throughput studies (17–20) have much lower
false positive rates, comparable to those of PPIs detected
by multiple small-scale screens. False negatives are a bigger
problem––most species have very few detected PPIs, and the
human PPI network, though extensively studied, may still
be largely unknown, since the number of detected human
PPIs has surpassed estimates of interactome size (16,21) and
continues to steadily increase. Importantly, false negatives
are not uniformly distributed across proteins (22). The con-
text of interactions, such as their location (e.g. tissue, sub-
cellular localization) and time of occurrence are often not
fully known. PPI detection may occur in cell lines and ar-
tificial localizations, and does not provide comprehensive
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annotation across diverse tissues, physiological states and
compartments. Without context, interactions may not be
relevant for studying a given tissue or disease. Most detec-
tion methods also do not provide any characterization of
interactions, such as their stability or direction – informa-
tion that can help analysis methods such as network flow. As
the number of detected PPIs has increased, network com-
plexity has made analysis more challenging––network visu-
alizations are often difficult to interpret, network analysis
may give overwhelming numbers of hypotheses, and more
generally, most proteins appear functionally related since
the average network distance between human proteins is
about 3.

The previous version of IID (23) focused on reducing
false negatives and providing context for PPIs. False neg-
atives were reduced by integrating PPIs from a range of
sources: curated databases of experimentally detected PPIs,
machine learning studies predicting genome-wide PPIs, and
orthology-based PPI predictions. IID provided PPIs in hu-
man, 6 model organisms and 11 domesticated species. In
most of these organisms, PPIs were annotated with exten-
sive context information including tissues, subcellular local-
ization, diseases, and druggability. IID has been used in sev-
eral impactful studies, including (24–32).

This update focuses on extending context information,
characterizing PPIs with direction, mutation effects, and
stability, and improving the interpretability and usability of
PPI networks. Context is extended by adding developmen-
tal stage annotations, and its use is enhanced by extend-
ing how PPIs are annotated with context. PPI databases
(33–35), including previous versions of IID, annotate PPIs
with a context (e.g. disease, tissue) if both interacting pro-
teins are expressed or otherwise implicated in the con-
text. However, this approach may overlook many rele-
vant PPIs, either because proteins lack context informa-
tion (e.g. their disease roles are not yet known), or PPIs
do not fit into available context categories (e.g. interac-
tions between membrane and cytoplasmic proteins). To ad-
dress these issues, IID stores two types of associations be-
tween a PPI and a context: the usual association where
both proteins share the context, and a more flexible asso-
ciation where one or both proteins belong to the context.
Users can choose which type of association is used for fil-
tering PPIs. In addition to context, PPIs are now annotated
with stability information (stable or transient), direction in
pathways, and alterations due to mutations (e.g. increas-
ing strength). Interpretability and usability of networks is
improved in four ways: annotation of PPIs with member-
ship in large complexes and conservation across species,
extensive network analysis options, and network visualiza-
tion. Annotation with complexes can help partition large
numbers of PPIs into a smaller set of subnetworks with
known functions. Conservation information can indicate
which organisms are likely to be effective disease models.
In addition to topological analysis, IID now provides sev-
eral types of enrichment analysis for all PPI annotations;
enrichment can be calculated among PPIs, network pro-
teins, or partners of query proteins. Network visualization
is designed to scale to even very large networks by focusing
on the most highly connected network proteins and their
connectivity.

MATERIALS AND METHODS

PPI sources

Experimentally detected PPIs are primarily from seven
databases: BioGRID (36) 4.3.196, DIP (37), HPRD (38)
Release 9, InnateDB (39) 5.4, IntAct (40) 4.2.16, MatrixDB
(41) and MINT (42). All databases were downloaded 2021-
04-07. Smaller numbers of PPIs are from manual curation
of literature and from curated PPIs reported in Lefebvre
et al. (43).

Predicted PPIs come from five studies, as previously de-
scribed (23). Orthologous PPIs are generated by mapping
experimentally detected PPIs in each of the eighteen IID
species, to orthologous protein pairs in the other 17 species.
Mapping is done using 1:1 orthologs downloaded from En-
sembl (44) release 103.

Mapping between gene and protein IDs

Mappings between various gene and protein IDs are based
on UniProt (45) release 2021 03. For a more complete set
of mappings between Ensembl and UniProt IDs, mappings
from Ensembl (44) release 103 are also used.

Annotation of PPIs with context: developmental stages, dis-
eases, tissues, subcellular localization

A PPI is annotated with a developmental stage if its two
encoding genes are expressed at that stage. A gene is con-
sidered expressed at a developmental stage if its mas5-
normalized expression is >200, as in Bossi et al. (46).
Gene expression levels at developmental stages come from
Xie et al. (47), GEO (48) accession GSE18290. Other PPI
context annotations, including tissue, subcellular localiza-
tion and disease, are assigned as described in the previous
release (23).

Annotation of PPI conservation, druggability and other prop-
erties

Conservation across species. A PPI is considered con-
served in another species if both encoding genes have 1:1
orthologs in that species. Orthologs are obtained from En-
sembl (44) release 103.

Directionality. Interaction directionality is compiled from
the following biological pathway and post-translational
modification databases: HumanCyc (49) v20, NetPath (50),
PID (51), PhosphositePlus (52) v6.5.9.3 and Reactome (53)
v76. Data from these databases are downloaded in BioPAX
(54) Level 3 format and converted to extended binary SIF
format (SIFnx) using the function ‘toSifnx’ from the pack-
age PaxtoolsR (55) v1.14.0 in R (56) v3.6.2. The ‘toSifnx’
function extracts information about interacting gene (pro-
tein) pairs within a pathway, including their names and
the types of interactions between them. PPIs are anno-
tated with directionality if they have the following types
of interactions within pathways: ‘controls-state-change-of’,
‘controls-phosphorylation-of’, ‘controls-transport-of’.

Druggability. PPIs are annotated with drug target class in-
formation from UniProt (45) 2021 03, and targeting drugs
from DrugBank (57) v5.0, as previously described (23).
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Membership in complexes. Complexes comprising ten or
more proteins are obtained from CORUM (58) v3.0 and Re-
actome (53) v76.

Mutation effects. Data describing the effects of muta-
tions on PPIs (59) come from IntAct (40) release 4.2.16.
These data are reorganized such that each unique PPI is
associated with 12 possible mutation effects (59) (e.g. de-
creasing strength), accompanied by corresponding muta-
tions. Additionally, each PPI is annotated with a short de-
scription of its known mutation effects, using the terms
‘decreasing/disrupting’, ‘increasing’ or ‘no/unknown ef-
fect’.

Stability. Stably-interacting PPIs are based on stable com-
plexes identified by Havugimana et al. (60). Transiently
interacting PPIs comprise post-translational modification
transferases and targets from PhosphositePlus (52) v6.5.9.3.

Enrichment analysis

IID provides frequency and enrichment analysis for all an-
notations. Enrichment P-values are calculated as hyperge-
ometric probabilities, using custom javascript code (down-
loadable from the web site). The background for probabil-
ity calculations is the PPI network supported by the user’s
selected evidence types. For example, if the user selected ‘ex-
perimental’ and ‘predicted’ evidence in their query, then the
background will comprise all PPIs that are either experi-
mentally detected or predicted.

Multiple analysis options are available for certain types of
annotations. Frequency and enrichment of context annota-
tions (developmental stages, diseases, subcellular localiza-
tions, tissues), druggability, and membership in complexes
can be analyzed in four ways, as described below.

1. Frequency and enrichment are calculated among PPIs,
and it is assumed that a PPI has an annotation only if
both of its proteins have the annotation. The frequency
of an annotation (e.g. adipose tissue) is reported as the
number and the percentage of retrieved PPIs with the an-
notation. Enrichment P-values are calculated with the
following inputs to a hypergeometric probability func-
tion: N = number of PPIs in the background network,
M = number of PPIs in the background network with
the annotation, n = number of PPIs in the retrieved net-
work, m = number of PPIs in the retrieved network that
have the annotation.

2. Frequency and enrichment are calculated among PPIs,
and it is assumed that a PPI has an annotation if either
or both proteins have the annotation. Frequency and P-
values are calculated as above, but the numbers of anno-
tated PPIs are typically higher.

3. Frequency and enrichment are calculated among pro-
teins in the retrieved network. The frequency of an anno-
tation is reported as the number and percentage of pro-
teins in the retrieved network with the annotation. En-
richment P-values are calculated with the following in-
puts to a hypergeometric probability function: N = num-
ber of proteins in the background network, M = number
of proteins in the background network with the annota-
tion, n = number of proteins in the retrieved network,

Figure 1. Percentages of low degree proteins in IID species.

m = number of proteins in the retrieved network with
the annotation.

4. Frequency and enrichment are calculated among part-
ners of query proteins. Frequency and P-values are cal-
culated as above, but only partners of query proteins are
considered.

Frequency and enrichment of four annotation
types––conservation across species, directionality, sta-
bility, and mutation effects––are calculated only as in
option 1.

Topology analysis

Network topology measures are calculated by custom
javascript code, downloadable from the web site.

Network visualization

Network visualization is implemented with the vis.js
javascript library version 4.21 (visjs.org) and custom
javascript code, downloadable from the web site.

RESULTS

IID provides comprehensive, annotated PPI networks in 18
species: human, 6 model organisms and 11 domesticated
species. The first aim is to provide interactions for most pro-
teins in these species, so that PPI networks are more widely
applicable in biomolecular research. Proteins with few or no
detected interactions still represent a large percentage of the
human proteome and are especially prevalent in most other
species (Figure 1). To increase the coverage of PPI networks
(and context as well as interaction replicates), IID includes
experimentally detected PPIs from seven curated databases
(36–42) and PPIs predicted by machine learning (22,43,61–
63) and orthology. Users can select which PPI sources to in-
clude, and also a minimum number of publications or bioas-
says supporting each PPI.
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Our second aim is to annotate PPIs with comprehensive
context and interaction properties, so that users can retrieve
subnetworks that are relevant to their research. Ten types
of PPI annotations are available including tissues, diseases,
and druggability. Annotations are based on a wide range
of data sources including gene expression and proteomic
studies, and databases of diseases, drugs, pathways, PPIs,
proteins and protein complexes. PPI networks filtered by
gene expression in relevant tissues have been more effective
in bioinformatic workflows such as prioritization of disease
genes (64–66). PPIs can be filtered by any number of anno-
tations, and filters can be combined in multiple ways. For
example, users can specify that retrieved PPIs should occur
in (bone or kidney or liver) and (carcinoma and sarcoma)
and (nucleus). In our example (Figure 2), we queried IID
with 116 psoriatic arthritis genes from DisGeNET (67) and
selected three types of annotations: mutation effects, con-
servation across species, and druggability. We then calcu-
lated degree for the query and interactor proteins in IID and
in the retrieved network (Supplementary Table S1). Eleven
interacting proteins had a degree higher than 10 and a ra-
tio between the 2 degrees higher than 0.2 (Supplementary
Figure S2). Interestingly, the two proteins with the high-
est ratio were IL-17RD and TRGV9. IL-17RD is a recently
discovered receptor for IL-17A (68) that contributes to the
proinflammatory pathway controlled by IL-17A, a critical
player in the pathogenesis of psoriatic arthritis (69). No-
tably, TRGV9 is part of the T cell receptor gamma, that
forms the complex TCR��, known to secrete IL-17 (70) and
suggested to have a fundamental role in the development of
psoriatic arthritis (71).

Our third objective is to provide online analysis and visu-
alization to help interpret networks, either to refine queries
or plan functional studies (Figure 2). Analysis options in-
clude calculation of protein degree and clustering coeffi-
cients, and enrichment of any PPI annotations. Enrichment
can be calculated in several ways, including by consider-
ing PPIs or individual proteins. Data can be downloaded in
common formats, to include detailed annotation for supple-
mentary material (Supplementary Table S1), or for analysis
and visualization with standalone tools, such as NAViGa-
TOR (72) (Supplementary Figure S1).

Novel features in IID 2021

This update extensively revises and expands the number of
PPIs and their annotations, adds network analysis options,
and provides network visualization. The number of PPIs in-
creases by almost 50%––from 4,927,742 in the previous re-
lease, to 7,369,019.

Context annotations, such as tissues, are now assigned to
PPIs in two ways: where both interacting proteins have the
annotation (used in IID 2018), and where at least one of
the interacting proteins has the annotation. Users can se-
lect either approach when filtering PPIs by context, and IID
search results indicate whether a PPI’s context annotation is
based on both proteins or one, shown as ‘2’ or ‘1’, respec-
tively. The new annotation approach helps address several
common problems with the previous approach. One of the
main problems is that the context of individual proteins is
often unknown. For example, researchers searching for new

arthritis proteins may want to know whether their top can-
didates interact with known arthritis proteins; however, fil-
tering by the usual annotation approach cannot return any
results. A second common issue is that relevant PPIs may
involve proteins from different contexts; for example, re-
searchers studying membrane proteins may be interested in
PPIs where one protein is in the membrane and the other is
in the cytoplasm or extracellular space. Similarly, in some
scenarios, one protein may not require a context; for ex-
ample, researchers searching for drug treatments may need
PPIs where either protein is a drug target.

This update also adds new types of PPI annotations. Con-
text annotations now include developmental stages, from 1-
cell embryo to blastocyst, important for developmental bi-
ology, as well as cancer research (73,74). Five other new an-
notation types do not describe context, but rather the inter-
actions themselves: their conservation across species, direc-
tion, membership in large complexes, modification by muta-
tions, and stability. These annotation types, with the excep-
tion of complexes, are assigned by only one approach – an
annotation can only be present or absent, shown as ‘1’ or ‘0’
in IID results. Conservation annotations indicate whether
a PPI may be present in a given species. This information,
especially combined with IID’s analysis options, can help
identify the best model organisms for functional studies or
validation (Figure 2C). Direction annotations and accom-
panying pathway information are important for network
analysis, including flow analysis and signaling studies. Pro-
tein complex annotations can make a network more inter-
pretable, since large numbers of PPIs may be grouped into
a few functional units. A complex is assigned to both pro-
teins and the pair––a PPI may have one or both proteins in
a complex, indicated in IID results as ‘1’ or ‘2’, respectively.
Partial membership in a complex can be informative if, for
example, many query proteins interact with a complex, but
are not within it. Mutation annotations describe the effects
of specific mutations on interactions (26,59,75): for exam-
ple, mutation Trp590Ser in human ABCA1, increases inter-
action strength between ABCA1 and APOA1. PPIs can be
filtered by 12 different mutation effects (Figure 2B), or com-
binations of these effects. Stability annotations characterize
how PPIs carry out their function – as permanent members
of larger complexes or as transient interactions. Stability in-
formation is also important for detecting PPIs: while sta-
ble interactions can be identified by many biological assays,
transient PPIs require special techniques.

This update includes several new options for analyzing
PPI annotations. Frequency and enrichment of annotations
can be analyzed among PPIs, network proteins, or only
partners of query proteins. Furthermore, analysis among
PPIs has two options: it can assume the previous anno-
tation approach (both proteins having the annotation) or
the new approach (one or both proteins having the anno-
tation). Thus, there are a total of four analysis options, re-
ferred to as PPIsboth, PPIseither, proteins and partners. These
options address different types of questions about a net-
work. The most common questions may deal with network
PPIs––for example, in which tissues do the PPIs occur? This
is best addressed by the PPIsboth option, which would report
numbers of PPIs in each tissue, and their significance. An-
other PPI-related question might be, which drugs have the
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Figure 2. Results of querying IID with 116 psoriatic arthritis genes from DisGeNET (67). This query included three types of annotations: mutation effects,
conservation across species, and druggability. (A) Visualization of a subset of retrieved PPIs comprising high degree query proteins (violet) and interaction
partners (blue). (B) Mutations with known effects on retrieved PPIs. (C) Conservation of retrieved PPIs across species. (D) Drugs targeting one or both
proteins of retrieved PPIs.
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biggest impact on the network? Here, the best option may
be PPIseither; for each drug, it would report the number and
significance of potentially affected PPIs (i.e. PPIs involv-
ing at least one of the drug’s targets). The proteins option
is best for most questions that do not specifically focus on
PPIs––for example, which diseases are prevalent in the net-
work? The proteins option would report the frequency and
significance of each disease among network proteins. The
PPIsboth and PPIseither options may give unintuitive results
for such questions. For example, if a disease is annotated to
many proteins, but these proteins do not interact with each
other, then PPIsboth would report the disease’s frequency as
zero. Conversely, if a disease is annotated to a single protein,
but the protein has a high degree, then, PPIseither would re-
port a high disease frequency. The partners option is help-
ful when query proteins are a biased sample (e.g. they were
selected due to known roles in a disease) and the aim is to
understand their partners (e.g. determine prevalent diseases
among partners).

Comparison with other PPI resources

IID differs from other PPI resources (such as APID (76),
HIPPIE v2.0 (33), HINT (77), iRefWeb (78), MyProtein-
Net (34), STRING (79) and TissueNet v.2 (35)) by pro-
viding more options for reducing false negatives, anno-
tating and filtering PPIs, and analyzing networks. All of
these resources integrate PPIs from curated databases, and
some provide PPI annotations and network analysis. How-
ever, there are differences in terms of available species, op-
tions for controlling network false positive and false nega-
tive rates, and types of annotations, filtering, and analysis.
All resources provide human PPIs, some (HINT (77), iRe-
fWeb (78), MyProteinNet (34)) include model organisms,
IID includes model organisms and domesticated species,
and two databases (APID (76), STRING (79)) cover over
1000 species. To control false positive rate, some databases
assign scores to PPIs, reflecting the quantity and reliability
of interaction evidence, while IID enables filtering by types
and quantity of evidence. To reduce false negatives, all re-
sources integrate multiple sources of curated PPIs. IID in-
cludes physically binding PPIs predicted by machine learn-
ing, while STRING (79) and FunCoup (80) include func-
tional interaction predictions. PPI context annotations and
filtering are provided by HIPPIE v2.0 (33), MyProteinNet
(34), and TissueNet v.2 (35). All three databases include tis-
sue annotations, MyProteinNet (34) includes Gene Ontol-
ogy (GO) (8,9), and HIPPIE v2.0 (33) includes GO, dis-
eases, directionality and activation/repression annotations.
IID provides more extensive annotations and filtering op-
tions. Also, IID provides annotations in 18 species, while
HIPPIE v2.0 (33) and TissueNet v.2 (35) cover human, and
MyProteinNet (34) covers 11 species. Network analysis is
supported by HIPPIE v2.0 (33) and STRING (79). HIP-
PIE v2.0 (33) provides enrichment analysis of diseases and
GO in network proteins. STRING (79) provides summary
topology statistics for networks, and enrichment analysis
of GO, pathways, and protein domains in networks pro-
teins. IID provides both topology and enrichment analysis;
it identifies important network nodes, and enables enrich-

ment analysis for all annotations, often in both proteins and
PPIs.

DISCUSSION

Although knowledge of PPI networks has been rapidly in-
creasing, applying them in biomolecular research studies
can be challenging: proteins of interest may have few avail-
able interactions, these interactions may lack context, and
the retrieved network may be difficult to interpret. In addi-
tion, while false positives continue to be reduced in newer
assays, false negatives remain a challenge across most or-
ganisms, including human. IID focuses on these issues––it
aims to provide comprehensive networks, annotation, and
analysis. The overall goal is to help address research prob-
lems such as selecting the best model organism, identifying
reliable and accurate network-biomarkers, predicting drugs
with the strongest impact on a protein network, and finding
diseases with a similar mechanism. Future IID updates will
focus on extending network analysis options to assist with
studies of genetic variants and drug repurposing.
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FUNDING

Ontario Research Fund [34876, in part]; Natural Sciences
Research Council (NSERC) [203475]; Canada Foundation
for Innovation (CFI) [29272, 225404, 33536]; Schroeder
Arthritis Institute, Buchan Foundation and Ian Lawson van
Toch Fund via the Toronto General and Western Hospital
Foundation, University Health Network (in part). The fun-
ders had no role in study design, data collection, and anal-
ysis, decision to publish or preparation of the manuscript.
Funding for open access charge: NSERC [203475].
Conflict of interest statement. None declared.

REFERENCES
1. Navlakha,S. and Kingsford,C. (2010) The power of protein

interaction networks for associating genes with diseases.
Bioinformatics, 26, 1057–1063.

2. Lee,I., Blom,U.M., Wang,P.I., Shim,J.E. and Marcotte,E.M. (2011)
Prioritizing candidate disease genes by network-based boosting of
genome-wide association data. Genome Res., 21, 1109–1121.
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