
����������
�������

Citation: Mashabela, M.D.; Piater,

L.A.; Steenkamp, P.A.; Dubery, I.A.;

Tugizimana, F.; Mhlongo, M.I.

Comparative Metabolite Profiling of

Wheat Cultivars (Triticum aestivum)

Reveals Signatory Markers for

Resistance and Susceptibility to

Stripe Rust and Aluminium (Al3+)

Toxicity. Metabolites 2022, 12, 98.

https://doi.org/10.3390/

metabo12020098

Academic Editors: Hirokazu

Kawagishi, Gabriele Capodaglio

and Gilles Comte

Received: 23 November 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Comparative Metabolite Profiling of Wheat Cultivars
(Triticum aestivum) Reveals Signatory Markers for Resistance
and Susceptibility to Stripe Rust and Aluminium (Al3+) Toxicity
Manamele D. Mashabela 1 , Lizelle A. Piater 1 , Paul A. Steenkamp 1 , Ian A. Dubery 1 ,
Fidele Tugizimana 1,2 and Msizi I. Mhlongo 1,*

1 Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg,
P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; ngoatomd@gmail.com (M.D.M.);
lpiater@uj.ac.za (L.A.P.); psteenkamp@uj.ac.za (P.A.S.); idubery@uj.ac.za (I.A.D.);
Fidele.Tugizimana@omnia.co.za (F.T.)

2 International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
* Correspondence: mmhlongo@uj.ac.za; Tel.: +27-11-559-4573

Abstract: Plants continuously produce essential metabolites that regulate their growth and devel-
opment. The enrichment of specific metabolites determines plant interactions with the immediate
environment, and some metabolites become critical in defence responses against biotic and abiotic
stresses. Here, an untargeted UHPLC-qTOF-MS approach was employed to profile metabolites of
wheat cultivars resistant or susceptible to the pathogen Puccinia striiformis f. sp. tritici (Pst) and
Aluminium (Al3+) toxicity. Multivariate statistical analysis (MVDA) tools, viz. principal component
analysis (PCA) and hierarchical cluster analysis (HiCA) were used to qualify the correlation between
the identified metabolites and the designated traits. A total of 100 metabolites were identified from pri-
mary and secondary metabolisms, including phenolic compounds, such as flavonoid glycosides and
hydroxycinnamic acid (HCA) derivatives, fatty acids, amino acids, and organic acids. All metabolites
were significantly variable among the five wheat cultivars. The Pst susceptible cultivars demonstrated
elevated concentrations of HCAs compared to their resistant counterparts. In contrast, ‘Koonap’
displayed higher levels of flavonoid glycosides, which could point to its resistant phenotype to Pst
and Al3+ toxicity. The data provides an insight into the metabolomic profiles and thus the genetic
background of Pst- and Al3+-resistant and susceptible wheat varieties. This study demonstrates the
prospects of applied metabolomics for chemotaxonomic classification, phenotyping, and potential
use in plant breeding and crop improvement.

Keywords: metabolomics; multivariate statistical analysis; primary and secondary metabolism;
Puccinia striiformis f. sp. tritici; wheat

1. Introduction

Wheat (Triticum aestivum L.) is a stable dietary supplement for millions of people,
providing nutrition in the form of vitamins, minerals, amino acids, and health-beneficial
phytochemicals (e.g., phenolics) [1,2]. The primary sources of food produced from wheat
include, but are not limited to, bread, pasta products, cereals, and baby food. In addition,
some small quantities of wheat are also used for biofuel, animal feed, and alcohol produc-
tion [3]. Wheat is the third most cultivated crop in the world after maize (Zea mays) and
rice (Oryza sativa) in total production [4]. Though it originated from a natural hybridization
of Triticum urartu and Aegilops speltoides, modern wheat is highly genetically diverse. Culti-
vation of wild ancestors and further hybridization ultimately gave rise to the economically
important progenitor of bread wheat, known as Triticum aestivum L. [5].

Breeding programmes have further contributed to the genetic variability of wheat
cultivars with the quest to enhance agronomic traits (i.e., improved growth, yields, disease
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resistance and abiotic stress tolerance). In addition, growth conditions and geographical
locations can trigger modifications to the crop’s genome over time, resulting in a range
of wheat cultivars with varying genetic and phenotypic traits [6,7]. Therefore, cultivar
classification and screening for superior traits have been a primary focus in breeding
programmes, especially with the rapid rate of climate change and the emergence of more
virulent and destructive pathogens [8–10]. Furthermore, with rapid population growth
(expected to be 9–10 billion people by 2050), the world has become increasingly urbanised.
The food supply and demand ratio has significantly declined, placing pressure on food
security globally [11]. Intensified and more efficient agricultural practices have coordinated
efforts to close the gap and meet these ever-growing demands. However, food insecurity
remains a significant concern for the world. More significantly, in Sub-Saharan African
(SSA) nations, more than 240 million people live in extreme poverty and are subject
to malnutrition and/or starvation [12,13]. The situation is further exacerbated by the
prevalence of biotic and abiotic environmental stressors, such as stripe rust (Pst) and
Aluminium (Al3+) toxicity that have ravaged primary crops in SSA.

Pst and Al3+ toxicity are especially concerning stressors on dryland wheat varieties
due to high soil acidity, poor fertility, and nutrient stratification, as observed over the
years [4,14]. Wheat stripe rust (Pst) is an economically important disease caused by the
fungus Puccinia striiformis f. sp. tritici (Pst). The fungus poses a significant threat to wheat
cultivations, resulting in 10 to 70% yield losses globally [15,16]. Al3+ toxicity also poses
limitations on plant stress tolerance, resistance and development. Elevated concentrations
of the toxic Al3+ produce reactive oxygen species (ROS). Subsequently, ROSs interfere with
plant physiological processes, cell division, root elongation, nutrient and water uptake,
plant growth, and overall crop production [17].

According to the Ref. [6], in recent years, agricultural and breeding experts from or-
ganisations such as the Agricultural Research Council for Small Grains (ARC-SG), Sensako
and Pannar have worked on breeding programs to improve wheat cultivar varieties with
regard to stress tolerance and disease resistance. The ARC-SG released improved wheat
cultivars into the private sector for multiplication, leading to improved quality, produc-
tivity and increased yield quantities in the dryland growing region of South Africa [6,7].
Conventionally, plant breeders have relied on phenomics and plant phenotyping for the
assisted selection of desired and superior traits for crop improvement, backed by genomic
and proteomic data [18]. While gene expression profiling highlights differentially expressed
genes, proteomic studies reveal the decrease or increase of proteins related to the expression
of particular genes with little to no biochemical data [19]. However, such practices lack
broader representation of genotype–environment (GxE) interactions. Metabolites are the
most relevant to the phenotype and link the genomic and phenomics representations of
plant responses to the environment [20]. The attraction to metabolomics studies is the abil-
ity to provide a direct link to transcriptomic and proteomic reprogramming and to display
reliable biochemical markers through metabolites that are the immediate representations of
the observable phenotype(s) [21].

The investigation of an organism’s metabolome, comprising non-protein small molecules,
is a recent development in the “omics revolution”. The metabolomics approach qualitatively
and quantitatively provides a rich, real-time source of information about an organism’s
functional state [5,19]. By introducing metabolomics, breeders can decipher the underlying
metabolic pathways, along with important intercellular regulatory biomarkers [22,23]. This
knowledge could allow breeders to pinpoint essential metabolite-associated phenotypes for
crop improvement based on interactions with the immediate environment [24]. In addition,
metabolomic techniques have been used to analyse large-scale metabolic compositions and
regulatory networks in plants, yielding novel biochemical knowledge that may be utilised
in crop breeding and improvement to enhance desired traits.

The main objective of metabolomics in agriculture is to unravel and understand the
metabolic responses of crops to environmental stressors for rapid and accurate phenotyping
and breeding programmes [25]. Furthermore, metabolomics and chemometric tools can
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allow comprehensive grouping (based on similarity and differences) and classification
of cultivars (based on biomarkers responsible for the observed phenotypes) [21,26]. This
study compares the metabolic profiles of selected Pst-resistant and susceptible wheat cul-
tivars. We also aimed to identify the key metabolites and biomarkers responsible for the
differences in observed resistance or susceptibility in the cultivars under investigation. It
was hypothesized that Pst-resistant cultivars would reveal accumulation of metabolites as-
sociated with an enhanced stress response, thus conferring resistance to the environmental
stressors compared to the susceptible cultivars.

2. Results
2.1. Analysis of Chromatographic and Mass Spectrometric Data for Differential Detection of
Metabolites in Wheat Cultivars

Crude methanolic extracts of leaf tissue from five dryland wheat varieties planted
in winter–spring rainfall regions of South Africa (Table S1) were separated on ultra-high
performance liquid chromatography coupled to a quadrupole time-of-flight high-definition
mass spectrometry detector (UHPLC-qTOF-MS). Metabolite profiling was performed in
both positive and negative electron spray ionisation (ESI) modes to allow inclusive, non-
biased coverage and global analysis of the metabolome. The inspection of the extracted LC
chromatograms displaying distinct base peak intensities (BPI) from negative Figure 1A and
positive data Figure 1B showed good chromatographic separation considering the complex-
ity of the multi-dimensional metabolome covering a broad range of polar and non-polar
metabolites. Furthermore, the BPI MS chromatograms revealed differentially populated
peaks (each with unique m/z values, intensities and retention times (Rts), representing
the qualitative (presence/absence) and quantitative (intensity/concentration) detection of
metabolites, thus providing a visual description of the similarities and differences between
the selected wheat varieties.

BPI chromatograms showed better ionisation of metabolites in ESI− mode, and thus,
overall sensitivity (both qualitatively and quantitatively) of detected compounds as com-
pared to the ESI+ mode. For plant phenolics and flavonoids, negative ionisation provides
improved ionisation efficiency and the potential for lower detection limits [27]. However,
both ionisation modes are significant for broad metabolite profiling and fingerprinting.
A study by the Ref. [27] reported that ESI− ionisation is preferred 46% of the time, generally
by oxygen-based compounds, such as flavonoids and carboxylic acids. These compounds
make up the majority of metabolites detected in this study. In contrast, ionisation of both
oxygen-containing metabolites and nitrogen bases (e.g., amino acids) are more favourable
in ESI+ mode, 38% of the time [21,27].

2.2. Chemometric and Statistical Data Analysis for Metabolite Profiling of Wheat Cultivars

Due to the apparent differences observed on BPI MS chromatograms, statistical data
analysis software and chemometric analysis were used to distinctly discriminate between
the wheat varieties and establish a metabolite-based grouping/classification of the different
cultivars. Data mining was performed through unsupervised principal component analysis
(PCA), followed by multivariate data analysis (MVDA) to obtain PCA score plots with
corresponding hierarchical cluster analysis (HiCA) for chemotaxonomic analysis, as graph-
ically represented in Figure 2. Chemometric data analysis applies pattern recognition and
machine learning algorithms to isolate significant features and trends otherwise not visible
through visual inspections of the BPI MS chromatograms from complex data matrices for
the biochemical systems under investigation, thus representing data in an interpretable
manner [28]. The first and second principal components (PCs), (PC1 and PC2) explain
54.1% and 40.3% of the variation, respectively. The normalisation quality of the data was
evaluated using quality control (QC) groupings to further investigate data reliability and
evaluate the chromatographic and mass detection systems [29].



Metabolites 2022, 12, 98 4 of 18

Figure 1. UHPLC-MS BPI chromatograms of methanolic extracts of wheat leaves. The chromatograms
show comparative differences between the represented cultivars in the negative (A) and positive
(B) ionisation modes. Visual inspection of the chromatograms clearly shows the quantitative and
qualitative difference in the peak populations (presence/absence).

PCA separated the cultivars into five distinct groups (Figure 2A), showing differential
clustering of the varieties based on their differences in metabolite profiles and distribution.
It is important to note that differential clustering of the cultivars is not solely dependent on
the qualitative composition of metabolites, but rather in combination with the differential
quantitative distribution of each metabolite between the cultivars. The generated PCA score
plot illustrates the similarities or differences within (intra-cultivar variance by PC2) and
between (inter-cultivar variance by PC1) the sample clusters [30,31]. Figure 2A shows the
grouping of Pst-susceptible cultivars together (‘Gariep’ and ‘Elands’), while the resistant
cultivars of ‘Koonap’ and ‘Senqu’) were distributed further away from the susceptible
cultivars. The ‘Matlabas’ cultivar is also susceptible to Pst; however, located towards the
middle, separated from the ‘Gariep’ and ‘Elands’. The HiCA plot in Figure 2B complements
this observation. The HiCA further reveals how the groups of cultivars chemically relate
to or are separated from one another. The distinct separation of the five groups directly
mimics the distribution of the groups as observed on the PCA, with ‘Senqu’ and ‘Koonap’
showing the most significant separation from ‘Elands’ and ‘Gariep’. The positioning of
the ‘Matlabas’ cultivar closer to ‘Koonap’ suggests the composition of similar metabolic
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features associated with resistance as with the resistant cultivar, and this phenomenon is
further visualised in the descriptive heatmap discussed below in Figure 3B.

Figure 2. Unsupervised exploratory data analysis of ESI negative wheat cultivar classification data.
(A) Principal component analysis (PCA) was based on the whole metabolomics dataset retrieved from
the analysed wheat samples. The PCA shows discriminant sample clustering coloured by cultivars.
The PCA was an 18-component model with R2X(cum) of 0.541 and Q2(cum) of 0.403. (B) An HiCA
plot showing the hierarchical relations between the samples corresponding to (A). (C) A 3D PCA
scores plot of the wheat samples; the 3D shows the discriminant clustering of the cultivars based on
susceptibility (circled in blue) and resistance (circled in orange) to Pst. ‘Koonap’ (orange) represents
the only cultivar resistant to both Pst and Al3+ toxicity, where it is chemically related to ‘Matlabas’, as
seen by the closer clustering in both the PCA and HiCA. Furthermore, ‘Koonap’ is separated from all
the other cultivars, as seen in (C), based on its metabolite profile, which could be a representation of
its resistance to both types of stresses.

The third principal component (PC3) was further evaluated to explore the patterns
in the data with the 3D PCA model illustrated in Figure 2C. PC3 shows the closer group-
ing between the Pst-resistant cultivars (‘Koonap’ and ‘Senqu’—in purple demarcation),
distinctively separating them from the Pst-susceptible cultivars (‘Elands’, ‘Matlabas’ and
‘Gariep’—in black demarcation). The exploration of data with applied PCA allowed for the
reduction of the multi-dimensional data to a 2D model that was easier to interpret, thus
revealing the underlying distribution patterns of the data. At the same time, the third PC
added to the exposure of features seemingly obscured in the 2D model.
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Figure 3. Distribution of annotated metabolites among five wheat cultivars. (A) The sunburst plot
shows the classification of the annotated, putatively identified metabolites, and the main classifi-
cations of annotated metabolites were phenolics (with flavonoids and HCAs), fatty acids, organic
acids and amino acids. (B–D) The distribution of selected annotated metabolites among five wheat
cultivars according to class. Samples are projected in columns with the metabolites in rows. The data
were log-transformed, and Pareto scaled in the Ref. [32]. Colour-coding indicates abundance (red =
high abundance, green = low abundance). Some metabolites are found in high abundance in some
cultivars, and very low abundance in other cultivars.
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2.3. Evaluation of Differential Metabolic Profiles of Wheat Cultivars

Metabolite annotation and identification were concomitantly carried out using the
BPI, and single-ion extracted chromatograms from samples of all five cultivars. Putative
annotation of metabolites led to the identification of 100 metabolites spanning different
metabolite classes originating from both primary and secondary metabolic pathways.
A profile of these metabolites is graphically illustrated in the sunburst plot in Figure 3A.
Table S2 lists the individual annotated metabolites, either commonly expressed within
the five cultivars or present as unique biomarkers. Metabolite annotation was performed
to level 2 of the Metabolomics Standard Initiative (MSI) based on product ion spectral
information formed by collision-induced dissociation (CID) of selected parent ions [33].
Classes of positively identified metabolites included most phenolic compounds, such as
flavonoids, hydroxycinnamic acid derivatives, and polyphenols. The list also consists of
fatty acids, organic acids, and several amino acids (Figure 3A).

A hierarchical clustering interactive heatmap analysis (Figures 3B and S2) was per-
formed in the Ref. [33] to investigate the variations of the identified metabolites in the
wheat cultivars using the average integrated peak areas of the respective metabolites. The
heatmaps revealed unique diversities between the wheat varieties in terms of metabolite
abundance or enrichment. For instance, the class of fatty acids was highly abundant in the
resistant ‘Senqu’ cultivar, while many flavonoid glycosides were enriched in the resistant
‘Koonap’ variety. In contrast, enrichment of HCAs was observed in all susceptible cultivars
(‘Matlabas’, ‘Elands’, and ‘Gariep’).

Figure 4 shows box-and-whisker plots representing an in-depth, semi-quantitative vi-
sualisation of the distribution of selected metabolites in the five cultivars. The inter-cultivar
variations in metabolite profiles are illustrated by the increased or relative decrease of the
mentioned metabolites. Figure 4A reveals relatively higher concentrations of flavonoid
glycosides, such as rutin, kaempferol-3-O-glucoside, and luteolin-6-C-hexosyl-hexoside
in the ‘Koonap’ cultivar, followed closely by both the ‘Matlabas’ and ‘Gariep’ cultivars.
Surprisingly, ‘Senqu’ displayed a lower concentration of these metabolites, though expected
to be closely related to ‘Koonap’ due to similar degrees of resistance to Pst. ‘Senqu’, how-
ever, has an accumulation of linolenic acid derivatives (Figure 4B). All three susceptible
cultivars showed an interesting trend in the collective accumulation of HCAs, including
feruloyl putrescine, feruloyl agmatine, coumaroyl agmatine and sinapoyl hydroxyagmatine,
compared to their resistant counterparts (Figure 4C). The cultivar-based quantitative and
qualitative metabolite distribution was further evidenced in the group-wise metabolite
selection, biplot-based discrimination analysis, and the variable importance in projection
(VIP) showing metabolic markers contributing to metabolic phenotypes in Figure S1A,B.

The general metabolite distributions observed in the hierarchical clustering interactive
heatmap analysis and the box-and-whisker plots reveal the differential expression of
metabolites per cultivar, thus giving insight into the variations in their metabolite profiles.
Output from an orthogonal projection to latent structures-discriminant analysis (OPLS-
DA), a supervised model for binary classification, displays clear discrimination between
Pst and Al3+ toxicity-resistant (‘Koonap’) and susceptible (‘Gariep’) cultivars based on
their respective metabolite profiles (Figure S3A). A receiver-operator characteristic (ROC)
plot was used to evaluate the classification ability, sensitivity, and specificity of the OPLS-
DA (Figure S3B), the ROC plot showed 100% sensitivity and specificity of the mode
indicating the model’s high discriminatory power. A selection of features responsible
for the observed cultivar classification was carried out on an OPLS-DA loading S-plot
(Figure S3C), selecting only features with high correlation and covariation, [p(corr) ≥ 0.5,
≤−0.5 and (p1) ≥ 0.1, ≤−0.1] shown in blue and red demarcation, respectively. The
relevance of the selected metabolites was further evaluated with a VIP score plot (Figure
S3D) showing metabolites with VIP scores higher than the cut-off threshold of 1. Following
the OPLS-DA analysis in ‘Koonap’ vs. ‘Gariep’, kaempferol-3-O-glucoside, dirhamnosyl
linolenic acid, 6,8-di-C-glucosyl apigenin, and rutin (majority of flavonoids) were positively
correlated to ‘Koonap’ and negatively correlated to ‘Gariep’. In contrast, examples of HCAs
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and fatty acids including trihydroxyoctadecenoic acid, 9,12,13, triHODE, dihydroferulic
acid 4-O-glucuronide, and 1-O-sinapoyl-β-D-glucose had a positive correlation to ‘Gariep’
and negative correlation to ‘Koonap’. The above-mentioned metabolites contribute to
cultivar-specific discrimination and differential metabolite profiles, which can serve as
markers for Pst and Al3+ toxicity resistance.
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Chemometrically extracted metabolites in Table S2 were used to perform metabolic
pathway analysis using MetaboAnalyst Pathway Analysis (MetPA) to reveal impactful
metabolic pathways associated with the generated data across all five cultivars (Figure 5A).
The phenylalanine (Phe), TCA cycle, glyoxylate and dicarboxylate metabolism, and pyru-
vate metabolism pathways showed relatively high impact based on matched metabolites
from the data. The most statistically significant pathways were the TCA cycle, glyoxy-
late and dicarboxylate metabolism, pyruvate metabolism and the alanine, and aspartate
and glutamate metabolism pathways listed above from the most significant and the most
impactful pathways.

Figure 5. MetaboAnalyst-computed pathway analysis. (A) Pathway view of statistically significant
pathways flagged from the metabolome view based on matched metabolites. The figure shows
pathways matched from the annotated metabolites of all five wheat cultivars. The pathways are
arranged based on the p-value (y-axis), which indicates the pathway enrichment analysis, and
pathway impact values (x-axis) representing pathway topology analysis. The node colour of each
pathway is determined by the p-value (red = lowest p-value and highest statistical significance), and
the node radius (size) is based on the pathway impact factor, with the biggest indicating the highest
impact. The phenylalanine metabolism, TCA cycle, and glyoxylate and dicarboxylate metabolism
pathways were the most impactful among the different cultivars and showed the highest statistical
significance (p-value < 0.05). (B) The diagram illustrates the integration and contribution of matched
metabolites in the flagged TCA cycle pathway. The metabolites are matched using KEGG identifiers
(e.g., citrate: C00158). The matched metabolites that function as TCA intermediates in the TCA cycle
overlap with the glyoxylate and dicarboxylate metabolism pathways, which lead to the production
of oxoglutarate. The pie charts indicate the abundance of each of the metabolites in the different
wheat cultivars.

The TCA cycle functions as one of the most important metabolic pathways in plants,
playing a role as the primary source of energy for cellular metabolism and the main
link to almost all metabolic pathways. The metabolism of Phe channels carbon from
photosynthesis to the phenylpropanoid pathway, which is involved in crucial functions,
such as plant growth and development and the mitigation of biotic and abiotic stress. The
TCA cycle intermediates malate, succinate, cis-aconitase, fumarate, citrate, iso-citrate and
oxaloacetate were the most matched metabolites, showing the overlap between the most
statistically significant pathways, the TCA cycle, and the glyoxylate and dicarboxylate
metabolism pathways (Figure 5B). The pie charts illustrate the relative intensities of the
metabolites in the five wheat cultivars.
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3. Discussion

Biotic and abiotic stresses are the most investigated environmental factors associated
with retarded plant growth, development, and, most importantly, commercial crop pro-
duction and yields. Over the years, strategies have been developed and implemented to
mitigate the deleterious effects of environmental stress on crops. Ultimately, agrochemical
applications have been the method of choice for stress control; additionally, plant breeding
has served as an alternative to producing biotic stress-resistant and abiotic stress-tolerant
crops. The work presented herein was based on the hypothesis that genetic individuality
of wheat cultivars/varieties confers uniqueness to metabolite profiles, enabling discrimi-
nation of resistant varieties from genetically distinct susceptible varieties by investigating
individual metabolite variations in the different cultivars. In addition, such uniqueness
in metabolite profiles could further determine the degree of resistance or susceptibility of
wheat varieties to Pst and Al3+ toxicity.

Wheat is grown throughout heterogeneous areas across the globe, and varieties are
specifically bred for resistance to different pathogens and insects and the adaptation to
various agronomic conditions. Using well-established metabolomics techniques and chemo-
metric statistical analysis tools, the metabolomes of five wheat cultivars were profiled. The
identified metabolites showed variations, both qualitatively and quantitatively, among the
different cultivars.

Secondary metabolites are some of the most ubiquitous metabolites in plants, the
biogenesis of which occurs through the similarly ubiquitous phenylpropanoid pathway.
According to the Refs. [34–36], cinnamic acids are the most common phenolic acids in
wheat, including major derivatives of ferulic-, sinapic and coumaric acids. Amino acids
identified included Phe, which in addition to functioning as building blocks of proteins, Phe
plays a central role as a precursor molecule to several plant metabolites involved in growth
development, reproduction, and defence [37]. Phe is crucial in channelling photosynthetic
carbon to the biosynthesis of phenylpropanoid constituents. HCAs are synthesised early in
the phenylpropanoid pathway through the deamination of Phe to trans-cinnamic acid that
can be converted to p-coumaric acid, a known precursor compound to produce HBAs [37].
Phe was found in low abundance across all five cultivars, possibly indicating a negative
correlation due to high conversion rates to its HCA derivatives.

The functions of phenolic compounds are attributed to their antioxidant properties.
These capabilities span many physiological and adaptive processes in plants, such as mor-
phological adaptations, reproduction, development and defense against biotic and abiotic
environmental factors [38]. The antioxidant properties of phenolic compounds have been
well-documented [21,38]. Flavonoid glycosides and HCAs are shielding compounds that
protect plants from oxidative damage caused by reactive oxygen species (ROSs) by slowing
down oxidative degradation and scavenging free radicals. These bioactive compounds
have also been reported to display antimicrobial activity [39,40]. The mentioned traits
have been attributed to the reducing properties of flavonoids and HCAs. Additionally,
suppression of metal-catalysed free radicals has been reported [41], owing to their capa-
bilities as metal-chelating compounds, particularly iron, copper, and Al3+, as measured
in vitro [41,42]. Higher concentrations of flavonoid glycoside in ‘Koonap’ could point
to the phenotypic resistance of the cultivar to Pst and Al3+. Interestingly, the ‘Matlabas’
cultivar, though susceptible to both Pst and Al3+, also displayed enhanced concentrations
of flavonoid glycosides. ‘Matlabas’ is a winter wheat variety planted during the June
season. According to the Ref. [43], winter wheat has a high tolerance to low temperatures.
This observation can possibly be attributed to the enhanced levels of flavonoids glycosides
present in the ‘Matlabas’ cultivar.

Further observation of the HCA heatmap shows an accumulation of HCAs in all the
susceptible cultivars. It is important to note that although phenotypically, the cultivars
are classified as either resistant or susceptible, particular metabolic features can be shared
only with quantitative variations. Although suitable for spring cultivation, these cultivars
have been subjected to the winter cultivation season. Hence, the HCA prevalence in these
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Pst and Al3+ susceptible cultivars may not necessarily be against the stresses mentioned
above, but instead heightened for adaptive tolerance to the low winter temperatures.
Additionally, the complexation behaviour of HCAs, such as caffeic, ferulic and p-coumarinc
acid towards Al3+ cations have been reported [42]. The stable complex formation between
Al3+ and HCAs is pH-dependent (pH 3.5 for caffeic acid, and pH 4.5 for both ferulic and
p-coumaric acid) and forms due to the chelating capabilities of the carboxyl groups on the
acids [42]. These reports are consistent with indications of high Al3+ toxicity in soils with
high acidity [14], and thus highlight the potential role of HCAs to reverse or reduce effects
of metal toxicity in plants. Furthermore, a study by the Ref. [44] reported that Al3+ stress
triggers the accumulation of ferulic and p-coumaric acid in monocots such as rice. Results
from the study also showed the roles of HCA compounds in Al3+ resistance through cell
wall modifications (hemicellulose and lignin cross-linkage), thus disrupting the active
binding of Al3+. The studies mentioned above could point to the possible adaptation of
susceptible wheat cultivars to Al3+ toxicity.

There was also a clear separation between the ‘Koonap’ and ‘Senqu’ cultivars on
the PCA and the HiCA plots. Both cultivars are resistant to Pst; however, the apparent
differences in metabolite profiles may result from the differences in the resistance to Al3+

toxicity, which can be indicated by the lower levels of both flavonoid glycosides and HCAs
in the Al3+-susceptible ‘Senqu’, as compared to the resistant ‘Koonap’. Besides salinity, Al3+

toxicity is one of the most widespread problems associated with ion toxicity in plants [45].
Phenolic compounds can reverse the effects of Al3+ toxicity on plants through metal
complexing or chelating, as previously mentioned. These compounds, including flavonoid
derivatives (glycosidic and sulphonate conjugates), form stable complexes with Al3+ for
either internal root or shoot detoxification as metal antidotes. The phenolic or flavonoid-
mediated resistance to Al3+ toxicity has been previously reported in maize [46,47].

According to the Ref. [48], phenolics present in wheat can be constitutive in nature.
The efficiency of the phenolic metabolism was studied in wheat phenotypes resistant and
susceptible to the Karnal bunt pathogen, Neovossia indica. Results showed onset elevation
and activity of phenols in resistant phenotypes, followed by a significant decline by 10 days
post-infection (dpi). In contrast, there was a slow accumulation of phenolics, such as
caffeic acid, tyrosine, and hydroquinone in susceptible phenotypes, indicating delayed
deployment and accumulation of these defence metabolites. The results suggest that both
resistant and susceptible phenotypes can deploy similar defence mechanisms; however,
the delayed deployment of the mechanism by susceptible phenotypes serves little purpose
to prevent pathogen establishment. In this case, susceptible cultivars face early demise.

In contrast, early deployment of defence metabolites by resistant phenotypes ensures
immediate resistance against the pathogen. Moreover, defence metabolites in resistant
phenotypes do not play a role in ultimate resistance in the absence of disease [48,49].
As such, decreased biosynthesis or an accelerated catabolism of defence metabolites can
serve alternative metabolic pathways; this phenomenon could explain the apparent down-
regulation of flavonoid glycosides and HCAs in the ‘Senqu’ cultivar though phenotypically
resistant to Pst. In addition, some of the primary roles of phenolic compounds function as
structural components of plant cell walls. In maturing wheat grains, 75–80% of phenolic
compounds occur in insoluble forms esterified to cell wall polymers, while 20–25% are
esterified to sugars [35]. For instance, ferulic and p-coumaric acids identified in this
study have been reported to esterify, with arabinose units of arabinoxylans functioning
as components of cereal cell walls in wheat [50,51]. Additionally, phenolic acids such as
HCAs and HBA derivatives play a vital role in the formation of secondary cell walls as
precursors of monolignols in lignin biosynthesis [34].

A range of unsaturated fatty acids (UFAs) were identified from the wheat cultivars
under investigation. According to the Ref. [52], the significant components of fatty acids
in wheat include unsaturated oleic (18:1), linoleic (18:2), and linolenic (18:3) acids. UFAs
are essential primary metabolites in cell maintenance as the functional constituents of
the cell membrane and serve as precursors in the biosynthesis of phytohormones such
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as jasmonates, which are essential for plant responses to biotic and abiotic stress as sig-
nalling molecules [27,29]. Additionally, C18 UFAs are essential as signalling and regulatory
molecules in the plant through functioning as hydrophobic hormones that bind to and regu-
late receptor proteins controlling major regulatory networks impacting cellular metabolism
and signal transduction [53,54]. UFAs have been implicated in eliciting rapid stress re-
sponse elements (RSREs), which respond to various kinds of biotic and abiotic stress [54].
For instance, increased levels of both 18:2 and 18:3 unsaturated FAs were found to confer
resistance to Colletotrichum gloeosporioides in avocado and Pseudomonas syringae in toma-
toes [55]. FAs were more enriched in the ‘Senqu’ cultivar, followed by ‘Gariep’, indicating
the possible role of FAs against Pst. Moreover, the Ref. [56] reported the processes of lipid
metabolism as markers for induced resistance in wheat. These findings could explain the
positive correlation of UFAs in the Pst-resistant ‘Senqu’ cultivar.

Organic (carboxylic) acids (OAs) and amino acids were present in different quantities
in the varying wheat cultivars among the identified metabolites. Carboxylic acids and
amino acids are generally constitutive in nature [27,57]. Carboxylic acids are involved in
primary metabolism as intermediates of the TCA cycle responsible for energy production
in the cell, osmoregulation, as well as plant growth and development. Additionally, TCA
intermediates are good signalling molecules; their ability to form complexes and the ease
of metabolism in different cell compartments allow them to reflect the metabolic and re-
dox state of the cell [58]. According to the Ref. [59], organic acids such as malate, citrate,
succinate, acetate, oxalate, and tartrate chelate with active cations of Al3+ form inactive
complexes of OA-Al3+. The non-toxic OA-Al3+ complexes are generally formed in the rhizo-
sphere and thus reduce Al3+ uptake or accumulation, further limiting metal toxicity [59,60].
Furthermore, Al3+-induced efflux of OAs has been demonstrated to be a major resistance
mechanism in several plant species, including wheat [61,62]. These activities can span
several metabolic pathways. The identified carboxylic acids are involved in the pyruvate
metabolism and are synthesised as a result of the Ala, Asp and Glu metabolism, further
showing the versatility of the compounds in plant metabolism. Functions of carboxylic
acids can be extended to precursors of amino acid biosynthesis [20,27].

Overall, the outcomes of the study revealed that significant metabolite variations in
organisms could be both qualitative and quantitative, as many metabolites were common
in all five cultivars, with variations in enrichment. Metabolic differences in the wheat
varieties resulted in apparent cultivar-associated differences based on genetic differences
between the cultivars. Genetically related wheat cultivars can vary in metabolite composi-
tions and distribution attributed to the phenotype and functional agronomical properties.
Additionally, some discriminant metabolic markers were identified from the selected wheat
cultivars. For example, quinic acid and valine were identified as metabolic markers for
‘Senqu’, along with linolenic acid and its derivatives. At the same time, iso-orientin and
9,12,13 triHODE were identified as markers for ‘Koonap’ and trihydroxy-octadecenoic acid
and (10E,15Z)-9,12,13-trihydroxy-10,15-octadecadienoic acid for ‘Elands’ and ‘Matlabas’,
respectively. The differential regulation and accumulation of these metabolites in the wheat
varieties could ultimately determine their growth parameters and metabolic responses
to environmental factors. Moreover, metabolic markers can be useful for the selection of
functionally favourable phenotypic and agronomical traits for breeding practices.

Plant breeding provides the opportunity to reduce the cost of disease control and
management, as well as losses in crop productivity and yields, thus providing substantial
economic benefits for primary crop producers. Even so, crops showing susceptibility to the
stressors mentioned above are still utilised. The investigation of an organism’s metabolome
is a recent development in the “omics revolution” and provides a rich, real-time source of
information about an organism’s functional cellular state.

This study constitutes an attestation of the ability of metabolite profiling to drive
hypothesis generation through the identification of plant metabolites and potential path-
ways of metabolite biosynthesis that distinguish between wheat cultivars. These findings
support the use of global high-throughput metabolite profiling as a discovery tool capable
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of identifying a specific pattern or ‘profiles’ responsible for traits of interest in plants under
investigation. This study is only one part of a more significant effort to develop sustainable
wheat production by elucidating the metabolite profiles of wheat cultivars relative to their
traits of resistance and vulnerability to environmental stressors.

4. Materials and Methods
4.1. Wheat Cultivation

Five wheat cultivars (namely, ‘Elands’, ‘Matlabas’, ‘Koonap’, ‘Senqu’ and ‘Gariep’)
with varying degrees of resistance and susceptibility to Pst were obtained from the Agri-
cultural Research Council for Small Grains (ARC-SG) in Bethlehem, Free State Province,
South Africa (Table S1). The seeds were grown in potted and autoclaved germination mix
(Culterra, Muldersdrift, South Africa) under controlled greenhouse conditions: minimum
temperature 15 ◦C and maximum temperature of 25 ◦C. Plants were watered twice a week
with distilled water and fertilizer mixture consisting of 650 mg/L CaNO3, 400 mg/L KNO3,
300 mg/L MgSO4, 90 mg/L mono-ammonium phosphates, 90 mg/L mono-potassium
phosphates, 150 mg/L Soluptase, 20 mg/L Microplex, and 40 µL/L Kep-P-Max obtained
from Shiman SA (Olifantsfontein, South Africa). Cultivar variants were grown in three
biological replicates (three separate pots per cultivar).

4.2. Plant Harvesting and Metabolite Extraction

Leaves were harvested from the plants at the three-leaf stage, snap-frozen, and then
stored at −80 ◦C until extraction. Metabolite extraction was carried out as follows: 1 g of
leaves were pulverised in liquid nitrogen, followed by resuspension in 10 mL 80% ice-cold
methanol. The solution was sonicated twice with a probe sonicator at 55% power for 30 s
each time, at room temperature, followed by centrifugation at 5000 rpm for 15 min at 4 ◦C.
The supernatant was collected and evaporated to approximately 1 mL at 55 ◦C with a
rotary evaporator (Heidolph, Schwabach, DE). The extracts were dried to completeness in
a vacuum microcentrifuge at 46 ◦C, then reconstituted in 300 µL of 50% LC-grade methanol
(Romil, Cambridge, UK) and filtered through 0.22 µm nylon syringe filters into 2 mL HPLC
vials fitted with a 300 µL insert. Samples were stored at 4 °C until analysis. Quality control
(QC) samples were prepared by pipetting equal volumes of the samples in a designated
LC-MS vial for analysis.

4.3. Metabolomics-Based Data Acquisition, Analysis, and Interpretation
4.3.1. Untargeted Metabolomics Study with UHPLC-MS Analysis

Metabolomics data acquisition was performed on 2 µL of 50% methanol extracts
on a Waters Acquity UHPLC system fitted with an ACQUITY UHPLC HSS T3 column
(1.8 µm × 2.2 mm × 150 mm) at a column temperature range of 60 ◦C (Waters, Manchester,
UK), hyphenated to a SYNAPT G1 q-TOF-MS (Waters Corporation Milford, MA, USA). Each
sample representing a biological replicate was analysed in triplicate technical replicates.
A binary mobile phase was composed of water (eluent A) and acetonitrile (eluent B) (Romil
Pure Chemistry, Cambridge, UK), both with 0.1% formic acid and 2.5% isopropyl alcohol
(Sigma-Aldrich, Munich, Germany), at a flow rate of 0.4 mL/min and a run time of
30 min. The gradient was as follows: eluent B ranged from 2% over the first 2.0 min,
2–90% over 2.0–25 min, 90–95% over 25–27 min, then returned from 95–2% over 28–30 min.
Finally, the column was washed with a solution of methanol:acetonitrile: isopropyl alcohol
(MeOH:ACN: IPA) for regeneration after each batch analysis.

Sample ionisation was carried out in an ESI source in both positive and negative modes
on a Waters SYNAPT G1 q-TOF MS. The MS conditions were set as follows: 2.5 kV capillary
voltage and 30 V sample cone voltage with a 1800 V MCP detector voltage, a source
temperature of 120 ◦C, and a 450 ◦C desolvation temperature. The cone gas flow was set at
50 L/h, desolvation gas flow at 550 L/h, m/z range of 50–1200, a 0.1 s scan time in centroid
mode with interscan delay: 0.02 s, and a mass accuracy window of 0.5 Da. The MS was set
to perform both unfragmented and five fragmenting experiments (MSE) simultaneously by
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increasing in-source collision energy from 3 to 30 eV to assist with subsequent structural
elucidation and compound identification [29]. MassLynxTM 4.1 software (SCN 704, Waters
Corporation Milford, MA, USA) was used to regulate the LC-MS run. Sample analysis
was carried out in three technical replicates to account for analysis variability. Pooled (QC)
samples were included in the analysis to assess the reliability and reproducibility of the
analytical method [63,64].

4.3.2. Data Processing and Multivariate Data Analysis (MVDA)

UHPLC-qTOF-MS raw data were pre-processed by MarkerLynxTM software (version
4.1, Waters Corporation, Milford, MA, USA) for both positive and negative data. The
MarkerLynxTM multistep data pre-processing allows for peak picking, retention time
correction and alignment, noise elimination, feature detection and sample normalisation,
creating data matrices of retention time (Rt)-m/z variable pairs, with m/z peak intensity
for each sample [64]. MS data were processed as per the following parameters: Rt range
of 0.68–26.35 min, a mass range of 100–1200 Da, a mass tolerance of 0.05 Da, and noise
elimination level of 10, followed by data normalisation on MassLynx XMTM software
(Waters, Manchester, UK). For MVDA, processed data matrices were exported for analysis
on SIMCA 14.0 software (Umetrics, Umea, Sweden). PCA, an unsupervised statistical
analysis method, and orthogonal-partial least square discriminant analysis (OPLS-DA),
a more supervised machine learning data analytical method, were performed, both in
Pareto scaling for variable normalisation. The resulting PCA reduced the dimensionality
of the data to present summarised indices from the data matrix for better visualisation
and interpretation. In addition, OPLS-DA score plots were used for binary classification to
reveal underlying metabolite features contributing to the observed discrimination between
data groups.

Metabolomic diagnostic tools available in SIMCA were used to evaluate the generated
models. These include the cumulative (cum) variation model in the matrix X, R2X (cum) and
R2Y (cum), which explain the goodness-of-fit parameters, the response variable’s fraction
of variance, and the predictable fraction of the matrix X by the assessed components. CV-
ANOVA (analysis of variance testing of cross-validation predictive residuals) was used
to validate the OPLS-DA data. Furthermore, a good OPLS-DA model was represented by
a p-value of < 0.05. The OPLS-DA S-plot highlighted discriminant biomarkers. Further
statistical evaluation of the model was carried out using receiver operator characteristic
(ROC) and variable importance in projection plot (VIP) score plots. Annotation of significant
ions contributing to the variation in the composition of the different cultivar varieties
as depicted in the OPLS-DA scores was performed as described [30,65]. Compound
annotation was done on MS-based accurate mass and fragmentation patterns. Existing
spectral information was used to compare different collision energies of single ion extracted
chromatograms (XICs) from each significantly induced ion. These were then compared to
published data. Corresponding precursor ions were used to calculate empirical formulas,
which were then used to search databases such as Dictionary of Natural Products [66],
PubChem [67], and ChemSpider [68] for putative MSI (Metabolomics Standards Initiative)
level 2 compound identification [31,69].

5. Conclusions

Breeding practices provide plant resistance at a genomic and molecular level, further
conferring protection through epigenetic and transcriptomic modifications. Hence, many
transgenic crops, such as wheat varieties displaying traits of resistance and tolerance to
environmental stressors, including Pst and Al3+ toxicity, have been introduced into the
fields through breeding programmes. The application of LC–MS-based metabolomics in
this study allowed for the elucidation of the differential metabolite features of metabolomes
of wheat cultivars and has provided a gateway to classification methods through metabo-
lite profiling. The untargeted LC–MS approach led to the identification of a range of
metabolites belonging to four major classes of phenolics (flavonoids and HCAs), fatty acids,
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organic acids, and amino acids. Furthermore, results from this study suggest that both
qualitative and quantitative factors contribute to the discrimination of sample groups. The
identification of significant metabolic markers can further reveal a plant’s robust arsenal
in combatting that mentioned previously, and other biotic and abiotic stress or strategies
employed in growth and development. Knowledge of the characteristics mentioned above
can enhance research into plant breeding practices for crop improvement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12020098/s1, Figure S1: Distribution of significant metabolites. (A) A bi-plot metabolite
distribution per cultivar and (B) VIP scores. Figure S2: Distribution of annotated metabolites (organic
acids and amino acids) among five wheat cultivars, Figure S3: Supervised OPLS-DA statistical
analysis and significant feature extraction of ESI negative data of methanolic extracts from leaf tissues,
Table S1: Dryland wheat varieties sourced from different summer rainfall regions. Table S2: Summary
of the annotated, putatively identified metabolites (MSI-L2) from 5 wheat cultivars.
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