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Abstract

Poxviruses employ sophisticated, but incompletely understood, signaling pathways that

engage cellular defense mechanisms and simultaneously ensure viral factors are modu-

lated properly. For example, the vaccinia B1 protein kinase plays a vital role in inactivating

the cellular antiviral factor BAF, and likely orchestrates other pathways as well. In this study,

we utilized experimental evolution of a B1 deletion virus to perform an unbiased search for

suppressor mutations and identify novel pathways involving B1. After several passages of

the ΔB1 virus we observed a robust increase in viral titer of the adapted virus. Interestingly,

our characterization of the adapted viruses reveals that mutations correlating with a loss of

function of the vaccinia B12 pseudokinase provide a striking fitness enhancement to this

virus. In support of predictions that reductive evolution is a driver of poxvirus adaptation, this

is clear experimental evidence that gene loss can be of significant benefit. Next, we present

multiple lines of evidence demonstrating that expression of full length B12 leads to a fitness

reduction in viruses with a defect in B1, but has no apparent impact on wild-type virus or

other mutant poxviruses. From these data we infer that B12 possesses a potent inhibitory

activity that can be masked by the presence of the B1 kinase. Further investigation of B12

attributes revealed that it primarily localizes to the nucleus, a characteristic only rarely found

among poxviral proteins. Surprisingly, BAF phosphorylation is reduced under conditions in

which B12 is present in infected cells without B1, indicating that B12 may function in part by

enhancing antiviral activity of BAF. Together, our studies of B1 and B12 present novel evi-

dence that a paralogous kinase-pseudokinase pair can exhibit a unique epistatic relation-

ship in a virus, perhaps serving to enhance B1 conservation during poxvirus evolution and

to orchestrate yet-to-be-discovered nuclear events during infection.

Author summary

Vaccinia virus is the archetype member of the Poxviridae family. This virus encodes ~200

genes that contribute to viral propagation in the cytoplasm and coordinate restriction of

the host antiviral response through mechanisms that are incompletely understood.
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Notably, the B1 kinase inhibits a highly conserved antiviral protein, allowing viral DNA

replication to proceed in the cytoplasm. To better understand B1 driven signaling, we

used experimental evolution of a B1 deletion virus to identify viral genes within shared

signaling pathways. Herein we describe our success in isolating adapted viruses and the

discovery of a genetic link between B1 and the related B12 gene. Thus this study illustrates

the utility of experimental evolution to discover novel digenic relationships. Interestingly,

we also elucidated an unexpected regulatory intersection between the B1 kinase and B12

pseudokinase that likely masked discovery of the repressive function of B12 during previ-

ous studies of this factor. As kinase-pseudokinase protein families are abundant in many

forms of life, the genetic and functional relationship between B1 and B12 that we uncov-

ered is likely of broad biological relevance. Further investigation of individual genes and

gene families in multigenic knockout backgrounds may uncover similar masked pheno-

types in a broad range of model systems.

Introduction

Protein kinases regulate the function of a large fraction of cellular proteins, governing numer-

ous molecular processes [1–3]. However, much remains unknown about how this class of pro-

teins is regulated and what evolutionary mechanisms may have driven their conservation in all

kingdoms of life as well as viruses. Investigation of kinases encoded by poxviruses has provided

fascinating insights into how these factors dysregulate host signaling pathways and orchestrate

viral protein function. Expressed early during infection, the product of the vaccinia B1R gene

encodes the B1 Ser/Thr kinase vital for productive infection with a clear role in impairing at

least one facet of the host antiviral response [4–6]. B1 homologs are highly conserved within

the members of the Poxviridae family that infect mammals, with the only exceptions being the

Molluscipoxvirus and Parapoxvirus genera. Interestingly, a group of eukaryotic kinases have

homology (~40% amino acid identity) to the vaccinia B1 protein [7–10]. These proteins are

named vaccinia related kinases (VRKs) and have been found to share at least one common

substrate with B1, demonstrating that the B1/VRK enzymes represent an intersection of viral

and host signaling pathways. Much of what we know regarding the function of B1 is based on

studies of temperature-sensitive mutant viruses with point mutations in the B1 locus [4, 5, 11–

17] as well as a recently described B1-knockout virus [18]. Phenotypically, progeny of these

B1-deficient viruses are markedly reduced in number during infection, due to profound

defects in viral DNA replication [4, 5, 15, 18]

To ensure replication of the vaccinia genome, it is critical that B1 phosphorylate the cellular

protein BAF, encoded by the BANF1 gene. BAF is a highly conserved DNA-binding protein

with essential cellular functions related to maintaining genomic integrity via diverse pathways

[19]. For example, BAF is capable of intercepting cytoplasmic DNA and assembling higher-

order DNA-protein assemblies [20, 21]. This allows BAF to strongly inhibit vaccinia virus

DNA replication [6] and intermediate transcription [12]. However, the host defense activity of

BAF against vaccinia virus is dependent on its DNA-binding property, which can be blocked

through phosphorylation mediated by B1 [6, 22], thus allowing poxvirus DNA replication to

proceed. Although BAF phosphorylation by B1 clearly enhances viral fitness, genetic and bio-

chemical studies indicate that B1 likely contributes to poxviral replication via other pathways

as well. For example, it has been discovered that RACK1 (receptor for activated C kinase) is

phosphorylated in a B1 dependent manner, triggering a selective advantage for translation of

viral RNAs that is postulated to enhance viral fitness late in infection [23]. Some other known
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substrates of the B1 kinase include the ribosomal Sa and S2 proteins [24] as well as the viral H5

proteins [14, 25], each of which can be directly phosphorylated by B1 in vitro and is modified

in a B1-dependent manner in infected cells. However, although it has been known for some

time that these proteins are substrates of B1, whether their phosphorylation by B1 is beneficial

during the poxvirus lifecycle remains unclear.

In this study we utilized experimental evolution of a B1 deletion virus to search for novel

pathways through which B1 functions. This approach leverages the natural errors that occur

during vaccinia DNA replication to introduce variants that can suppress the fitness defect

caused by a deleted gene. Vaccinia mutants with enhanced replicative capacity become

enriched in the population during serial passage and can then be identified using whole

genome sequencing. In previous studies of other viral proteins, experimental evolution has

yielded strong evidence of genetic interaction between viral gene products as well as fascinat-

ing insights into novel mechanisms of poxviral evolution. For example, suppression of growth

defective phenotypes in other vaccinia mutants occurred via rapid introduction of multiple

copies of an existing poxviral gene, resulting in a gain of function by those viruses [26, 27].

Other gain of function mutations that have been observed include single nucleotide changes in

coding regions that introduce single amino acid changes [28, 29]. In contrast, our experiments

here with the B1 deletion virus reveal that a mutation resulting in loss of function provides a

striking fitness enhancement to this virus. Validating predictions that gene loss can be a driver

of poxvirus evolution [30], this is clear experimental evidence that such loss can be beneficial

in certain contexts.

The loss of function mutation that suppressed the B1 deletion phenotype was mapped to

the B12 locus of the vaccinia genome, where indels introduced frameshifts into the coding

region of that gene. B12 is 36% identical to B1 at the amino acid level and is thus a paralog of

that kinase likely to have resulted from an earlier gene duplication event of a B1-like ancestor

[17, 31]. B1 is likely to have been the earlier of the two genes expressed, as B1 orthologs are

found in most of the Chordopoxviranae subfamily, while B12 is restricted to members of the

Orthopoxvirus genus and is not present in any viruses lacking B1. A hallmark of all poxvirus

B12 orthologs, including that of vaccinia, is that they possess amino acid variants at key resi-

dues predicted to be critical for catalytic activity [17] and therefore fits the definition given by

Manning and colleagues for pseudokinases [1]. Pseudokinases are a subgroup of protein

kinases found to play myriad regulatory roles in signaling in metazoans, but in many cases do

not possess enzymatic activity themselves [32, 33]. Here, we present multiple lines of evidence

demonstrating that expression of wild-type B12 leads to a striking reduction in fitness of

viruses with a defect in B1. Importantly, while mutation or depletion of B12 can rescue the B1

defect in viral DNA replication in multiple cell types, altering the levels of B12 has no apparent

impact on wild-type virus or other mutant viruses. From these data we infer that the inhibitory

mechanism executed by B12 is repressed by the B1 kinase. This signaling relationship bears

similarity to that found in gene pairs such as toxin-antitoxin genes in bacteria [34–37] or in

poison-antidote genetic elements in higher organisms which augment the fitness value of the

antidote gene to an organism [38–40]. Additional investigation in search of a mechanism of

action for B12 revealed that it primarily localizes to the nucleus, a property only rarely found

among poxviral proteins. Furthermore, the adapted virus containing a B12 mutation exhibits

reduced sensitivity to BAF overexpression, suggesting that B12 may function, at least partly,

via a BAF dependent mechanism. Together, our studies of B1 and B12 present novel evidence

that a paralogous kinase-pseudokinase pair can exhibit this type of epistatic relationship in a

virus, perhaps serving to enhance B1 conservation during poxvirus evolution and to orches-

trate yet-to-be-discovered nuclear events during infection.
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Results

Fitness gains observed following adaption of the ΔB1 virus correlate with

an indel mutation within the B12R gene

The vaccinia virus B1 kinase is a critical positive regulator of vaccinia DNA replication. Specif-

ically, B1 inhibits the BAF antiviral factor, which can otherwise restrict viral DNA replication

and subsequent gene expression [6]; however, much remains unknown about how B1 may reg-

ulate other viral factors during infection. In a recent study of B1 function, our laboratory gen-

erated a mutant vaccinia virus (ΔB1 virus) in which the B1R gene was deleted by homologous

recombination [18]. As expected, without this viral kinase, growth of the ΔB1 virus was

severely impaired compared to WT virus. Intriguingly, the fact that some progeny virus could

be isolated following infection with the ΔB1 virus suggested to us that it may be amenable for

use in a screen for second site suppressors using an experimental evolution protocol. If suc-

cessful, this approach could reveal novel genetic linkages between B1R and other viral genes.

The experimental evolution of ΔB1 was conducted by iterative passage of the virus at a low

multiplicity of infection (MOI) of 0.1 on non-complementing CV1 cells. Each infection was

allowed to proceed for two days prior to harvest. After each passage the viral yield was deter-

mined by plaque assay titration on complementing, B1 expressing CV1 (CV1-B1myc) cells

characterized previously [18]. Virus titrations on the CV1-B1myc cells allowed for accurate

quantification of serially passaged ΔB1 virus, while no visible plaques could form on the non-

complementing CV1 cells. The process of harvesting, titration on CV1-B1myc cells, and rein-

fection of CV1 cells at low MOI was carried out for seven passage rounds. Virus yield at each

passage was graphed for the A1, A2, and A3 lineages of adapted ΔB1 virus (Fig 1A). During

these serial passages, the yield of the ΔB1 virus showed a notable 10-fold increase in titer

between passage rounds 3 and 5, suggesting the emergence of a rescued virus in all three, inde-

pendent replicates. Using quantitative PCR we verified that the B1R gene remained undetected

in our serially passaged viruses (S1A Fig), thus confirming that reintroduction of B1 is not

responsible for the rescue of the passaged ΔB1 virus.

Next, we predicted that the 10-fold increase in viral yield may be sufficient to permit spread

through non-complementing cells and allow plaque formation. To test this prediction, we

infected CV1 control cells and CV1-B1myc cells with 200 plaque forming units (PFU) per well

of WT, ΔB1, and each passage of adapted ΔB1 virus from lineage A1, then fixed and stained

the cells at 72h post infection. Starting at passage three, the adapted cultures contained virus

that formed plaques which were smaller than WT, but clearly visible on non-complementing

CV1 cells (S1B Fig, top row). As expected, adapted ΔB1 virus plaque size was increased in cells

expressing B1 in trans (S1B Fig, bottom row). These data confirm the rescue of the adapted

ΔB1 virus in non-complementing CV1 cells, although the smaller plaque phenotype of the

adapted ΔB1 virus suggests that it is less fit than the WT virus in this assay.

With three independently adapted ΔB1 viruses in hand, we sought to identify significant

genetic alterations within the adapted viruses as compared to the ΔB1 virus. To this end, DNA

isolated from the WT (Wiebe laboratory), ΔB1, and adapted ΔB1 viruses A1 and A3 (passage

round 7) were subjected to 150 base pair paired end sequencing using a MiSeq V2 instrument.

Following guided assembly, WT (Wiebe), ΔB1, ΔB1-A1, and ΔB1-A3 sequences were com-

pared to the WT Western Reserve reference genome (NC_006998.1) in the NCBI database.

One previously characterized mechanism of virus adaptation involves the development of

genomic ‘accordions’ in which gene amplifications occur for a specific locus, permitting a dose

dependent compensation by a complementary gene [26, 27]. However, the ΔB1-A1 and

ΔB1-A3 virus sequence data lacked evidence of genomic accordions, which would have been

identified by large increases of sequence read counts for a particular region in the adapted
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genomes compared to WT and ΔB1 controls. Instead we observed a consistent read count

depth across the entire genome for both adapted and control viruses. We also analyzed the spe-

cific read calls at each nucleotide position in the complete genome for evidence of single nucle-

otide polymorphisms (SNPs). For this analysis we made sequence comparisons between WT

(Wiebe) to WT WR (reference sequence), ΔB1 to WT (Wiebe), and ΔB1mutB12 to ΔB1. From

the genome analyses of ΔB1-A1 and ΔB1-A3 viruses, only one non-synonymous mutation was

identified, which was found solely in the ΔB1-A1 virus. This mutation identified in ΔB1-A1 is

a G to A substitution expected to cause a Gly215 to Asp mutation within the B12R coding

region. Based on the read depth for this specific nucleotide location, we determined that this

point mutation is present in 18% of the reads from the ΔB1-A1 virus (S1C Fig and S1 Table).

Finally, we quantified reads containing insertion/deletion (indel) mutations across the entire

genome for ΔB1, ΔB1-A1, and ΔB1-A3 as compared to the changes in WT (Wiebe) from the

WT WR (reference sequence) genome. To present the locations of indels graphically, compari-

sons of indel read counts are plotted along the y-axis for ΔB1 to WT (Fig 1B, top), ΔB1-A1 to

WT (middle), and ΔB1-A3 to WT (bottom) and the nucleotide numbers of the reference

genome along the x-axis. Strikingly, indel mutations were identified at identical nucleotide

positions in the ΔB1-A1 and ΔB1-A3 comparisons to WT (Fig 1B, middle and bottom graph),

but not for ΔB1 sequence comparison to WT (Fig 1B, top graph). Narrowing the x-axis to

focus on the region of interest, we graphed the total number of indel mutations found between

170,015 and 175,094 base pairs for the ΔB1-A3 alignment to the ΔB1 genome (Fig 1C). The

genes labeled below the x-axis indicate the genes encoded at the specific base pair regions. This

graph depicts that the ΔB1-A3 virus population contains a significant spike in insertion and

deletion mutations within the B12R gene. This spike of indel mutations corresponds to ade-

nine 689 in the B12R gene, which is the start of an eight adenine sequence (S1 Table). This sin-

gle site of indel mutations is present in approximately 48% and 65% of the reads for the

ΔB1-A1 and ΔB1-A3 virus, respectively (S1 Table). Interestingly, either an insertion or deletion

of an adenine at this site alters the predicted reading frame of the gene and thereby introduces

a premature stop codon, resulting in a truncated B12 protein. In addition to the Illumina

sequencing of mixed viral populations, targeted Sanger sequencing of the B12 locus was per-

formed on 10 isolated plaques chosen from the three adapted cultures after two rounds of pla-

que purification. As a result, we found that all ten isolated plaques contain either an indel

mutation at B12 nucleotide 689 or an indel at another earlier position in B12R (S1 Table).

Together these results highlight the significant frequency of mutations within the B12R gene,

leading it to become our top candidate for a ΔB1 second site suppressor mutation.

The B12 protein is 283 amino acids in length and shares 36% amino acid identity to the vac-

cinia B1 kinase [17, 31]. Akin to the B1 kinase, the B12 protein is homologous to the cellular

vaccinia related kinases (VRKs). Furthermore, the viral B12R gene is expressed early in infec-

tion, like the B1 kinase, but differs from the B1 kinase in that it lacks catalytic activity [17, 41].

Proteins that possess sequence and structural similarity to active kinases, but lack phospho-

transferase activity due to alterations in key catalytic residues are abundant in all forms of life

Fig 1. Adaptation of ΔB1 virus and identification of mutation within the B12R gene. (A) ΔB1 virus was serially

passaged in CV1 cells in triplicate and named A1-A3 for adapted ΔB1 viruses. Virus harvested at each passage was

titrated on CV1-B1myc cells. (B) Deep sequencing data for WT (Wiebe), ΔB1, ΔB1-A1, and ΔB1-A3 viruses was used

to graph insertion/deletion mutations at each nucleotide site for the entire vaccinia genome when comparing ΔB1,

ΔB1-A1, and ΔB1-A3 viruses to the change in indel mutations of the WT (Wiebe) compared to the WT WR (reference

sequence). (C) Graphed insertion/deletion mutations for ΔB1-A3 compared to WT WR (reference sequence) for reads

170,015–175,094bp. The dotted line indicates indel mutations that occur in 5% of the total reads at a single nucleotide.

Indel mutations above 5% were considered significant mutations in the mixed ΔB1 adapted virus population.

Locations of encoded genes are labeled below, corresponding to the base pairs on the x-axis of the graph.

https://doi.org/10.1371/journal.ppat.1007608.g001
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and are commonly referred to as pseudokinases. Although B12 is a pseudokinase and B1 para-

log, the function of B12 during infection remains an enigma to date, as previous studies

revealed no phenotypic defect for a mutant vaccinia virus missing 83% of the B12 gene

[41, 42].

The ΔB1mutB12 virus exhibits rescued DNA replication and viral yield in

multiple cell lines

As described above, the adapted ΔB1 virus (hereafter referred to as the ΔB1mutB12 virus)

exhibited a visible plaque phenotype not observed for the ΔB1 virus. To investigate the extent

of the ΔB1mutB12 rescued phenotype, we measured both DNA accumulation and viral yield

during a single round of vaccinia virus replication in noncomplementing cells. Following syn-

chronous infections at a MOI of 3, viral genome replication was measured by qPCR. Com-

pared to the ΔB1 virus, the ΔB1mutB12-A1 (light green bars) and the ΔB1mutB12-A3 (dark

green bars) viruses exhibit increased DNA accumulation at 24h, exceeding ΔB1 (red bars) lev-

els by >5-fold in monkey CV1 cells (Fig 2A) and>18-fold in human HeLa cells (S2A Fig).

Increases were also observed in human A549 cells (S2B Fig) and mouse L929 cells (S2C Fig),

although to a lesser degree.

Regarding viral progeny, the ΔB1mutB12-A1 (light green bars) and ΔB1mutB12-A3 (dark

green bars) exhibit rescued viral yield phenotypes in multiple cell lines when compared to the

ΔB1 (red bars) virus. Specifically, the viral yields for ΔB1mutB12-A1 and -A3 viruses compared

to ΔB1 levels were increased >6-fold in monkey CV1 cells (Fig 2B), >50-fold in human HeLa

cells (S2D Fig), >6-fold in human A549 cells (S2E Fig), and >10-fold in mouse L929 cells

(S2F Fig). Notably, despite a >50-fold rescue over the ΔB1 viral yield, the ΔB1mutB12-A1 and

-A3 viruses remained at 11-fold (p-value = 0.0056) and 13-fold (p-value = 0.0051) lower levels

than WT yields in HeLa cells (S2D Fig). Similarly, the ΔB1mutB12-A1 virus was 28-fold

(p-value = 0.0474) lower than WT viral yield in L929 cells (S2F Fig), despite showing a

>10-fold increase from ΔB1 levels. These results demonstrate a rescued viral yield phenotype

for ΔB1mutB12-A1 and -A3 over ΔB1 levels in all cell lines, while remaining attenuated com-

pared to WT virus.

To examine ΔB1mutB12-A3 virus yield at earlier time points, CV1 cells infected with WT

(black line), ΔB1 (red line) or ΔB1mutB12-A3 (green line) virus were harvested early during

infection to monitor input DNA (3hpi) and initial DNA replication (7hpi), while later time

points were selected for the completion of DNA replication (16hpi) and the completion of vac-

cinia virus replicative cycle (24hpi). DNA accumulation at each time point demonstrated that

the ΔB1mutB12-A3 virus replicated its genome at a rate similar to WT (Fig 2C). Next, virus

samples were titrated on CV1-B1myc complementing cells to quantify viral yield at each time

point. At early time points the ΔB1mutB12 viral yield levels were identical to WT levels. Simi-

lar to the 24h only data (Fig 2B), the ΔB1mutB12-A3 virus exhibited an almost 3-fold reduc-

tion in viral yield as compared to WT virus at late time points, although these differences were

not statistically different (Fig 2D, 16 and 24hpi). Therefore, the WT virus and ΔB1mutB12

virus have only modest growth difference with respects to DNA accumulation and viral yield

output in CV1 cells under these conditions.

The similar growth profiles of WT and ΔB1mutB12 viruses in CV1 cells at a MOI of 3 led

us to question whether the same was true at lower concentrations of virus. For this next assay,

cells were infected with a low MOI of 0.01 and allowed to propagate, spreading cell-to-cell, for

48h before harvest and titration on CV1-B1myc cells. From these infections, ΔB1mutB12

(green bar) viral yield was>180-fold higher than ΔB1 (red bar) virus (Fig 2E). Interestingly,

the ΔB1mutB12-A3 (green bars) virus was attenuated 12-fold (p-value = 0.09) as compared to
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the WT (black bars) virus viral yield (Fig 2E). In summary, the ΔB1mutB12 virus exhibits a res-

cued DNA accumulation phenotype compared to ΔB1 in multiple species cell lines. The viral

yield of the ΔB1mutB12 virus also indicates a recovered growth phenotype as compared to

Fig 2. Rescued DNA replication block and viral yield for ΔB1mutB12 virus in CV1 cells. (A) CV1 cells infected with WT (black), ΔB1 (red),

ΔB1mutB12-A1 (light green), ΔB1mutB12-A3 (dark green) at a MOI of 3 were harvested 24h post infection for qPCR of relative DNA accumulation or

(B) for titration on CV1-B1myc cells for viral yield. (C) WT (black), ΔB1 (red), or ΔB1mutB12-A3 (green) infections of CV1 cells were performed at a

MOI of 3 and harvested at 3, 7, 16, or 24h post infection for relative DNA accumulation or (D) viral yield quantification on CV1-B1myc cells. (E) A

multi-step viral yield assay was completed by infecting CV1 cells at a MOI of 0.01 with WT (black), ΔB1 (red) or ΔB1mutB12-A3 (green) and harvested

at 48h post infection for titration on CV1-B1myc cells.

https://doi.org/10.1371/journal.ppat.1007608.g002
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ΔB1 levels for all cell lines tested. Yet, the extent of ΔB1mutB12 attenuation compared to WT

viral yield differed depending on the cell line and amount of virus used for infection.

The B12ΔA690 protein is truncated and accumulates to lower levels than

the wild-type B12 protein

The sequencing data for the ΔB1mutB12 viruses revealed a prevalent indel mutation within

the 3’ end of the B12R gene that leads to a frame shift. This frameshift introduces a premature

stop codon into the mRNA, which is predicted to translate into a protein missing about 45

amino acids from the C-terminus, about 16% of the total polypeptide. Studies on VRK1, a cel-

lular homolog of B12 determined that removal of 18% of the protein from the C-terminus pro-

duces a protein that cannot be purified from E. coli [43] suggesting that this region is necessary

for protein folding and/or stability. Based on this precedent and B12 sequence analysis, we

hypothesized that the indel mutation within the B12R gene will lead to a truncated protein

with reduced protein accumulation. To test this hypothesis, we PCR amplified the wild-type

B12R vaccinia gene from the WT vaccinia virus and generated a B12R mutant in which a single

adenine was deleted at nucleotide 690, corresponding to the site of the indel in ΔB1mutB12.

Next, we cloned the vaccinia virus B12R gene or the B12R indel mutant with a HA epitope tag

sequence at the 5’ end of the gene into the pJS4 vaccinia expression vector. CV1 cells were

transfected with pJS4-HA-B12wt or pJS4-HA-B12ΔA690 plasmid DNA, synchronously

infected with WT virus at a MOI of 3 and harvested 24h post infection to allow for saturation

of late gene expression. Following immunoblot analysis, the representative immunoblot and

cumulative bar graph show HA-B12ΔA690 protein levels were reduced as compared to

HA-B12wt to 52% of the wild-type protein abundance (Fig 3A and 3B). The HA-B12ΔA690

band has a smaller molecular weight as shown by a faster migrating band than the HA-B12wt

band (Fig 3A). Together, these results support the hypothesis that deletion of the adenine at

nucleotide position 690 within the B12R gene results in a truncated protein, which is expressed

at reduced levels when compared to the wild-type B12 protein.

Loss of B12 through depletion rescues the ΔB1 and ts2 growth phenotype,

but not other viruses with restricted DNA replication phenotypes

The results thus far confirm that HA-B12ΔA690 is both truncated and may be less stable than

the HA-B12wt protein. We posited two possible scenarios to explain how the enhanced replica-

tion of ΔB1mut12 may be mediated by the truncation and reduced abundance of B12. Either a

proviral activity of B12 is increased in ΔB1mutB12 due to the absence of a regulatory domain

lost after truncation, or wild-type B12 is capable of a repressive activity that is no longer present

in the ΔB1mutB12 virus. To distinguish between these gain of function versus loss of function

scenarios for the B12R indel mutation, we decided to test how ΔB1 growth was impacted by B12

depletion mediated by siRNA targeting of B12 mRNA. First, as controls, B12 mRNA levels for

WT (black bars), ΔB1 (red bars), and ΔB1mutB12 (green bars) were quantified at 4h post infec-

tion in CV1 cells. Purified RNA was reverse transcribed to cDNA for qPCR quantitation of rela-

tive B12 mRNA levels using a specific primer and probe set (S3A Fig). Each virus expressed

similar levels of relative B12 mRNA (S3B Fig, siCtrl). Second, we determined the level of B12

depletion using siRNA targeting B12 mRNA. Transfection of CV1 cells with siB12 prior to infec-

tion reduced relative B12 mRNA to<28% for each virus as compared to control cells (S3B Fig).

We also verified that downstream B13R gene expression was not altered for the ΔB1mutB12

virus or during B12 mRNA depletion (S3C and S3D Fig) using two different B13 primer/probe

sets (S3A Fig). We further validated that these primer probe sets were specific for B13 by dem-

onstrating that they were sensitive to siRNAs specific to B13 (S3C and S3D Fig).
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Fig 3. Depletion of B12 rescues ΔB1 virus growth in CV1 cells. (A) CV1 cells were transfected with pJS4-HA-B12wt or pJS4-HA-B12ΔA690 plasmid

and infected 6h post transfection with WT virus at a MOI of 3. 24h post infection cells were harvested for immunoblot analysis. The HA-B12Δ690

represents the indel mutation within the ΔB1mutB12 virus B12R gene. (B) B12 proteins were expressed from the pJS4 vector during WT infection

(representative immunoblot in Fig 1A). Relative protein levels for HA-B12wt and HA-B12ΔA690 were averaged from five independent experiments, and

normalized to control protein levels set to 1. The denoted � p-value equals 0.02. (C) 200PFU/well WT, ΔB1, or ΔB1mutB12-A3 infections were carried

out on CV1 cells 24h following transfection with siCtrl or siB12. Cells were fixed 72h post infection. (D) Multi-step viral yield assay was conducted in

siCtrl or siB12 CV1 cells for WT (black), ΔB1 (red), and ΔB1mutB12-A3 (green) infections at a MOI of 0.01. Cells were harvested at 7h or 48h post
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Upon successful B12 depletion using siRNA, we addressed the question of whether B12 loss

of function rescues the ΔB1 growth phenotype. To test the rescue of ΔB1 plaque formation by

depletion of B12, a plaque assay was carried out on CV1 siCtrl and siB12 treated cells during

WT, ΔB1, and ΔB1mutB12 virus infections at 200 PFU/well (Figs 3C and S3E). We observed

that WT and ΔB1mutB12 viruses can form plaques on CV1 siCtrl cells and similarly on CV1

siB12 cells. Strikingly, the ΔB1 virus that is unable to form plaques on CV1 siCtrl cells was able

to form plaques in CV1 siB12 cells that were of a similar size as those present in the wells

infected with ΔB1mutB12. To quantify this rescue in viral yield, CV1 cells were infected with

WT, ΔB1, or ΔB1mutB12 virus at a low MOI of 0.01 for a multi-step growth assay. Infected

cells were harvested at 7h and 48h post infection. At 7h post infection, each virus shows similar

amounts of viral yield in CV1 siCtrl-treated cells and CV1 siB12-treated cells (Fig 3D). This

measurement at 7h post infection is indicative of input virus. At 48h post infection, WT (black

bars) and ΔB1mutB12 (green bars) yields remain constant between control and B12 depletion

(Fig 3D). By comparison, the ΔB1 (red bar) virus increases 40-fold in the CV1 siB12 cells as

compared to CV1 siCtrl cells (Fig 3D).

Next, we quantified the rescue of DNA accumulation and viral yield following B12 deple-

tion during ΔB1 infection using a one-step viral growth assay. Both WT and ΔB1mutB12

DNA accumulation levels are not significantly increased during infection of CV1 siB12 cells

as compared to CV1 siCtrl cells (Fig 3E). However, DNA accumulation of ΔB1 increases

5.4-fold in CV1 siB12 cells compared to CV1 siCtrl cells. Similarly, the viral yield for WT and

ΔB1mutB12 viruses remains constant between CV1 siCtrl and siB12 infected cells while ΔB1

yields an increase of about 9-fold in CV1 siB12 cells as compared to siCtrl treated cells (Fig

3F). In summary, the replication assays of ΔB1 virus during B12 depletion indicate that the

loss of B12 function rescues the ΔB1 phenotype. This siRNA study also refutes the gain of func-

tion scenario outlined earlier. Specifically, if the indel mutation within B12R resulted in a gain

of function, then the depletion of the B12 mutant during ΔB1mutB12 infections should have

restored the attenuated ΔB1 phenotype during these infections, but it did not (Fig 3E and 3F,

compare siB12 ΔB1mutB12 to siCtrl ΔB1). Together, these data are consistent with the model

that the B12R indel mutation in ΔB1mutB12 causes a loss of B12 function, leading us to infer

that full length B12 is a repressor of ΔB1 growth.

It was interesting that siB12 treatment does not impact WT growth, but is only apparent in

the absence of the B1 kinase, indicating that the B12 repressive function may not be active in

the presence of B1. To explore this possibility further, we examined whether B12 depletion

would increase DNA accumulation of other replication deficient vaccinia viruses, such as

those with lesions in the D5 primase/helicase or E9 DNA polymerase. We posited that if B12

inhibition is directly linked to a B1 mediated pathway of promoting DNA replication, then

depleting B12 will only rescue B1 mutant or deletion viruses (Fig 4A). Alternatively, depletion

of B12 may also rescue growth of other replicative deficient viruses such as D5 or E9 mutant

viruses, which would indicate that B12 inhibits DNA replication via a more general mecha-

nism of action (Fig 4A). In order to determine which model fits B12 repressive function, we

depleted B12 during infection with WT or mutant viruses and assayed for DNA accumulation.

Viruses used for this assay included WT, ΔB1, a temperature sensitive B1 mutant (ts2) virus

[5], a temperature sensitive D5 primase/helicase mutant (ts24) virus [44], and a temperature

sensitive E9 DNA polymerase mutant (ts42) virus [45]. Infections were performed at permis-

sive temperature (31.5˚C), semi-permissive temperature (37˚C), and nonpermissive

infection and titration on CV1-B1myc cells. (E) Growth assays on siCtrl or siB12 transfected CV1 cells were completed for WT (black), ΔB1 (red), and

ΔB1mutB12 (green) viruses at a MOI of 3 for relative DNA accumulation and (F) viral yield titration on CV1-B1myc cells.

https://doi.org/10.1371/journal.ppat.1007608.g003
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temperature (39.7˚C). DNA accumulation was quantified using qPCR during a synchronous

infection of siCtrl or siB12 treated CV1 cells. The 24h DNA accumulation for WT virus

remains constant at all three temperatures, independent of siB12 pre-treatment of cells (Fig

4B, black bars). The ΔB1 virus DNA accumulation was attenuated compared to WT in siCtrl

cells as previously published [18]. Pre-treatment with siB12 rescues the ΔB1 DNA accumula-

tion 58-fold, 5-fold, and >9-fold as compared to the siCtrl at 31.5˚C, 37˚C, and 39.7˚C respec-

tively (Fig 4B, red bars). The temperature sensitive ts2 B1 mutant virus follows a similar trend

to the ΔB1 virus. Specifically, at non-permissive temperatures the siB12 treated cells have

increased DNA accumulation 2-fold at 37˚C and>4-fold at 39.7˚C as compared to siCtrl cells

for the ts2 virus (Fig 4B, pink bars). At permissive temperature the ts2 virus has similar DNA

accumulation as the WT virus as expected. Importantly, the rescue in DNA accumulation

observed for ΔB1 at all temperatures and for ts2 at non-permissive temperatures was not

observed for the other two viruses with restricted DNA accumulation. Explicitly, the ts24 (blue

bars) and ts42 (purple bars) viruses have similar restricted DNA accumulation at 37˚C and

Fig 4. Rescue of DNA replication block using siB12 is specific for viruses lacking a functional B1. (A) Diagram of hypothesis that B12 is either a

general inhibitor of DNA replication or specific to B1 kinase mutant viruses. (B) CV1 cells treated with siCtrl of siB12 were infected with WT

(black), ΔB1 (red), ts2 B1 mutant (pink), ts24 D5 mutant (blue), or ts42 E9 mutant (purple) at a MOI of 3 and harvested 24h post infection for

quantification of relative DNA accumulation. Infections were carried out at 31.5˚C, 37˚C or 39.7˚C to provide permissive, semi-nonpermissive and

nonpermissive temperatures respectively for the temperature sensitive mutant viruses.

https://doi.org/10.1371/journal.ppat.1007608.g004
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39.7˚C temperatures for CV1 siCtrl cells compared to CV1 siB12 cells (Fig 4B). In summary,

these data demonstrate that the depletion of B12 specifically rescues B1 mutant/deletion

viruses, while B12 depletion does not enhance DNA replication for temperature sensitive D5

(ts24) and E9 (ts42) mutant viruses.

Reconstitution of B12 in CV1 cells represses ΔB1 and ΔB1mutB12

replication

At this point we have shown that siRNA-directed loss of B12 rescues the ΔB1 and ts2 virus

growth, specifically by increasing DNA replication. This supports a model in which B12 carries

out a repressive function on DNA replication in the absence of a functional B1 kinase. To com-

plement our above B12 depletion studies, we next hypothesized that expression of B12 from

the cellular genome would be sufficient to inhibit replication of viruses lacking B1. To test this

hypothesis, we began by generating cells stably expressing a HA-tagged or untagged codon

optimized B12 (S4A Fig). Codon optimization for mammalian cells allows for enhanced

expression of the gene by mammalian cells and in our system codon optimized B12 is resistant

to the siB12 used to deplete B12 mRNA expressed by the virus. Expression of HA-B12 was con-

firmed using immunoblot analysis of whole cell lysates from both control and HA-B12 lentivi-

rus transduced and selected CV1 cells (Fig 5A).

To test the repressive activity of reconstituted B12, we transfected control or HA-B12

expressing CV1 cells with siCtrl or siB12 for 24h and then infected cells with WT, ΔB1, or

ΔB1mutB12 virus at a MOI of 3. The cells were harvested at 24h post infection and relative

DNA accumulation of each vaccinia virus was quantified using qPCR. Using a combination of

siB12 treatment during a ΔB1 infection and separately using the ΔB1mutB12 virus allows us to

test B12 repressive activity via restoration on two different systems in which the viral B12 has

been inactivated. First, we compared results from cells treated with the control siRNA. In cells

transfected with siCtrl, the DNA accumulation for the WT virus is not altered by reconstitu-

tion of HA-B12 (Fig 5C, siCtrl, black solid and striped bars). In contrast, the ΔB1 virus exhib-

ited a 2.7-fold reduction in relative DNA accumulation in CV1-HA-B12 cells as compared to

CV1-Ctrl cells (Fig 5C, siCtrl, red solid and striped bars). Similarly, the relative DNA accumu-

lation for ΔB1mutB12 virus was 2.3-fold lower in HA-B12 expressing cells than control cells

(Fig 5C, siCtrl, green solid and striped bars).

Next, we compared cells in which viral B12 was depleted. In siB12 transfected cells, the WT

virus DNA accumulation was not altered by HA-B12 expression in cells (Fig 5C, siB12, black solid

and striped bars). Consistent with our model of B12 repressive activity during vaccinia virus infec-

tion in the absence of a functional B1 kinase, the DNA accumulation for the ΔB1 virus was

3.4-fold lower in HA-B12 expressing cells than control cells under siB12 conditions (Fig 5C, siB12,

red solid and striped bars). Lastly, the ΔB1mutB12 replication in HA-B12 expressing cells was

reduced 2.8-fold relative to control cells for siB12 transfected cells (Fig 5C, siB12, green solid and

striped bars). Importantly, B12 expression from the cell was sufficient to inhibit DNA replication

for both the ΔB1/siB12 and ΔB1mutB12 systems. These data further support a model in which

B12 can downregulate vaccinia virus DNA accumulation in the absence of a functional B1 kinase.

Previously we demonstrated that depletion of B12 during a ΔB1 infection allows the virus

to carry out productive infection as measured by the formation of plaques on CV1 cells (Figs

3C and S3E). To determine how reconstitution of wild-type B12 affects vaccinia productive

infection, we carried out a plaque assay of either WT or ΔB1mutB12 infected control, B12

expressing, or HA-B12 expressing CV1 cells. Cells were fixed three days post infection. The

WT virus plaque number and size was unchanged by the expression of B12 or HA-B12 in cells

as compared to the control CV1 cells (Fig 5B, top row). Strikingly, after infection with the
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ΔB1mutB12 virus there was a consistent reduction in number and in size of plaques in both

the B12 and HA-B12 expressing cells compared to control CV1 cells (Fig 5B, bottom row).

Thus, the addition of the wild-type B12 decreases ΔB1mutB12 productive infection, providing

additional evidence that B12 can impair poxvirus replication in the absence of B1.

B12 is predominantly nuclear and solubilizes separate from chromatin-

bound proteins

To provide insight into the function of the B12 protein, we examined the subcellular localiza-

tion of transiently expressed HA-tagged B12 (S4B Fig) in CV1 cells. One day after transfection,

cells were fixed, incubated with αHA primary antibody with corresponding secondary anti-

body and stained with DAPI for immunofluorescence imaging of cells. The HA-B12 express-

ing cells show a clear nuclear localization as compared to control cells (Fig 6A, top row). By

comparison, the B1 kinase localizes to the cytoplasm (Fig 6A, bottom row), as published previ-

ously [18]. Next, we tested whether B1 expression in cells could alter B12 subcellular localiza-

tion by examining transiently expressed HA-B12 in cells expressing the myc-tagged B1

Fig 5. B12 reconstitution during infection with B1 and B12 naïve viruses repressed vaccinia replication. (A) Immunoblot analysis of control

or HA-B12 (GeneArt) lentivirus transduced CV1 cells was completed to detect tubulin (loading control) and HA (HA-tagged B12). (B) CV1

control cells or cells stably expressing B12 or HA-tagged B12 were infected with WT or ΔB1mutB12-A3 at 300PFU/well and fixed 72h post

infection. (C) 24h relative DNA accumulation quantification was completed for CV1 control or HA-B12 expressing cells transfected with siCtrl or

siB12 and infected with WT (black), ΔB1 (red), or ΔB1mutB12-A3 (green) at a MOI of 3.

https://doi.org/10.1371/journal.ppat.1007608.g005
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protein. The top panels show that HA-B12 still exhibits a nuclear localization in cells express-

ing the B1 kinase (Fig 6B, top row). Additionally, the B1 kinase does not have altered localiza-

tion in the presence of HA-B12 expression and nuclear localization (Fig 6B, bottom row).

Therefore, B1 expression does not detectably redirect B12 localization in this assay.

Although B12 localized to the nucleus in uninfected cells, it is possible that B12 localization

is different during vaccinia infection. To address this question, homologous recombination

Fig 6. B12 exhibits a nuclear localization in uninfected and infected cells. (A) CV1 cells with or without HA-B12 (GenScript) mRNA transfection were

used for immunofluorescence detection of HA-tagged B12 (red, top row). CV1 control and CV1-B1myc expressing cells were incubated with αmyc for

B1myc detection (red, bottom row). All cells were stained with DAPI nuclear stain (blue). (B) B1myc expressing CV1 cells were also transfected with

HA-B12 (GenScript) mRNA and separately incubated with a primary antibody to detect HA-tagged B12 (αHA, top red image) or myc-tagged B1 (αmyc,

bottom red image) and DAPI (blue) nuclear stain. (C) CV1 cells were infected with WT or WT/HA-B12 virus at a MOI of 5 and fixed at 4hpi or (D) 7hpi

for immunofluorescence analysis of HA-B12 detection (red), I3 ssDNA binding protein (green) and DAPI nuclear stain (blue). The scale bars represent

100μm.

https://doi.org/10.1371/journal.ppat.1007608.g006
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was used to generate a WT/HA-B12 recombinant virus expressing the transgene from the non-

essential viral TK locus. To assess HA-B12 localization during infection, CV1 cells were infected

with WT or WT/HA-B12 virus at a MOI of 5 and fixed at either 4 or 7hpi, chosen to coincide

with times of peak early gene expression and DNA replication. Interestingly, virus expressed

HA-B12 exhibited a predominantly nuclear localization at 4 and 7hpi, (Fig 6C and 6D, αHA

panel) similar to that observed in uninfected cells. Furthermore, HA-B12 nuclear localization

was distinct from the viral, cytoplasmic replication factories as indicated by puncta formation of

vaccinia I3 single-stranded DNA binding protein (Fig 6C and 6D, αI3 and αHA/αI3 panels).

To further characterize HA-B12 nuclear localization, we examined B12 solubility in two

separate assays. First using an immunofluorescence based approach, we utilized a protocol in

which cells are briefly treated with detergent prior to fixation to separate highly soluble pro-

teins from those more strongly tethered to nucleic acids or cytoskeletal elements in the cell

[46–52]. Cells transiently expressing HA-B12 or HA-GFP were either fixed then permeabilized

or first prepermeabilized (0.1% Triton X-100), followed by fixing cells and a second permeabi-

lization (0.2% Triton X-100) step. In CV1 cells fixed prior to permeabilization, the control cells

(top row) had low background after αHA incubation, the HA-B12 (middle row) had a nuclear

localization, and HA-GFP expressing cells (bottom row) showed diffuse localization of that

protein (Fig 7A). For CV1 cells that were prepermeabilized, the αHA columns for control cells

(top row) had low background, HA-B12 expressing cells (middle row) continued to exhibit

bright, nuclear localization, while HA-GFP expressing cells (bottom row) exhibited only back-

ground levels of green fluorescence similar to the control cells (Fig 7B). In summary, pre-per-

meabilization of cells was sufficient to solubilize HA-GFP from cells while HA-B12 was

retained in the nucleus under the same conditions. Together, these data suggest that B12 not

only localizes to the nucleus of uninfected or infected cells, but also interacts with unknown

binding partners there.

For comparison to the immunofluorescence based solubilization assay, we also examined

the B12 fractionation profile following sequential treatment with a commercially optimized

panel of extraction buffers. Following fractionation of control CV1 and CV1-HA-B12 cells,

western blot analysis was performed using equal proportions of each fraction (Fig 7C). In addi-

tion to HA-B12, we examined the abundance of GAPDH, lamin A/C, and BAF in each frac-

tion. As expected, GAPDH was most enriched in the cytoplasm with some also detected in the

membrane fraction, but not in the other fractions. Lamin A/C was enriched in fractions

expected to contain nuclear components and cytoskeleton. Previous studies have demon-

strated that BAF is present both in the nucleus, where it binds chromatin, and free in the cyto-

plasm as summarized in a recent review article [53]. Our results here are consistent with those

data and show BAF to be primarily present in a soluble form in the cytoplasmic fraction, and a

chromatin-bound fraction. Interestingly, the HA-B12 protein was found primarily in the solu-

ble nuclear fraction. Detectable HA-B12 was also present in the cytoplasmic, membrane and

chromatin-bound extracts albeit at much lower levels. Together in concert with the immuno-

fluorescence assays, these studies indicate that B12 localizes predominantly to the nucleus

where it fractionates distinctly from BAF and likely other chromatin associated proteins.

The ΔB1mutB12 virus is less sensitive to BAF antiviral activity than the

ΔB1 virus correlating with altered BAF regulation

The vaccinia virus B1 kinase regulates the antiviral protein BAF via phosphorylation of its N-

terminus, which inactivates BAF binding to dsDNA [54] and repression of vaccinia virus DNA

replication [6]. To investigate whether a link exists between BAF and the rescued growth phe-

notype of ΔB1mutB12, we measured both phosphorylated BAF levels during ΔB1mutB12
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infection and DNA replication of the ΔB1mutB12 virus in cells overexpressing BAF. First for

immunoblot analysis of BAF, CV1 cells were infected with WT, ΔB1, and ΔB1mutB12 viruses

at a MOI of 10. Infected cells were harvested at 6h post infection along with an uninfected con-

trol sample, lysed in the presence of phosphatase and protease inhibitors and subjected to

immunoblot analysis. BAF specific antibodies recognizing either total BAF (phospho-BAF

upper band and unphosphorylated BAF lower band) or only phosphorylated BAF were used

to detect protein levels under each condition. The total BAF levels were similar between unin-

fected and each infected sample in multiple experiments (Fig 8A, top row). Regarding phos-

phorylated BAF levels, lysates from WT infected cells contained increased levels of modified

Fig 7. B12 nuclear localization is distinct from chromatin bound proteins. (A) CV1 cells were transfected with no mRNA,

HA-GFP mRNA, or HA-B12 (GenScript) mRNA. Cells were either fixed then permeabilized to detect HA-tagged proteins or

(B) prepermeabilized, fixed and then permeabilized again for detection of HA-tagged proteins remaining in cells following

washes to remove unbound protein. The DAPI nuclear stain (blue) and αHA antibody (green) for detection of HA-GFP and

HA-B12 were used. The scale bars in 7A and 7B represent 200μm. (C) Subcellular fractionation of CV1 control or HA-B12

(GeneArt) stably expressing cells was completed to separate cells into cytoplasmic extract (Cyto.), membrane extract

(Memb.), soluble nuclear extract (Nuc.), chromatin-bound extract (Chrom.), and cytoskeleton extract (Cytoskel.). Lamin A/

C, GAPDH and BAF protein detection were used as fractionation controls and HA was used to detect HA-tagged B12

protein.

https://doi.org/10.1371/journal.ppat.1007608.g007
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BAF as compared to the uninfected control (Fig 8A, αPhospho BAF, compare lanes 1 and 2).

In contrast, the ΔB1 infected cells show a consistent reduction in phospho-BAF levels as com-

pared to both uninfected and WT infected cells (Fig 8A, αPhospho BAF, compare lane 3 with

lanes 1 and 2). Surprisingly, the ΔB1mutB12-A1 and ΔB1mutB12-A3 viruses had phospho-

BAF amounts that were repeatedly higher than the ΔB1 infected cells (Fig 8A, αPhospho BAF,

compare lanes 4 and 5 with lane 3), but not to the same level as those in WT infected lysates.

Consistent with this representative immunoblot, infection with ΔB1mutB12-A1 or

ΔB1mutB12-A3 virus clearly correlates with elevated phosphorylated BAF as compared to ΔB1

infected cells in multiple biological replicates (S5A–S5D Fig). This suggests that the absence of

a functional B12 protein during ΔB1 infection correlates with increased BAF phosphorylation

and consequently may affect BAF’s antiviral activity.

The intermediate level of BAF modification in ΔB1mutB12 lysates compared to WT and

ΔB1 infected lysates may impact BAF’s capacity to block viral DNA replication. If true, one

would predict that the ΔB1mutB12 virus may remain sensitive to BAF levels, but to a lesser

degree than the ΔB1 virus. To test this model, cells stably overexpressing 3XFlag-tagged BAF

protein (~10–12 fold increased BAF protein as compared to endogenous BAF levels) or con-

trol cells were infected with WT, ΔB1, or ΔB1mutB12-A3 virus at a MOI of 3 and levels of

DNA accumulation measured. The DNA accumulation for WT, ΔB1, and ΔB1mutB12-A3

infected cells was reduced by 1.3-fold, 26-fold, and 7.5-fold respectively in Flag-BAF cells as

compared to control CV1 cells (Fig 8B). This data demonstrates a significant attenuation of

both ΔB1 and ΔB1mutB12 DNA accumulation, but not WT virus, when BAF levels are

increased. Furthermore, the viral yield of WT, ΔB1, and ΔB1mutB12-A3 viruses were 5.8-fold,

>51-fold and>10-fold reduced in Flag-BAF cells than control CV1 cells (Fig 8C). It is inter-

esting to note that in the presence of increased BAF, the ΔB1mutB12 DNA accumulation and

viral yield levels are 19-fold and 45-fold higher respectively than the ΔB1 virus (Fig 8B and 8C,

compare green bars to red bars from cells expressing Flag-BAF). Combined, these assays dem-

onstrate a correlation between loss of B12 function and increased phosphorylated BAF levels,

and support the conclusion that ΔB1mutB12 virus represents an intermediate sensitivity to

BAF’s antiviral activity as compared to the ΔB1 and WT viruses.

Discussion

A growing body of evidence indicates that vaccinia kinases modulate multiple signaling path-

ways, although which of these are consequential for viral fitness is less well understood [55–

60]. A primary function of B1 is to inactivate the host defense activity of BAF and allow DNA

replication to proceed [6]. Notably, recent studies describe an incomplete rescue of a B1 dele-

tion virus following shRNA-mediated depletion of BAF, suggesting that additional important

functions for B1 exist [18]. To expand our current understanding of B1 driven signaling we

subjected the B1 deletion virus to experimental evolution. When coupled with whole genome

sequencing, this allowed us to identify a vaccinia mutation correlating with marked suppres-

sion of the fitness defect caused by the deletion of the B1R gene. Experiments using this

approach to investigate mechanisms of poxvirus adaption after deletion of other genes have

been performed previously, revealing that these pathogens can undergo rapid genetic expan-

sions to form an ‘accordion’ of copies of a compensating gene to enhance virus production

[26, 27]. Other adaptation studies have demonstrated that alterations in a small number of

amino acids may be sufficient to detectably compensate for the loss of a gene [28, 29]. In con-

trast to these examples exploiting gain of function mutations to improve the fitness of a mutant

virus, the data presented here indicate that a divergent mechanism involving the rapid disrup-

tion of a suppressor gene, B12R, is sufficient for enhancement of ΔB1 virus replication.
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The initial evidence of a link between B1 and the mutation of B12R was quite compelling,

as greater than 48% of the read counts included an indel at the identical nucleotide site in two

independently adapted ΔB1 viruses. The evidence that B12 mutation is linked to viral adapta-

tion was further supported through targeted Sanger sequencing of DNA isolated from individ-

ual plaques from all three adapted viral stocks. A fascinating aspect of the major indel

mutation is its location in a homopolymeric run of eight adenines. Indeed, each of the less

prevalent indel sites mapped via Sanger sequencing was also within a homopolymeric run of

4–5 nucleotides. Such sites of repeated sequence may cause polymerase stuttering and favor

indel introduction, perhaps contributing to how quickly the virus was able to adapt in our

assay [61–64]. Thus, independent of our goal to discover novel interactions between B1 and

other vaccinia genes, this study is insightful as an experimental model of reductive evolution

during poxvirus adaptation. Indeed, rigorous sequence comparisons of gene maps within

members of the Orthopoxvirus genus have led to the theory that gene loss has played a defin-

ing role in adapting family members to specific hosts [30]. Notably, these bioinformatics

Fig 8. The ΔB1mutB12 virus restriction of BAF antiviral activity is greater than the ΔB1 virus. (A) Immunoblot analysis of total BAF protein (top

panel) or phosphorylated BAF (bottom panel) in CV1 cells uninfected or infected with WT, ΔB1, ΔB1mutB12-A1, or ΔB1mutB12-A3 at a MOI of 10.

Cells were collected at 6h post infection. (B) Control or CV1 cells expressing 3XFlag-tagged BAF in excess were infected with WT (black), ΔB1 (red), or

ΔB1mutB12 (green) at a MOI of 3 and harvested at 24h post infection for analysis of relative DNA accumulation or (C) viral yield titration on

CV1-B1myc cells.

https://doi.org/10.1371/journal.ppat.1007608.g008
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analyses predicted that indels introduced at simple sequence repeats within viral ORFs are

likely a common molecular mechanism for gene fragmentation [30]. Our data now provide

strong experimental evidence that indel introduction can indeed occur rapidly at homopoly-

meric sequence repeats during viral replication, causing gene loss. Of further significance, it is

clear that reductive evolution can lead to substantial fitness gains for these pathogens and may

be a stronger selective pressure on viruses than previously appreciated.

Upon discovering the frame-shifting indel present within the adapted viruses, we posited

that the truncation of B12 may enhance viral fitness either via a loss of B12 function or a gain

of function, the latter scenario possible if the truncation removed a theoretical autoinhibitory

domain from the protein. Experiments employing siRNA to deplete B12 led to three important

observations, allowing these two possibilities to be distinguished. First, in the presence of

siB12, the replication of ΔB1 virus DNA and yield of progeny virus increased to levels very

similar to that observed with the adapted ΔB1mutB12 virus in most cell lines tested. This out-

come supports the loss of B12 function scenario. Second, while siB12 treatment led to the

same decrease in B12 mRNA from the ΔB1 virus and the ΔB1mutB12 virus, there was no

reduction in DNA accumulation or viral yield from the ΔB1mutB12 virus with siB12 treatment

arguing against a gain of function mutation. Third, while siB12 enhanced the replication of the

temperature sensitive ts2 B1 mutant virus, it did not affect the WT virus or other mutant

viruses that exhibited reduced DNA replication at less permissive temperatures because of

defects in the vaccinia polymerase or primase/helicase proteins. This third point emphasizes

that the repressive function of B12 is controlled by the B1 kinase. Together, these assays dem-

onstrate that loss of B12 can suppress the fitness defects of B1 mutant viruses, but does not

enhance replication of viruses containing a wild-type B1R gene. These genetic data are consis-

tent with a model in which the B12 pseudokinase is capable of acting as a repressor of vaccinia

replication in a B1-dependent manner. The inference that B12 function is masked by B1 is also

consistent with previous single gene knockout studies of B12. Specifically, thorough examina-

tion of a virus lacking the majority of the B12R gene revealed no detectable change in viral fit-

ness in cell culture or mouse pathology as compared to WT virus controls [41, 42]. Those

results led to B12 being designated as one of the nonessential genes of vaccinia, which is also

supported by the fact that although the B12R gene is present in all members of the Orthopox-

virus genus, the closely related taterpoxvirus and variola virus have a nonsense or deletion

mutation, respectively, in their B12 homolog [61]. However, our studies demonstrate that

while nonessential, B12 pseudokinase is not without function. Furthermore, our work adds to

a growing body of evidence indicating that poxvirus genes categorized as nonessential in tissue

culture and in vivo studies based on single gene deletions should be investigated in multigenic

knockout backgrounds, especially if they belong to gene families [65].

To understand the possible ramifications of our B1/B12 model we find it informative to

draw from virology as well as potentially analogous systems in the broader scientific literature.

For example, the signaling relationship exhibited by B1 and B12 demonstrates similarity to fea-

tures of toxin-antitoxin (TA) systems common in bacteria or poison-antidote modules more

recently uncovered in higher organisms [34–37, 39, 40, 66–68]. While TA systems proceed via

diverse and often poorly understood molecular mechanisms, they are generally comprised of

two genes, one of which is capable of decreasing the overall fitness of the organism and is

referred to as the toxin. Critically however, the toxin’s repressive activity is inhibited in cells

expressing a cognate antitoxin gene product. In some instances, the TA system is regulated by

upstream signals that can influence antitoxin stability and/or activity, thus potentially benefit-

ing an organism by slowing its growth in response to stress [34, 35, 37, 69]. However, in other

examples, TA modules provide little or no known benefit for their host, instead behaving as a

type of ‘selfish’ genetic element, perhaps to ensure their conservation in an organism by
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addicting the organism to an antidote against the TA encoded ‘poison’ protein [38–40]. As

described herein, some attributes of toxin-antidote genetic elements also apply to the B1 and

B12 pair. Consideration of parallels between B1/B12 signaling and TA systems has implica-

tions beyond poxviruses; this viral kinase and pseudokinase exhibit high sequence similarity to

a family of mammalian proteins known as the VRKs (vaccinia related kinases) also containing

kinase and pseudokinase domains [7, 9, 17]. Thus, it is conceivable that the mammalian VRK

family members and possibly some of the other numerous kinase-pseudokinase pairs in nature

exhibit features of TA modules as well.

Returning to our data of B12 repressive activity, we have begun to dissect the B12 mecha-

nism of action. Due to the apparent antagonism of B12-mediated repression in the presence of

B1, we were interested in examining where B12 localized in cells with respect to the B1 kinase.

We hypothesized that B12 may be localized to the cytoplasm where the B1 kinase is found in

both uninfected and infected cells [16, 18]. However, we were somewhat surprised to find that

B12 is found predominately in the cell nucleus, even in cells expressing the B1 kinase in the

cytoplasm and in vaccinia infected cells (Fig 9A). Solubilization studies suggest that B12 is

tethered to an unknown partner protein in the nucleus; it is tempting to hypothesize that iden-

tifying this partner may provide a clue as to B12’s mechanism of action.

We can only speculate as to the function of B12 in the nucleus at this time. Other poxviral

proteins including C4 [70], C6 [71], C16 [72], B14 [73], K7 [74], N2 [75], F16 [76], and E3 [77]

can be detected in the nucleus and have been found to impact innate immune signaling in

most cases. However, there is no precedent to date for a nuclear poxviral protein affecting viral

DNA replication. Intriguingly, the B12 connection to B1 may also partly incorporate BAF (Fig

9B). This B1-regulated antiviral host factor is prevalent in both the nucleus and cytoplasm (Fig

9A). For this reason, we investigated how the presence of B12 affects the ability of BAF to act

as a host defense against vaccinia. Measurement of phosphorylated BAF levels in infected cells

demonstrated that WT virus led to a clear increase in BAF phosphorylation when compared to

ΔB1 infected cells, as has been previously published [18]. Interestingly, BAF phosphorylation

Fig 9. Subcellular localization of B12 and working model of B1/B12/BAF signaling during vaccinia infection. (A)

Vaccinia B1 kinase overlaps with cytoplasmic localized host BAF protein whereas vaccinia B12 pseudokinase shares a

nuclear subcellular localization with the nuclear fraction of BAF. (B) The B1 kinase participates in restriction of BAF’s

antiviral function against vaccinia DNA replication in the cytoplasm, while also repressing B12 negative regulation of

vaccinia DNA replication through an unknown mechanism that is partly mediated via BAF regulation. Direct interactions

and/or signaling through additional factors may be required for B1-B12 signaling and B12-BAF signaling, and are

depicted using gold lines. B1-BAF interaction and BAF binding to dsDNA are direct interactions and denoted in black

lines.

https://doi.org/10.1371/journal.ppat.1007608.g009
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in ΔB1mutB12 infected cells was greater than in ΔB1 infected cells, albeit not to the same levels

as during WT virus infection. Parallel studies of viral yield in cells overexpressing BAF demon-

strated that inhibition by BAF was strongest on the ΔB1 virus and, while still observed during

ΔB1mutB12 infection, BAF affected this adapted virus to a lesser degree. These data suggest a

model in which B12 functions via a BAF dependent mechanism, albeit only in part (Fig 9B).

Specifically, our previously published data that BAF-depletion only modestly rescues the ΔB1

phenotype [18] leads us to propose that B12 is also working through a distinct and BAF-inde-

pendent pathway as shown in Fig 9B. It is provocative to consider that this pathway may be

executed or triggered by B12 from within the nucleus, and will require further study for

validation.

In conclusion, our study of the vaccinia B1 kinase has yielded numerous unexpected

insights into poxvirus adaptation pathways and signal transduction circuitry. Our results

evince that B1 contributes to viral fitness via antagonism of BAF and B12 proteins, and raise

new questions regarding the underlying mechanism of action for this pseudokinase and how it

is governed by B1. Future investigation of whether the inhibitory action of B12 extends to

other poxviruses including those lacking a B1 kinase, and perhaps even other pathogens, will

be particularly intriguing. Finally, as pseudokinase domains are prevalent in diverse eukaryotic

organisms [32, 33], such studies will likely be of broad biological interest.

Methods

Cell culture

African green monkey kidney CV1 cells were purchased from Invitrogen Life Technologies.

Human cervix epithelial adenocarcinoma HeLa, human lung epithelial carcinoma A549,

mouse fibroblast L929, and human thymidine kinase-negative 143B osteosarcoma TK(-) cells

were obtained from ATCC. CV1, HeLa, L929, and 143B TK(-) cell lines were maintained in

the Dulbecco’s modified Eagle’s media (DMEM) supplemented with 10% fetal bovine serum

(FBS; Atlanta Biologicals), 100 Units/ml penicillin (Life Technologies), and 100 μg/ml strepto-

mycin (Life Technologies) in 5% CO2 at 37˚C. The A549 cells were maintained in DMEM/

Ham’s F-12 nutrient mixture (1:1) medium supplemented with 10% FBS and penicillin-strep-

tomycin following identical conditions as stated above.

Generation of stably transduced cell lines

The lentiviruses encapsidating pHAGE-HYG-MCS [78] (control), pHAGE-HYG-B1myc [18],

and pHAGE-HYG-3XFlag-BAF (plasmid was generously provided by Dr. Paula Traktman)

were used to stably transduce cells as previously described [18, 79]. Alternatively, a two plas-

mid helper system was used to generate lentiviruses encapsidating pHAGE-HYG-MCS (con-

trol) or pHAGE-HYG-B1myc. The two plasmid helper system included pVSVG and psPAX2,

a gift from Didier Trono (Addgene plasmid # 12260), was combined with the transfer plasmid

for transfection of 293T cells. Fresh media supplemented with 5mM sodium butyrate (EMD

Millipore Corp.) was added to cells 16h post transfection. At 24h post transfection, fresh

media supplemented with 10mM HEPES (Fisher Scientific) was added to the cells. Virus in

supernatant was collected at 48h post transfection, polybrene (Fisher Scientific) was added to

lentivirus at 10μg/ml, and stocks were stored at -80˚C. Transduced CV1 cells were selected

with 200 μg/ml hygromycin B (Invitrogen).

The lentivirus generation and stable expression of HA-tagged and untagged B12 cells used

the pHAGE-HYG-MCS-HA-B12 or pHAGE-HYG-MCS-B12 construct which were produced

by PCR amplifying a codon-optimized HA-B12 ORF in the pcDNA3.1 vector purchased from

GeneArt (S4A Fig). The primers used for PCR amplification are found in S2 Table. HA-B12 or
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B12 ORF was then cloned into the BamHI site within the pHAGE-HYG-MCS multiple cloning

site. Lentivirus generation used the four plasmid helper system (pVSVG, pTat, pREV, pGag/

Pol), following the same protocol summarized above for transduction of CV1 cells.

WT/HA-B12 recombinant virus generation

The recombinant WT/HA-B12 virus expresses an additional vaccinia B12R gene with a 5’ HA

epitope sequence from the nonessential, thymidine kinase (TK) locus. This virus was gener-

ated by homologous recombination using standard protocols and pJS4 variant kindly shared

by Paula Traktman laboratory [6]. Briefly, the HA-B12 sequence from the virus was amplified

using F and R primers containing XhoI or NheI restriction sites respectively (S2 Table) and

cloned into a pJS4 variant [80] flanking it with regions homologous to the vaccinia TK gene.

Next, CV1-B1myc cells were infected with WT virus at MOI = 0.03 followed by transfection

3hpi with 3 μg linear pJS4-HA-B12 per 35mm well. Cells were harvested 48hpi, freeze/thawed

three times, and used for virus titrations on CV1-B1myc cells. Recombinant viruses went

through two rounds of purification by infecting 143B TK(-)/B1myc cells (lacking cellular

expression of thymidine kinase) and treatment with 25 μg/μl bromodeoxyuridine (BrdU) to

reduce productive infection of WT virus with an intact TK locus (control infections were com-

pleted without BrdU selection). WT/HA-B12 viruses were plaque purified three times and

confirmed to be a pure stock using PCR amplification of viral DNA and immunofluorescence

detection of HA-B12 protein in 50/50 plaques. An expanded preparation of this virus from a

freeze/thawed lysate of infected CV1-B1myc cells was used for immunofluorescence assays.

Viruses and viral infection assays

Viruses used for experiments include the following: wild-type (WT), B1 deletion (ΔB1) [18],

ΔB1mutB12-A1, ΔB1mutB12-A2, ΔB1mutB12-A3, B1-mutant Cts2 [5], D5-mutant Cts24 [44],

E9-mutant Cts42 [45], and WT/HA-B12 WR strain vaccinia viruses. These viruses were

expanded on either BSC40, CV1 or CV1-B1myc cells and purified using a sucrose cushion.

The ΔB1mutB12-A1, -A2, -A3 viruses were generated by infecting CV1 cells at a MOI of 0.1 in

three independent 10cm plates. Virus was propagated in cells two days at 37˚C before cell har-

vest. Cells were pelleted and resuspended in 1ml PBS. 100μl cells in PBS were saved for DNA

purification and remaining cells were pelleted and resuspended in 900μl 10mM Tris pH 9.0 for

virus titration. After freeze/thawing three times, the three independent virus stocks were

titrated on B1myc expressing CV1 cells. Using these titers for passage 1 viruses, 10cm plates of

CV1 cells were infected at a MOI of 0.1 and allowed to propagate on cells for two days at 37˚C.

Serial passage of viruses in CV1 cells at a MOI of 0.1 was completed for 7 total passages with

either two or three days of propagation before cell harvest. Each passage of virus was titered on

complementing, B1myc expressing CV1 cells.

Plaque assays were completed using either 200 or 300 plaque forming units (PFU) per well.

For the ΔB1 adapted virus plaque assays, control or B1myc expressing CV1 cells were infected

with WT, ΔB1, or ΔB1 adapted virus A1 for passages 1 through 7. Cells were fixed and stained

at 72h post infection. The plaque assay of B12 depletion during WT, ΔB1, and ΔB1mutB12-A3

infection was completed by infecting cells 24h post transfection with siRNA. 72h post infection

cells were fixed and stained. The plaque assay on CV1 control or HA-B12 stably expressing

cells were fixed 72h post infection with WT or ΔB1mutB12-A3 virus.

Viral growth assays were conducted in multiple cell lines. One-step 24h viral growth assays

were completed by infecting a monolayer of CV1, HeLa, A549, L929, or transduced CV1 cells

with WT, ΔB1, ΔB1mutB12-A1, or ΔB1mutB12-A3 virus at a MOI of 3 and incubated at 37˚C.

24h post infection cells were harvested for downstream DNA accumulation and viral yield
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quantification. Half of the cells harvested were pelleted and resuspended in PBS for DNA puri-

fication and qPCR while the other half was resuspended in 10mM Tris pH 9.0, freeze/thawed

three times, and serially diluted for titration on CV1-B1myc cells. For one-step growth assays

with siRNA treated cells, CV1 cells were infected 24h post transfection with siRNA. For experi-

ments with temperature-sensitive mutant viruses, infections were carried out at 31.5˚C, 37˚C,

and 39.7˚C. Viral growth was also measured at multiple time points for CV1 cells infected with

WT, ΔB1, or ΔB1mutB12-A3 virus. Cells were infected with a MOI of 3 and harvested at 3, 7,

16, and 24h post infection and used for both DNA accumulation and viral yield quantification.

For multi-step growth curves, CV1 cells were infected at a MOI of 0.01 and harvested at 48h

post infection for viral yield measurement by titration of samples on CV1-B1myc cells. Multi-

step growth assay in siRNA treated cells were carried out at 24h post transfection, with cell har-

vests at both 7 and 48h post infection for viral yield quantitation.

WT virus was used for infections of cells transfected with pJS4 plasmid constructs. CV1

cells were infected at either a MOI of 3 or 5 and harvested 24h post infection for immunoblot

analysis of HA-B12wt and HA-B12ΔA690 expressed from the pJS4 vector late viral promoter.

For detection of early gene expression, CV1 cells were infected with WT, ΔB1, or

ΔB1mutB12-A3 at a MOI of 3 and harvested 4h post infection for RNA extraction from cells.

In the BAF immunoblot assay, CV1 cells were either uninfected as a control or infected

with WT, ΔB1, ΔB1mutB12-A1, or ΔB1mutB12-A3 virus at a MOI of 10 to ensure synchro-

nous infection. Cells were harvested at 6h post infection and lysates were subjected to immu-

noblot analysis.

Sequencing

For complete genome sequencing of the WT (from the Wiebe laboratory), ΔB1, ΔB1mutB12-

A1, and ΔB1mutB12-A3 viruses 1 ng of viral DNA from each sample was used to construct

sequencing libraries. Libraries were constructed using the Nextera XT kit from Illumina per

manufacturers suggestions. An aliquot of the resultant multiplexed library of four viral isolates

was sequenced on the MiSeq V2 instrument. 150 base pair (bp) paired-end sequencing was

performed. The paired reads of 150 bp (trimmed when necessary to remove adaptors and ends

of reads with lower QC scores) was provided. Next, Illumina paired-end sequence reads were

filtered using the program fastq_quality_filter from FASTX-Toolkit 0.0.14. The read pairs with

at least 90% bases having quality of 30 were used to map to reference genome of Vaccinia virus

WR (reference genome NC_006998.1). Bowtie2 version 2.2.4 was used for accurate and effi-

cient mapping. Sequence data was uploaded to SRA database (PRJNA490542). The estimated

overall coverage of each of the samples (using only the high quality paired reads) is between

800 and 2000x based on a genome size of 220kb.

Sequence data was analyzed for gene duplications, point mutations and insertion or dele-

tion (indel) mutations within protein coding regions of the genome using a self-developed

pipeline including samtools/bcftools. Sequence discrepancies that occurred in<5% of the read

counts for a single nucleotide call were not included in further analysis. The mapped reads

were visualized using Integrated Genome Browser (IGV 2.3.59). Complete genome sequences

were aligned for all sequenced viruses and compared to the WT (Wiebe) virus to identify gene

duplications. Point mutations were assessed by comparing WT (Wiebe) to WT WR (reference

genome NC_006998.1) in the NCBI database, ΔB1 to WT (Wiebe), and both ΔB1-A1 and

ΔB1-A3 to ΔB1 sequenced genome. Lastly, indel mutations were discovered by comparing the

indel changes between WT (Wiebe) and WT WR (reference sequence) with the change in

indel mutations for ΔB1, ΔB1-A1, or ΔB1-A3 and WT (Wiebe) as in Fig 1B or by alignment

the whole genome sequence for ΔB1-A3 to the WT WR (reference sequence) genome in Fig
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1C. Mutations in greater than 5% of the read counts at a single nucleotide position were con-

sidered significant mutations in the mixed population of ΔB1-A1 and ΔB1-A3 viruses.

For B12R targeted Sanger sequencing, ΔB1mutB12 virus lineages A1, A2, and A3 were pla-

que purified twice on CV1 cells. Virus was expanded on CV1 cells and DNA was purified from

the resultant viruses using a GeneJET whole-blood genomic DNA purification minikit

(Thermo Scientific). Purified DNA samples were subjected to Taq based PCR using 1μM each

B11R F and B13R R primers (S2 Table). Following PCR amplification, B11-B13 products were

cleaned using a QIAquick PCR purification kit (Qiagen). PCR products were then submitted

for Sanger DNA sequencing (S2 Table) and analyzed for lesions within B12R.

DNA/RNA purification and qPCR

For fold DNA abundance quantified for total VACV DNA and the B1R gene specifically, DNA

was extracted from WT, ΔB1, ΔB1 adapted viruses A1 passages 1–7, ΔB1 adapted viruses A2

passages 1–7, and ΔB1 adapted viruses A3 passages 1–7 infected CV1 cells (for infection details

see section “Viruses and viral infection assays”). The WT and ΔB1 control samples came from

one-step infection DNA samples in CV1 cells. DNA was purified using a GeneJET whole-

blood genomic DNA purification minikit (Thermo Scientific). The Bio-Rad iTaq Universal

SYBRGreen supermix was used with quantitative polymerase chain reaction (qPCR) as previ-

ously described [81] with the addition of a B1R specific primer set. In brief, the WT purified

DNA sample was serially diluted to generate a standard curve and determine amplification

efficiency of HA (total VACV DNA) and B1R primer sets (S2 Table). For WT and ΔB1 controls

about 10ng DNA and 1μM primers were combined in a single reaction. Variable amounts of

DNA were used for ΔB1-A1, ΔB1-A2, and ΔB1-A3 passages 1–7, although the volume used

was constant when combined with 1μM primers per reaction.

The one-step 24h viral DNA accumulation samples were treated similarly to the DNA

extraction and purification above. The infection protocol is detailed under one-step viral

growth infections in methods section “Viruses and viral infection assays”. Samples were sub-

jected to qPCR with the HA specific primer set (S2 Table) in triplicate to determine relative

viral DNA accumulation.

Early viral gene expression was determined by infecting CV1 cells as detailed in methods

“Viruses and viral infection assays” section and harvested at 4h post infection. RNA was

extracted from cells using the RNeasy Mini Kit (Qiagen). Reverse transcription of RNA into

cDNA was carried out using a high-capacity cDNA reverse transcription kit (Thermo Fisher

Scientific, Applied Biosystems). Then using probe and primer sets specific for either B12 or

B13 cDNA, qPCR was used to quantify relative mRNA levels for B12 and B13. In a 10ul reac-

tion, probes were used at 0.25nmol and primers for each probe were used at 0.5nmol per reac-

tion (S2 Table). The single 10ul reaction also included about 40ng cDNA and 10ul of the 2X

PrimeTime Gene Expression Master Mix (Integrated DNA Technologies). Each sample was

completed in duplicate with three experimental replicates. The WT virus sample was used to

generate a standard curved to determine amplification efficiency of the probe/primer sets and

this number was factored into the cDNA fold values.

Plasmid/siRNA/mRNA transfections

For plasmid transfection, CV1 cells in a 35mm well were transfected with 5μl lipofecta-

mine2000 (Invitrogen) for 5μg pJS4-HA-B12wt or pJS4-HA-B12ΔA690 plasmid DNA follow-

ing the manufacturer’s incubation suggestions. Cells were then infected with WT virus 6h post

transfection for expression of HA-B12wt and HA-B12ΔA690 from the pJS4 vector under a late

vaccinia virus promoter. For the transient depletion of B12 or B13 mRNA, CV1 cells in a
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35mm well were transfected with a mixture of 5μl Lipofectamine RNAiMAX (Invitrogen) and

100nM siRNA (S2 Table) targeting the scramble control, B12, or B13 mRNA sequences. Trans-

fected cells were incubated 24h at 37˚C before infection of cells for downstream experiments.

For mRNA transfections for immunofluorescence assays, in vitro synthesis of HA-GFP or

HA-B12 mRNA was conducted following mMessage mMachine T7 Ultra manufacturer’s rec-

ommendations (Invitrogen) with linearized template pcDNA3.1-HA-GFP or pcDNA3.1-

HA-B12 (S4B Fig). HA-GFP was cloned into the pcDNA3.1 vector using primers containing

NheI or XhoI restriction sites (S2 Table). CV1 or CV1-B1myc cells were transfected with 1.5μl

Lipofectamine MessengerMax (Invitrogen) and 1μg mRNA per well of a 12-well plate follow-

ing the manufacturer’s protocol. The mRNA transfected cells were fixed or permeabilized the

next day for immunofluorescence and prepermeabilization assays.

Immunoblot assay

Protein expression was evaluated by harvesting cells and resuspending cells at 1 X 104 or 5 X 103

cells/μl in a 2X SDS protein sample buffer supplemented with 50 units/ml Pierce universal

nuclease for cell lysis (Thermo Scientific), trypsin serine protease inhibitor (phenylmethylsulfo-

nyl fluoride), protease inhibitor cocktail (Rocke), and phosphatase inhibitor cocktail (Roche).

For detection of tubulin, HA epitope tagged proteins, lamin A/C and GAPDH, cells were

resolved on a 12% SDS-PAGE gel. Total BAF and phosphorylated BAF protein was detected by

resolving cells on an 18% SDS-PAGE gel. Transfer of the proteins to a polyvinylidene difluoride

(PVDF) membrane were carried out overnight. Membranes were blocked in 5% milk made in

1X Tris buffer/NaCl/0.05% tween (1X TBST). Primary and secondary antibodies (S3 Table)

added to 1% milk in 1XTBST were incubated with the membrane. Supersignal WestPico chemi-

luminescent reagents (Thermo Scientific) were incubated with the membranes. The Bio-Rad

ImageLab software was used to quantify chemiluminescence signal. Images were made from

film or chemidoc images. Relative B12 protein levels were averaged from 5 independent experi-

ments. Raw values were quantified for HA-B12wt and HA-B12ΔA690 protein abundance using

the volume tool in ImageLab software for chemidoc images. Control protein levels were used to

normalize HA-B12wt or HA-B12ΔA690 raw values and to determine the relative B12 protein

levels as graphed (Fig 3B). Relative phospho-BAF protein levels were quantified by dividing raw

values for phosphorylated BAF from ImageLab volume tool by total BAF raw values for each

experiment (S5A–S5C Fig) and averaged for the three experiments (S5D Fig).

Immunofluorescence assay

Cells were fixed with 4% paraformaldehyde (Alfa Aesar) in 1X PBS for 15m and permeabilized

with 0.2% Triton X-100 (Sigma) in 1X PBS for 10m. Primary antibodies were incubated with

cells for 2h at room temperature (RT) following dilutions in 1X PBS (S3 Table). Secondary

antibodies with conjugated fluorophore (S3 Table) were incubated with cells for 1h at RT in

the dark. DAPI nuclear stain was added to cells at 1:1000 dilution in 1X PBS and incubated

with cells for 30m at RT in the dark. Images were taken using an EVOS FL Auto Cell Imaging

System (Invitrogen) with dual cameras and selected excitation/emission filters GFP (Fluor

488), TxRed (Fluor 594) and DAPI. ImageJ software was used for minor image editing.

Prepermeabilization assay

CV1 cells were transfected with HA-GFP, HA-B12 or no mRNA following transfection proto-

col in section ‘Plasmid/siRNA/mRNA transfections’. 24h post transfection with mRNA cells

were fixed with 4% paraformaldehyde (Alfa Aesar) in 1X PBS for control ‘Fix/Permeabilize

Cells’ condition or first permeabilized with 0.1% Triton X-100 (Sigma) in 1X PBS for 30s, then
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fixed for ‘Permeabilize/Fix/Permeabilize Cells’ condition [46, 47]. The following steps were

carried out identical to those stated in ‘Immunofluorescence assay’.

Cellular fractionation assay

CV1 control cells or cells stably expressing HA-B12 were fractionated into soluble cytoplasmic

(Cyto.), membrane (Memb.), nuclear (Nuc.), chromatin-bound (Chrom.) and cytoskeletal

(Cytoskel.) fractions using the Subcellular Protein Fractionation Kit for Cultured Cells

(Thermo Scientific #78840) following the manufacturer’s instructions with the addition of

phosphatase inhibitors. Lamin A/C was used as a nuclear protein control that has soluble frac-

tions and fractions bound to the chromatin and cytoskeleton. GAPDH and BAF are cytosolic

and membrane associated protein controls. Additionally, the BAF control protein has a

nuclear fraction that is chromatin-bound.

Statistics

The error bars for each graph represent the standard deviation for values from the mean value.

The P values were calculated using Prism multiple student t test or Excel student t test. Three

or more experimental replicates were completed for each data figure except when stated

otherwise.

Supporting information

S1 Table. Sequencing and mutation data from adapted ΔB1 viruses.

(PDF)

S2 Table. Probes, primers and siRNAs.

(PDF)

S3 Table. Antibodies and dilutions.

(PDF)

S1 Fig. Characterization of ΔB1 viruses serially passaged on CV1 cells. (A) Fold DNA abun-

dance was quantified using qPCR and primers designed to vaccinia HA or B1 genes for total

viral DNA or B1 specific DNA. DNA was isolated from CV1 cells infected with WT, ΔB1,

ΔB1-A1 passages 1–7, ΔB1-A2 passages 1–7, or ΔB1-A3 passages 1–7 viruses at a MOI of 3 and

harvested 24h post infection. (B) Plaque assay of CV1 control or B1myc expressing cells

infected with WT, ΔB1 and ΔB1-A1 virus from passages 1–7 at 200 PFU/well. Cells were fixed

72h post infection. (C) Experimental evolution depiction with genome reference identification

numbers. There were no single nucleotide polymorphisms (SNPs) in>5% of the nucleotide

read counts for the coding regions of vaccinia WR reference compared to WiebeLab virus

genome, and WiebeLab compared to ΔB1 virus genome.

(TIF)

S2 Fig. The ΔB1mutB12 viruses have a rescued phenotype in multiple cell lines. (A) Infec-

tions with WT (black), ΔB1 (red), ΔB1mutB12-A1 (light green), ΔB1mutB12-A3 (dark green)

at a MOI of 3 were harvested 24h post infection for qPCR of relative DNA accumulation in

HeLa, (B) A549, and (C) L929 cells or (D) for titration on CV1-B1myc cells for viral yield from

infections of HeLa, (E) A549, or (F) L929 cells.

(TIF)

S3 Fig. Depletion of B12 or B13 mRNA impact on neighboring gene expression and virus

plaque formation. (A) Depiction of B12R and B13R general regions targeted by siRNA for
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mRNA depletion and probe/primer set binding of cDNA to quantify relative early gene

expression using qPCR. (B) CV1 cells were transfected with siRNA for 24h then infected with

WT (black), ΔB1 (red), or ΔB1mutB12-A3 (green) at a MOI of 3 and harvested 4h post infec-

tion for mRNA isolation. The cDNA generated from harvested mRNA samples was used with

probe/primer sets to quantify early gene expression for B12R and (C) B13R using probe/prim-

ers B13R.1 set or (D) B13R.2 set. (E) Plaque assay of CV1 cells transfected with siRNA for 24h

were infected with WT, ΔB1 or ΔB1-A3 virus at 200 PFU/well and fixed 72h post infection.

(TIF)

S4 Fig. Sequences for vaccinia B12R codon optimized for expression in mammalian cells.

(A) A vaccinia B12R gene codon optimized for expression in mammalian cells was generated

by GeneArt and (B) GenScript.

(TIF)

S5 Fig. ΔB1mutB12 virus infection enhances BAF phosphorylation as compared to ΔB1

virus infection. (A) Lysates from CV1 cells uninfected (grey) or infected with WT (black),

ΔB1 (red), ΔB1mutB12-A1 (light green), or ΔB1mutB12-A3 (dark green) were subjected to

immunoblot analysis of total BAF protein and phosphorylated BAF. Protein levels were deter-

mined by chemiluminescence quantification using ImageLab on chemidoc images and raw

values were used to calculate phospho-BAF over total BAF levels for biological replicate experi-

ment 1, (B) experiment 2, and (C) experiment 3. (D) The phospho-BAF levels relative to total

BAF levels were averaged for all three experiments.

(TIF)

Acknowledgments

We are grateful for the contributions made by Fangrui Ma, Ph.D. towards the alignment of

vaccinia virus sequencing data with the reference WT WR genome and other sequence

comparisons.

Author Contributions

Conceptualization: Annabel T. Olson, Matthew S. Wiebe.

Data curation: Annabel T. Olson, Zhigang Wang, Amber B. Rico.

Formal analysis: Annabel T. Olson, Zhigang Wang, Amber B. Rico, Matthew S. Wiebe.

Funding acquisition: Matthew S. Wiebe.

Investigation: Annabel T. Olson, Matthew S. Wiebe.

Methodology: Annabel T. Olson, Matthew S. Wiebe.

Project administration: Annabel T. Olson, Matthew S. Wiebe.

Resources: Annabel T. Olson, Amber B. Rico, Matthew S. Wiebe.

Validation: Annabel T. Olson.

Visualization: Annabel T. Olson.

Writing – original draft: Annabel T. Olson, Matthew S. Wiebe.

Writing – review & editing: Annabel T. Olson, Zhigang Wang, Amber B. Rico, Matthew S.

Wiebe.

Vaccinia B12 is a viral repressor in the absence of B1

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007608 February 15, 2019 28 / 32

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007608.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007608.s008
https://doi.org/10.1371/journal.ppat.1007608


References
1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the

human genome. Science. 2002 Dec 6; 298(5600):1912–34. https://doi.org/10.1126/science.1075762

PMID: 12471243

2. Jacob T, Van den Broeke C, Favoreel HW. Viral serine/threonine protein kinases. J Virology. 2011 Feb;

85(3):1158–1173. https://doi.org/10.1128/JVI.01369-10 PMID: 21084474

3. Roskoski R Jr. A historical overview of protein kinases and their targeted small molecule inhibitors.

Pharmacol Res. 2015 Oct; 100:1–23. https://doi.org/10.1016/j.phrs.2015.07.010 PMID: 26207888

4. Condit RC, Motyczka A, Spizz G. Isolation, characterization, and physical mapping of temperature-sen-

sitive mutants of vaccinia virus. Virology. 1983 Jul 30; 128(2):429–43. PMID: 6577746

5. Rempel RE, Anderson MK, Evans E, Traktman P. Temperature-sensitive vaccinia virus mutants identify

a gene with an essential role in viral replication. J Virol. 1990 Feb; 64(2):574–83. PMID: 2296077

6. Wiebe MS, Traktman P. Poxviral B1 kinase overcomes barrier to autointegration factor, a host defense

against virus replication. Cell Host Microbe. 2007 May 17; 1(3):187–97. https://doi.org/10.1016/j.chom.

2007.03.007 PMID: 18005698

7. Nezu J, Oku A, Jones MH, Shimane M. Identification of two novel human putative serine/threonine

kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genom. 1997 Oct 15;

45(2):327–31.

8. Zelko I, Kobayashi R, Honkakoski P, Negishi M. Molecular Cloning and Characterization of a Novel

Nuclear Protein Kinase in Mice. Arch Biochem Biophys. 1998 Apr 1 4/1; 352(1):31–6. https://doi.org/10.

1006/abbi.1998.0582 PMID: 9521809

9. Nichols RJ, Traktman P. Characterization of three paralogous members of the Mammalian vaccinia

related kinase family. J Biol Chem. 2004 Feb 27; 279(9):7934–46. https://doi.org/10.1074/jbc.

M310813200 PMID: 14645249

10. Boyle KA, Traktman P. Members of a novel family of mammalian protein kinases complement the DNA-

negative phenotype of a vaccinia virus ts mutant defective in the B1 kinase. J Virol. 2004 Feb; 78

(4):1992–2005. https://doi.org/10.1128/JVI.78.4.1992-2005.2004 PMID: 14747564

11. Kovacs GR, Vasilakis N, Moss B. Regulation of viral intermediate gene expression by the vaccinia virus

B1 protein kinase. J Virol. 2001 May; 75(9):4048–55. https://doi.org/10.1128/JVI.75.9.4048-4055.2001

PMID: 11287554

12. Ibrahim N, Wicklund A, Jamin A, Wiebe MS. Barrier to autointegration factor (BAF) inhibits vaccinia

virus intermediate transcription in the absence of the viral B1 kinase. Virology. 2013 Sep; 444(1–

2):363–73. https://doi.org/10.1016/j.virol.2013.07.002 PMID: 23891157

13. Rempel RE, Traktman P. Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive

mutants and enzymatic characterization of recombinant proteins. J Virol. 1992 Jul; 66(7):4413–26.

PMID: 1602551

14. Beaud G, Beaud R, Leader DP. Vaccinia virus gene H5R encodes a protein that is phosphorylated by

the multisubstrate vaccinia virus B1R protein kinase. J Virol. 1995 March 1; 69(3):1819–26. PMID:

7853522

15. Condit RC, Motyczka A. Isolation and preliminary characterization of temperature-sensitive mutants of

vaccinia virus. Virology. 1981; 113(1):224–41. PMID: 7269240

16. Banham AH, Smith GL. Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase

that localizes in cytoplasmic factories and is packaged into virions. Virology. 1992 Dec; 191(2):803–12.

PMID: 1448924

17. Howard ST, Smith GL. Two Early Vaccinia Virus Genes Encode Polypeptides Related to Protein

Kinases. J Gen Virol. 1989 Dec 1; 70(12):3187–201.

18. Olson AT, Rico AB, Wang Z, Delhon G, Wiebe MS. Deletion of the Vaccinia Virus B1 Kinase Reveals

Essential Functions of This Enzyme Complemented Partly by the Homologous Cellular Kinase VRK2. J

Virol. 2017 Jul 12; 91(15):e00635–17. https://doi.org/10.1128/JVI.00635-17 PMID: 28515294

19. Jamin A, Wiebe MS. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure,

genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol. 2015 Jun;

34:61–8. https://doi.org/10.1016/j.ceb.2015.05.006 PMID: 26072104

20. Bradley CM, Ronning DR, Ghirlando R, Craigie R, Dyda F. Structural basis for DNA bridging by barrier-

to-autointegration factor. Nat Struct Mol Biol. 2005 Oct; 12(10):935–6. https://doi.org/10.1038/nsmb989

PMID: 16155580

21. Zheng R, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R. Barrier-to-autointegration factor

(BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci U S A. 2000

Aug 1; 97(16):8997–9002. https://doi.org/10.1073/pnas.150240197 PMID: 10908652

Vaccinia B12 is a viral repressor in the absence of B1

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007608 February 15, 2019 29 / 32

https://doi.org/10.1126/science.1075762
http://www.ncbi.nlm.nih.gov/pubmed/12471243
https://doi.org/10.1128/JVI.01369-10
http://www.ncbi.nlm.nih.gov/pubmed/21084474
https://doi.org/10.1016/j.phrs.2015.07.010
http://www.ncbi.nlm.nih.gov/pubmed/26207888
http://www.ncbi.nlm.nih.gov/pubmed/6577746
http://www.ncbi.nlm.nih.gov/pubmed/2296077
https://doi.org/10.1016/j.chom.2007.03.007
https://doi.org/10.1016/j.chom.2007.03.007
http://www.ncbi.nlm.nih.gov/pubmed/18005698
https://doi.org/10.1006/abbi.1998.0582
https://doi.org/10.1006/abbi.1998.0582
http://www.ncbi.nlm.nih.gov/pubmed/9521809
https://doi.org/10.1074/jbc.M310813200
https://doi.org/10.1074/jbc.M310813200
http://www.ncbi.nlm.nih.gov/pubmed/14645249
https://doi.org/10.1128/JVI.78.4.1992-2005.2004
http://www.ncbi.nlm.nih.gov/pubmed/14747564
https://doi.org/10.1128/JVI.75.9.4048-4055.2001
http://www.ncbi.nlm.nih.gov/pubmed/11287554
https://doi.org/10.1016/j.virol.2013.07.002
http://www.ncbi.nlm.nih.gov/pubmed/23891157
http://www.ncbi.nlm.nih.gov/pubmed/1602551
http://www.ncbi.nlm.nih.gov/pubmed/7853522
http://www.ncbi.nlm.nih.gov/pubmed/7269240
http://www.ncbi.nlm.nih.gov/pubmed/1448924
https://doi.org/10.1128/JVI.00635-17
http://www.ncbi.nlm.nih.gov/pubmed/28515294
https://doi.org/10.1016/j.ceb.2015.05.006
http://www.ncbi.nlm.nih.gov/pubmed/26072104
https://doi.org/10.1038/nsmb989
http://www.ncbi.nlm.nih.gov/pubmed/16155580
https://doi.org/10.1073/pnas.150240197
http://www.ncbi.nlm.nih.gov/pubmed/10908652
https://doi.org/10.1371/journal.ppat.1007608


22. Ibrahim N, Wicklund A, Wiebe MS. Molecular characterization of the host defense activity of the barrier

to autointegration factor against vaccinia virus. J Virol. 2011 Nov; 85(22):11588–600. https://doi.org/10.

1128/JVI.00641-11 PMID: 21880762

23. Jha S, Rollins MG, Fuchs G, Procter DJ, Hall EA, Cozzolino K, et al. Trans-kingdom mimicry underlies

ribosome customization by a poxvirus kinase. Nature. 2017 Jun 29; 546(7660):651–5. https://doi.org/

10.1038/nature22814 PMID: 28636603

24. Banham AH, Leader DP, Smith GL. Phosphorylation of ribosomal proteins by the vaccinia virus B1R

protein kinase. FEBS Lett. 1993 Apr 19; 321(1):27–31. PMID: 8467908

25. Brown NG, Nick Morrice D, Beaud G, Hardie G, Leader DP. Identification of sites phosphorylated by the

vaccinia virus B1R kinase in viral protein H5R. BMC Biochem. 2000; 1:2. https://doi.org/10.1186/1471-

2091-1-2 PMID: 11001589

26. Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, Shendure J, et al. Poxviruses deploy geno-

mic accordions to adapt rapidly against host antiviral defenses. Cell. 2012 Aug 17; 150(4):831–41.

https://doi.org/10.1016/j.cell.2012.05.049 PMID: 22901812

27. Brennan G, Kitzman JO, Rothenburg S, Shendure J, Geballe AP. Adaptive gene amplification as an

intermediate step in the expansion of virus host range. PLoS Pathog. 2014 Mar 13; 10(3):e1004002.

https://doi.org/10.1371/journal.ppat.1004002 PMID: 24626510

28. Brennan G, Kitzman JO, Shendure J, Geballe AP. Experimental Evolution Identifies Vaccinia Virus

Mutations in A24R and A35R That Antagonize the Protein Kinase R Pathway and Accompany Collapse

of an Extragenic Gene Amplification. J Virol. 2015 Oct; 89(19):9986–97. https://doi.org/10.1128/JVI.

01233-15 PMID: 26202237

29. Stuart CA, Zhivkoplias EK, Senkevich TG, Wyatt LS, Moss B. RNA polymerase mutations selected dur-

ing experimental evolution enhance replication of a hybrid vaccinia virus with an intermediate transcrip-

tion factor subunit replaced by the myxoma virus ortholog. J Virol. 2018 Jul 25:JVI.01089-18.

30. Hatcher EL, Hendrickson RC, Lefkowitz EJ. Identification of nucleotide-level changes impacting gene

content and genome evolution in orthopoxviruses. J Virol. 2014 Dec; 88(23):13651–68. https://doi.org/

10.1128/JVI.02015-14 PMID: 25231308

31. Traktman P, Anderson MK, Rempel RE. Vaccinia virus encodes an essential gene with strong homol-

ogy to protein kinases. J Biol Chem. 1989 Dec 25; 264(36):21458–61. PMID: 2600076

32. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. Emerging roles of pseudokinases. Trends Cell

Biol. 2006 Sep; 16(9):443–52. https://doi.org/10.1016/j.tcb.2006.07.003 PMID: 16879967

33. Reiterer V, Eyers PA, Farhan H. Day of the dead: pseudokinases and pseudophosphatases in physiol-

ogy and disease. Trends Cell Biol. 2014 Sep; 24(9):489–505. https://doi.org/10.1016/j.tcb.2014.03.008

PMID: 24818526

34. Wen Y, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and

pathogenicity. Pathog Dis. 2014 Apr; 70(3):240–9. https://doi.org/10.1111/2049-632X.12145 PMID:

24478112

35. Goeders N, Van Melderen L. Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel).

2014 Jan 10; 6(1):304–24.

36. Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, Targets, and Triggers: An Overview of Toxin-

Antitoxin Biology. Mol Cell. 2018 Jun 7; 70(5):768–84. https://doi.org/10.1016/j.molcel.2018.01.003

PMID: 29398446

37. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and

application. Mob Genet Elements. 2013 Sep 1; 3(5):e26219. https://doi.org/10.4161/mge.26219 PMID:

24251069

38. Burt A, Trivers R. Genes in conflict: the biology of selfish genetic elements. Pbk ed. Cambridge (MA),

London (ENG): The Belknap Press of Harvard University Press; 2008.

39. McLaughlin RN Jr, Malik HS. Genetic conflicts: the usual suspects and beyond. J Exp Biol. 2017 Jan 1;

220(Pt 1):6–17. https://doi.org/10.1242/jeb.148148 PMID: 28057823

40. Burt A, Crisanti A. Gene Drive: Evolved and Synthetic. ACS Chem Biol. 2018 Feb 16; 13(2):343–6.

https://doi.org/10.1021/acschembio.7b01031 PMID: 29400944

41. Banham AH, Smith GL. Characterization of vaccinia virus gene B12R. J Gen Virol. 1993 Dec; 74(Pt

12):2807–12.

42. Tscharke DC, Reading PC, Smith GL. Dermal infection with vaccinia virus reveals roles for virus pro-

teins not seen using other inoculation routes. J Gen Virol. 2002 Aug; 83(Pt 8):1977–86. https://doi.org/

10.1099/0022-1317-83-8-1977 PMID: 12124461

43. Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, et al. NMR solution structure of

human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability

Vaccinia B12 is a viral repressor in the absence of B1

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007608 February 15, 2019 30 / 32

https://doi.org/10.1128/JVI.00641-11
https://doi.org/10.1128/JVI.00641-11
http://www.ncbi.nlm.nih.gov/pubmed/21880762
https://doi.org/10.1038/nature22814
https://doi.org/10.1038/nature22814
http://www.ncbi.nlm.nih.gov/pubmed/28636603
http://www.ncbi.nlm.nih.gov/pubmed/8467908
https://doi.org/10.1186/1471-2091-1-2
https://doi.org/10.1186/1471-2091-1-2
http://www.ncbi.nlm.nih.gov/pubmed/11001589
https://doi.org/10.1016/j.cell.2012.05.049
http://www.ncbi.nlm.nih.gov/pubmed/22901812
https://doi.org/10.1371/journal.ppat.1004002
http://www.ncbi.nlm.nih.gov/pubmed/24626510
https://doi.org/10.1128/JVI.01233-15
https://doi.org/10.1128/JVI.01233-15
http://www.ncbi.nlm.nih.gov/pubmed/26202237
https://doi.org/10.1128/JVI.02015-14
https://doi.org/10.1128/JVI.02015-14
http://www.ncbi.nlm.nih.gov/pubmed/25231308
http://www.ncbi.nlm.nih.gov/pubmed/2600076
https://doi.org/10.1016/j.tcb.2006.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16879967
https://doi.org/10.1016/j.tcb.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24818526
https://doi.org/10.1111/2049-632X.12145
http://www.ncbi.nlm.nih.gov/pubmed/24478112
https://doi.org/10.1016/j.molcel.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29398446
https://doi.org/10.4161/mge.26219
http://www.ncbi.nlm.nih.gov/pubmed/24251069
https://doi.org/10.1242/jeb.148148
http://www.ncbi.nlm.nih.gov/pubmed/28057823
https://doi.org/10.1021/acschembio.7b01031
http://www.ncbi.nlm.nih.gov/pubmed/29400944
https://doi.org/10.1099/0022-1317-83-8-1977
https://doi.org/10.1099/0022-1317-83-8-1977
http://www.ncbi.nlm.nih.gov/pubmed/12124461
https://doi.org/10.1371/journal.ppat.1007608


and autocatalytic activity. J Biol Chem. 2011 Jun 24; 286(25):22131–8. https://doi.org/10.1074/jbc.

M110.200162 PMID: 21543316

44. Evans E, Traktman P. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA

replication. J Vir. 1987 Oct 1; 61(10):3152–62.

45. Traktman P, Sridhar P, Condit RC, Roberts BE. Transcriptional mapping of the DNA polymerase gene

of vaccinia virus. J Virol. 1984 Jan; 49(1):125–31. PMID: 6317886

46. Greseth MD, Boyle KA, Bluma MS, Unger B, Wiebe MS, Soares-Martins JA, et al. Molecular genetic

and biochemical characterization of the vaccinia virus I3 protein, the replicative single-stranded DNA

binding protein. J Virol. 2012 Jun; 86(11):6197–209. https://doi.org/10.1128/JVI.00206-12 PMID:

22438556

47. Boyle KA, Greseth MD, Traktman P. Genetic confirmation that the H5 protein is required for vaccinia

virus DNA replication. J Virol. 2015 Apr 8; 89(12):6312–27. https://doi.org/10.1128/JVI.00445-15 PMID:

25855734

48. Brown S, Levinson W, Spudich JA. Cytoskeletal elements of chick embryo fibroblasts revealed by deter-

gent extraction. J Supramol Struct. 1976; 5(2):119–30. https://doi.org/10.1002/jss.400050203 PMID:

1034175

49. Lenk R, Ransom L, Kaufmann Y, Penman S. A cytoskeletal structure with associated polyribosomes

obtained from HeLa cells. Cell. 1977 Jan; 10(1):67–78. PMID: 837445

50. Pasdar M, Nelson WJ. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells:

temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II.

Morphological analysis. J Cell Biol. 1988 Mar; 106(3):687–95. PMID: 3279050

51. He S, Sun JM, Li L, Davie JR. Differential intranuclear organization of transcription factors Sp1 and Sp3.

Mol Biol Cell. 2005 Sep; 16(9):4073–83. https://doi.org/10.1091/mbc.E05-05-0388 PMID: 15987735

52. Livingston CM, DeLuca NA, Wilkinson DE, Weller SK. Oligomerization of ICP4 and rearrangement of

heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J

Virol. 2008 Jul; 82(13):6324–36. https://doi.org/10.1128/JVI.00455-08 PMID: 18434395

53. Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y. Barrier-to-autointegration factor—a

BAFfling little protein. Trends Cell Biol. 2007 Apr; 17(4):202–8. https://doi.org/10.1016/j.tcb.2007.02.

004 PMID: 17320395

54. Nichols RJ, Wiebe MS, Traktman P. The vaccinia-related kinases phosphorylate the N’ terminus of

BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell. 2006 May; 17

(5):2451–64. https://doi.org/10.1091/mbc.E05-12-1179 PMID: 16495336

55. Wang S, Shuman S. Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in

the F10 gene, which encodes protein kinase 2. J Virol. 1995 Oct; 69(10):6376–88. PMID: 7666539

56. Szajner P, Weisberg AS, Moss B. Evidence for an essential catalytic role of the F10 protein kinase in

vaccinia virus morphogenesis. J Virol. 2004 Jan; 78(1):257–65. https://doi.org/10.1128/JVI.78.1.257-

265.2004 PMID: 14671107

57. Szajner P, Weisberg AS, Moss B. Physical and functional interactions between vaccinia virus F10 pro-

tein kinase and virion assembly proteins A30 and G7. J Virol. 2004 Jan; 78(1):266–74. https://doi.org/

10.1128/JVI.78.1.266-274.2004 PMID: 14671108

58. Punjabi A, Traktman P. Cell Biological and Functional Characterization of the Vaccinia Virus F10

Kinase: Implications for the Mechanism of Virion Morphogenesis. J Virol. 2005 February 15; 79

(4):2171–90. https://doi.org/10.1128/JVI.79.4.2171-2190.2005 PMID: 15681420

59. Greseth MD, Carter DC, Terhune SS, Traktman P. Proteomic Screen for Cellular Targets of the Vac-

cinia Virus F10 Protein Kinase Reveals that Phosphorylation of mDia Regulates Stress Fiber Formation.

Mol Cell Proteomics. 2017 Apr; 16(4 suppl 1):S124–43. https://doi.org/10.1074/mcp.M116.065003

PMID: 28183815

60. Novy K, Kilcher S, Omasits U, Bleck CKE, Beerli C, Vowinckel J, et al. Proteotype profiling unmasks a

viral signalling network essential for poxvirus assembly and transcriptional competence. Nat Microbiol.

2018 May; 3(5):588–99. https://doi.org/10.1038/s41564-018-0142-6 PMID: 29632367

61. Esposito JJ, Sammons SA, Frace AM, Osborne JD, Olsen-Rasmussen M, Zhang M, et al. Genome

sequence diversity and clues to the evolution of variola (smallpox) virus. Science. 2006 Aug 11; 313

(5788):807–12. https://doi.org/10.1126/science.1125134 PMID: 16873609

62. Coulson D, Upton C. Characterization of indels in poxvirus genomes. Virus Genes. 2011 Apr; 42

(2):171–7. https://doi.org/10.1007/s11262-010-0560-x PMID: 21153876

63. Feschenko VV, Lovett ST. Slipped misalignment mechanisms of deletion formation: analysis of deletion

endpoints. J Mol Biol. 1998 Feb 27; 276(3):559–69. https://doi.org/10.1006/jmbi.1997.1566 PMID:

9551097

Vaccinia B12 is a viral repressor in the absence of B1

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007608 February 15, 2019 31 / 32

https://doi.org/10.1074/jbc.M110.200162
https://doi.org/10.1074/jbc.M110.200162
http://www.ncbi.nlm.nih.gov/pubmed/21543316
http://www.ncbi.nlm.nih.gov/pubmed/6317886
https://doi.org/10.1128/JVI.00206-12
http://www.ncbi.nlm.nih.gov/pubmed/22438556
https://doi.org/10.1128/JVI.00445-15
http://www.ncbi.nlm.nih.gov/pubmed/25855734
https://doi.org/10.1002/jss.400050203
http://www.ncbi.nlm.nih.gov/pubmed/1034175
http://www.ncbi.nlm.nih.gov/pubmed/837445
http://www.ncbi.nlm.nih.gov/pubmed/3279050
https://doi.org/10.1091/mbc.E05-05-0388
http://www.ncbi.nlm.nih.gov/pubmed/15987735
https://doi.org/10.1128/JVI.00455-08
http://www.ncbi.nlm.nih.gov/pubmed/18434395
https://doi.org/10.1016/j.tcb.2007.02.004
https://doi.org/10.1016/j.tcb.2007.02.004
http://www.ncbi.nlm.nih.gov/pubmed/17320395
https://doi.org/10.1091/mbc.E05-12-1179
http://www.ncbi.nlm.nih.gov/pubmed/16495336
http://www.ncbi.nlm.nih.gov/pubmed/7666539
https://doi.org/10.1128/JVI.78.1.257-265.2004
https://doi.org/10.1128/JVI.78.1.257-265.2004
http://www.ncbi.nlm.nih.gov/pubmed/14671107
https://doi.org/10.1128/JVI.78.1.266-274.2004
https://doi.org/10.1128/JVI.78.1.266-274.2004
http://www.ncbi.nlm.nih.gov/pubmed/14671108
https://doi.org/10.1128/JVI.79.4.2171-2190.2005
http://www.ncbi.nlm.nih.gov/pubmed/15681420
https://doi.org/10.1074/mcp.M116.065003
http://www.ncbi.nlm.nih.gov/pubmed/28183815
https://doi.org/10.1038/s41564-018-0142-6
http://www.ncbi.nlm.nih.gov/pubmed/29632367
https://doi.org/10.1126/science.1125134
http://www.ncbi.nlm.nih.gov/pubmed/16873609
https://doi.org/10.1007/s11262-010-0560-x
http://www.ncbi.nlm.nih.gov/pubmed/21153876
https://doi.org/10.1006/jmbi.1997.1566
http://www.ncbi.nlm.nih.gov/pubmed/9551097
https://doi.org/10.1371/journal.ppat.1007608


64. Lovett ST. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA

sequences. Mol Microbiol. 2004 Jun; 52(5):1243–53. https://doi.org/10.1111/j.1365-2958.2004.04076.x

PMID: 15165229

65. Dobson BM, Tscharke DC. Redundancy complicates the definition of essential genes for vaccinia virus.

J Gen Virol. 2015 Nov; 96(11):3326–37. https://doi.org/10.1099/jgv.0.000266 PMID: 26290187

66. Ben-David E, Burga A, Kruglyak L. A maternal-effect selfish genetic element in Caenorhabditis elegans.

Science. 2017 Jun 9; 356(6342):1051–5. https://doi.org/10.1126/science.aan0621 PMID: 28495877

67. Nuckolls NL, Bravo Nunez MA, Eickbush MT, Young JM, Lange JJ, Yu JS, et al. Wtf Genes are Prolific

Dual Poison-Antidote Meiotic Drivers. Elife. 2017 Jun 20; 6: https://doi.org/10.7554/eLife.26033 PMID:

28631612

68. Hansen S, Vulic M, Min J, Yen TJ, Schumacher MA, Brennan RG, et al. Regulation of the Escherichia

coli HipBA toxin-antitoxin system by proteolysis. PLoS One. 2012; 7(6):e39185. https://doi.org/10.1371/

journal.pone.0039185 PMID: 22720069

69. Otsuka Y. Prokaryotic toxin-antitoxin systems: novel regulations of the toxins. Curr Genet. 2016 May;

62(2):379–82. https://doi.org/10.1007/s00294-015-0557-z PMID: 26780368

70. Ember SW, Ren H, Ferguson BJ, Smith GL. Vaccinia virus protein C4 inhibits NF-κB activation and pro-

motes virus virulence. J Gen Virol. 2012; 93(Pt 10):2098–108. https://doi.org/10.1099/vir.0.045070-0

PMID: 22791606

71. Unterholzner L, Sumner RP, Baran M, Ren H, Mansur DS, Bourke NM, et al. Vaccinia virus protein C6

is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS

Pathog. 2011 Sep; 7(9):e1002247. https://doi.org/10.1371/journal.ppat.1002247 PMID: 21931555

72. Fahy AS, Clark RH, Glyde EF, Smith GL. Vaccinia virus protein C16 acts intracellularly to modulate the

host response and promote virulence. J Gen Virol. 2008 Oct; 89(Pt 10):2377–87. https://doi.org/10.

1099/vir.0.2008/004895-0 PMID: 18796705

73. Benfield CT, Mansur DS, McCoy LE, Ferguson BJ, Bahar MW, Smith GL, et al. Mapping the IkappaB

kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-medi-

ated activation of nuclear factor kappaB. J Biol Chem. 2011 Jun 10; 286(23):20727–35. https://doi.org/

10.1074/jbc.M111.231381 PMID: 21474453

74. Teferi WM, Desaulniers MA, Noyce RS, Shenouda M, Umer B, Evans DH. The vaccinia virus K7 protein

promotes histone methylation associated with heterochromatin formation. PLoS One. 2017 Mar 3; 12

(3):e0173056. https://doi.org/10.1371/journal.pone.0173056 PMID: 28257484

75. Ferguson BJ, Benfield CT, Ren H, Lee VH, Frazer GL, Strnadova P, et al. Vaccinia virus protein N2 is a

nuclear IRF3 inhibitor that promotes virulence. J Gen Virol. 2013 Sep; 94(Pt 9):2070–81. https://doi.org/

10.1099/vir.0.054114-0 PMID: 23761407

76. Senkevich TG, Koonin EV, Moss B. Vaccinia virus F16 protein, a predicted catalytically inactive mem-

ber of the prokaryotic serine recombinase superfamily, is targeted to nucleoli. Virology. 2011 Sep 1; 417

(2):334–42. https://doi.org/10.1016/j.virol.2011.06.017 PMID: 21752417

77. Yuwen H, Cox JH, Yewdell JW, Bennink JR, Moss B. Nuclear localization of a double-stranded RNA-

binding protein encoded by the vaccinia virus E3L gene. Virology. 1993 Aug; 195(2):732–44. https://doi.

org/10.1006/viro.1993.1424 PMID: 8337842

78. Mostoslavsky G, Fabian AJ, Rooney S, Alt FW, Mulligan RC. Complete correction of murine Artemis

immunodeficiency by lentiviral vector-mediated gene transfer. Proc Natl Acad Sci U S A. 2006 Oct 31;

103(44):16406–11. https://doi.org/10.1073/pnas.0608130103 PMID: 17062750

79. Molitor TP, Traktman P. Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion

slows proliferation in vitro and tumor growth and metastasis in vivo. Oncogenesis. 2013 Jun 3; 2:e48.

https://doi.org/10.1038/oncsis.2013.11 PMID: 23732708

80. Chakrabarti S, Sisler JR, Moss B. Compact, synthetic, vaccinia virus early/late promoter for protein

expression. BioTechniques. 1997 Dec; 23(6):1094–7. https://doi.org/10.2144/97236st07 PMID:

9421642

81. Jamin A, Wicklund A, Wiebe MS. Cell and Virus Mediated Regulation of the Barrier-to-Autointegration

Factor’s Phosphorylation State Controls its DNA Binding, Dimerization, Subcellular Localization, and

Antipoxviral Activity. J Virol. 2014 Mar 5; 88(10):5342–55. https://doi.org/10.1128/JVI.00427-14 PMID:

24600006

Vaccinia B12 is a viral repressor in the absence of B1

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007608 February 15, 2019 32 / 32

https://doi.org/10.1111/j.1365-2958.2004.04076.x
http://www.ncbi.nlm.nih.gov/pubmed/15165229
https://doi.org/10.1099/jgv.0.000266
http://www.ncbi.nlm.nih.gov/pubmed/26290187
https://doi.org/10.1126/science.aan0621
http://www.ncbi.nlm.nih.gov/pubmed/28495877
https://doi.org/10.7554/eLife.26033
http://www.ncbi.nlm.nih.gov/pubmed/28631612
https://doi.org/10.1371/journal.pone.0039185
https://doi.org/10.1371/journal.pone.0039185
http://www.ncbi.nlm.nih.gov/pubmed/22720069
https://doi.org/10.1007/s00294-015-0557-z
http://www.ncbi.nlm.nih.gov/pubmed/26780368
https://doi.org/10.1099/vir.0.045070-0
http://www.ncbi.nlm.nih.gov/pubmed/22791606
https://doi.org/10.1371/journal.ppat.1002247
http://www.ncbi.nlm.nih.gov/pubmed/21931555
https://doi.org/10.1099/vir.0.2008/004895-0
https://doi.org/10.1099/vir.0.2008/004895-0
http://www.ncbi.nlm.nih.gov/pubmed/18796705
https://doi.org/10.1074/jbc.M111.231381
https://doi.org/10.1074/jbc.M111.231381
http://www.ncbi.nlm.nih.gov/pubmed/21474453
https://doi.org/10.1371/journal.pone.0173056
http://www.ncbi.nlm.nih.gov/pubmed/28257484
https://doi.org/10.1099/vir.0.054114-0
https://doi.org/10.1099/vir.0.054114-0
http://www.ncbi.nlm.nih.gov/pubmed/23761407
https://doi.org/10.1016/j.virol.2011.06.017
http://www.ncbi.nlm.nih.gov/pubmed/21752417
https://doi.org/10.1006/viro.1993.1424
https://doi.org/10.1006/viro.1993.1424
http://www.ncbi.nlm.nih.gov/pubmed/8337842
https://doi.org/10.1073/pnas.0608130103
http://www.ncbi.nlm.nih.gov/pubmed/17062750
https://doi.org/10.1038/oncsis.2013.11
http://www.ncbi.nlm.nih.gov/pubmed/23732708
https://doi.org/10.2144/97236st07
http://www.ncbi.nlm.nih.gov/pubmed/9421642
https://doi.org/10.1128/JVI.00427-14
http://www.ncbi.nlm.nih.gov/pubmed/24600006
https://doi.org/10.1371/journal.ppat.1007608

