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Abstract

The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial
defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular
aggregates and cell death. In this work we propose a ‘‘metabolic cell death by overcrowding’’ as an alternative hypothesis.
Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons
transit through three different metabolic phases. The first phase (0–6 mM) corresponds with the normal neuron state,
where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6–8.6 mM) is
characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to
ammonia release by neurons. In the third phase (8.6–9.3 mM) neurons are predicted to support their energy demands from
glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon
metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for
energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes
zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.
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Introduction

The formation of intracellular aggregates is a common etiology

of several degenerative diseases [1,2,3]. In the context of

neurodegenerative diseases, the extracellular and intracellular

accumulation of the aggregates of b-amyloid protein has been

observed in certain brain areas of Alzheimer’s patients [3], a-

synuclein in Parkinson’s patients [1,3], and hungtingtin in

Huntington’s patients [4,5]. Beyond neurodegenerative diseases,

the intracellular accumulation of b-amyloid protein aggregates has

been hypothesized as a cause of inclusion-body myositis [6,7], a

muscular degenerative disease that starts after age 50 years. The

connection between accumulation of intracellular aggregates and

degeneration is supported by in vitro studies reporting a negative

correlation between the accumulation of intracellular aggregates

and cell survival [8,9].

Mitochondrial defects and oxidative stress has been pointed as

the major mechanistic links between the accumulation of

intracellular aggregates and cell death [9,10,11]. Impaired

mitochondrial biogenesis contributes to mitochondrial dysfunction

in in vitro models of Alzheimer’s disease [12]. Mouse models of

familial Alzheimer’s disease have provided evidence indicating

that defects in mitochondria trafficking and integrity precede the

onset of neurological phenotype [13]. They have also shown that

the distribution of mitochondria is disrupted by the formation of

protein aggregates in neurons[14]. Taking together this evidence

points to reduced mitochondrial activity as a major factor in

Alzheimer’s disease.

The progressive increase of the intracellular concentration of

protein aggregates may also constraint the intracellular space

available to metabolic enzymes and mitochondria. The cell has a

high density of macromolecules occupying about 30–40% of the

intracellular space [15,16]. An increase of the macromolecular

density beyond this value hinders dramatically the diffusion of

metabolites and macromolecules, resulting in an exponential

reduction of the rate of diffusion-limited reactions [17,18]. The cell

molecular machinery thus operates under a macromolecular

crowding constraint, whereby the concentration of macromole-

cules should not exceed the limiting value of about 40%. However,

the impact of molecular crowding on neuron metabolism has

remained unexplored.

Brain metabolism has been studied extensively using different

experimental techniques. Time resolved experiments have shown

that the early neuronal activity (up to about 10 sec) is supported by

oxidative phosphorylation of lactate from an extracellular pool

[19,20,21]. This initial phase is followed by the activation of the

astrocyte-neuron lactate shuttle, whereby astrocytic glycolysis

generates lactate that is then utilized by the neurons [19,20,21].

This evidence indicates that normal neurons undergoing minor

neural activity satisfy their energy demands through the oxidative

phosphorylation of lactate. However, high lactate levels have been

observed in brain regions of Huntington’s disease patients
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compared to normal controls [22,23], suggesting a shift from a net

consumption to a net lactate production by the astrocyte-neuron

system. It has also been observed that healthy, mature, non-

starved brains take up ammonia [24] while the brains of

Alzheimer patients release ammonia [24,25].

In this work we provide evidence that these altered metabolic

phenotypes could be the consequence of an increase in molecular

crowding due to accumulation of protein aggregates.

Results

In silico model of human cell metabolism
To investigate the impact of protein aggregates accumulation on

cell metabolism we use an in silico model of human cell metabolism

[26]. The model is based on a genome-scale reconstruction of the

metabolic network of a generic human cell [27]. One could argue

that this model should be constrained to take into account the

specific pathways that are known to be active in neurons, e.g. by

inspecting gene expression data to determine the presence/

absence of genes coding for metabolic enzymes [28,29,30].

However, we take a different approach. We hypothesize that the

specific metabolic pathways that are active in neurons are those

satisfying the neuron metabolic demands with the minimal use of

nutrients. Therefore, our model aims to predict rather that impose

which metabolic pathways are active/inactive.

We will utilize energy demand (moles of ATP consumed per

unit time and cell volume) as a surrogate for neuronal activity. The

scope of the model is to predict which metabolic pathways satisfy

this energy demand with the minimal use of nutrients. We note

that resting human cells require energy to maintain their basal

functions, which has been estimated to be about 5 mM ATP/min

[31]. Most of the results reported below are obtained assuming this

energy demand, but we will also investigate scenarios where the

energy demand increases beyond the basal value during increased

neuronal activity. In addition we take into account that there is a

basal rate of RNA and protein turnover and a corresponding basal

rate of RNA and protein synthesis.

In this work we focus on stationary metabolic states of neuronal

activity. This is a reasonable approximation for resting neurons

with a steady energy demand for cell maintenance. A stationary

state approximation also applies to modeling sustained neuronal

activity with a steady energy demand. Under the steady state

approximation the production and consumption of every metab-

olite balances and the metabolite concentrations remain constant

(flux balance constraint). There are of course other physiological

regimes that are dynamic in nature. However, we will show that

even within the context of the steady state approximation we

obtain very interesting predictions regarding the differential

utilization of metabolic pathways.

For any given stationary distribution of metabolic fluxes there is

a corresponding distribution of metabolic enzymes, ribosomes and

mitochodria that is required to catalyze those reactions. The total

volume occupied by these macromolecules/organelles should not

exceed 40%, which is the typical macromolecular volume fraction

in human cells (molecular crowding constraint). In addition, we

take into account the volume fraction occupied by non-metabolic

macromolecules, including structural proteins and protein aggre-

gates. In a normal state, most of the cellular proteome is composed

of structural proteins (e.g., actin) and macromolecules/organelles

necessary to maintain their basal metabolism. The concentration

of non-metabolic proteins is about 3 mM [26]. The concentration

of metabolic enzymes, ribosomes and mitochondria is estimated

self-consistently by our model depending on the estimated

metabolic fluxes of the corresponding reactions. To model the

formation of protein aggregates we simply increase the amount of

non-metabolic protein from its basal value of 3 mM.

Summarizing, the metabolic model studied here predicts the

metabolic fluxes that will result in a net generation of a predefined

ATP demand (e.g., 5 mM ATP/min for cell maintenance) with

the minimal use of nutrients and satisfying the flux balance and

molecular crowding constraints. Since glucose and lactate are the

major energy sources for neurons, we focus on their differential

utilization depending on the energy demand and the concentra-

tion of protein aggregates. In addition, we assume that the cell

media contains all essential nutrients (essential amino acids, ions,

etc) and oxygen.

Exchange fluxes define different metabolic phases
First, we focus on the impact of protein aggregates accumula-

tion on the metabolism of resting neurons. We assume that the

metabolic requirements of resting neurons are a basal ATP

demand for cell maintenance and basal rates of RNA and protein

synthesis to compensate for the basal turnover rates of RNA and

protein, respectively.

We observe significant changes in the model predicted exchange

fluxes when increasing the concentration of protein aggregates

(Figure 1). Specifically, we can clearly distinguish three major

phases depending on whether lactate or glucose is used as the

energy substrate and whether ammonia or histidine is used as the

nitrogen source. Below protein aggregate concentrations of 6 mM,

lactate is the preferred energy substrate and ammonia the

preferred nitrogen source (Phase 1, white background). From 6

to 8.6 mM there is a transition to a mixed use of lactate and

glucose as energy substrates and a gradual change from ammonia

to histidine as nitrogen source, with concomitant excretion of

ammonia (Phase 2, grey background). From 8.6 to 9.3 mM there

is a complete switch to glucose as the energy substrate and

histidine as the nitrogen substrate, with concomitant excretion of

lactate and ammonia (Phase 3, yellow background). Finally,

beyond 9.3 mM the protein aggregates occupy almost all the 40%

of the intracellular volume accessible to macromolecules and there

is no room for the allocation of metabolic enzymes, ribosomes or

mitochondria (unfeasible region). In this latter regime the cell is

predicted to be incapable of generating the basal energy required

for cell maintenance and therefore should die.

These changes in exchange fluxes are accompanied by changes

in the relative abundance of mitochondria and cytosolic enzymes.

For protein aggregate concentrations below 6 mM mitochondria

occupy about 12% if the intracellular volume (Figure 1e).

However, beyond 6 mM the relative volume fraction occupied

by mitochondria gradually decreases, becoming zero at the

maximum feasible concentration of protein aggregates. This

gradual decrease is accompanied by an increase of the volume

faction occupied by cytosolic enzymes (Figure 1f). These changes

in volume fractions are a reflection of internal changes in the

metabolic flux distribution as discussed below.

Phase 1: Normal state, lactate utilization
In Phase 1 lactate is the preferred energy substrate (Figure 1a).

After uptake the model predicts its conversion to pyruvate, which

then fuels the oxidative phosphorylation in the mitochondria.

There is also an additional uptake of ammonia and amino acids to

sustain the basal rate of RNA and protein synthesis associated with

the corresponding basal rates of RNA and protein degradation.

This phase agrees with what is reported for normal neurons with

minor activity, where energy is mostly generated from oxidative

phosphorylation of lactate [19,20,21].

Metabolic States of Neurons with Aggregates
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Phase 2: Mixed lactate-glucose utilization
In this phase there is a mixed utilization of lactate and glucose as

energy substrates (Figure 1a and 1b). There are also significant

changes in the way lactate is metabolized (Figure 2). As in Phase 1,

lactate is converted to pyruvate. Part of the pyruvate is used for

oxidative phosphorylation in the mitochondria, with a magnitude

that gradually decreases with increasing the concentration of

protein aggregates (Figure 2, brown). This behavior is quantified

by the gradual decrease of the ATP synthase rate (Figure 2, ATP

synthase panel), which matches the predicted decrease in

mitochondrial density (Figure 1e). The remaining part of pyruvate

is converted to 3-phosphoglycerate in a glyconeogenesis like

fashion (Figure 2, blue). Glucose also contributes to the production

of 3-phosphoglycerate via the first steps of glycolysis. 3-phospho-

glycerate is then metabolized through an alternative pathway for

energy generation involving reactions from serine synthesis, one

carbon metabolism and the glycine cleavage system (SOG

pathway, Figure 2, green), first reported in [26]. This pathway

Figure 1. Metabolic phases with increasing the concentration of protein aggregates. a)–d) Exchange flux as a function of the protein
aggregates concentration. e) and f) Relative volume fraction occupied by mitochondria e) and cytosolic enzymes f). The lines represent the median
over simulated sets of kinetics parameters and the error bars are the 90% confidence intervals. The white, grey and yellow background represent
phase 1, 2 and 3, respectively.
doi:10.1371/journal.pone.0063822.g001
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generates 4 molecules of ATP per molecule of glucose and 2

molecules of ATP per molecule of lactate. In this phase both the

partial oxidative phosphorylation of lactate and the SOG pathway

sustain the basal energy demand. The upregulation of the SOG

pathway is accompanied by a change from ammonia to histidine

as the nitrogen source (Figure 2, histidine uptake panel) and a

switch from ammonia uptake to ammonia excretion (Figure 2,

ammonia excretion panel).

Phase 3: Glucose utilization with lactate and ammonia
excretion

In this phase there is a complete switch to glucose as the energy

substrate (Figure 3). Glucose is metabolized to 3-phosphoglycerate.

3-phosphoglycerate is then metabolized to either lactate (Figure 3,

blue), completing the glycolysis pathway, or through the SOG

pathway (Figure 3, green). In this phase histidine is again the

nitrogen source (Figure 3, histidine uptake panel) and ammonia is

excreted (Figure 3, ammonia excretion panel). We note a large

variability in the model predictions due to uncertainties in the

model kinetic parameters.

Figure 2. Metabolic flux distribution in Phase 2. Rate of selected reactions that are relevant to the metabolic state of Phase 2. The lines
represent the median over simulated sets of kinetics parameters and the error bars are the 90% confidence intervals. The white, grey and yellow
backgrounds represent Phase 1, 2 and 3, respectively. Abbreviations: PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; PEPCK,
phosphoglycerate carboxykinase; C1TS, C1-tetrahydrofolate synthase, a tri-functional enzyme that processes three distinct enzymatic activities, 5,10-
methylenetetrahydrofolate (mlthf) dehydrogenase, 5,10-methenyltetrahydrofolate (methf) cyclohydrolase and 10-formyltetrahydrofolate (10fthf)
synthetase.
doi:10.1371/journal.pone.0063822.g002
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Phase diagram
These results can be generalized to situations where the

neuronal activity demands more energy than what is required

for cell maintenance. More precisely, we can depict the different

metabolic phases in the plane of protein aggregate concentration

and energy demand (Figure 4). To this end, we determined the

energy demand when glucose uptake starts (Phase 1/Phase 2),

when lactate uptake switches to lactate excretion (Phase 2/Phase

3) and the maximum energy demand that can be satisfied (Phase

3/Unfeasible region), all as a function of the concentration of

protein aggregates.

The model predicts that the transition from Phase 1 to Phase 2

and from Phase 2 to Phase 3 is shifted to lower protein aggregate

concentrations as the energy demand is increased. We also note

that the maximum ATP demand that can be satisfied by the cell

metabolism decreases as the protein aggregate concentration

increases (Figure 4, line demarking phase 3 from the unfeasible

region). In other words, the increase of the protein aggregate

concentrations results in a gradual decrease of the cell capacity for

energy generation.

Finally, we note that the confidence intervals of the transition

regions for (Phase 2/Phase 3) and (Phase 3/Unfeasible region)

overlap. This observation simple means that for certain choices of

kinetic parameters the Phase 3 is not observed.

Discussion

This in silico study leads to very interesting predictions. It

indicates that neurons can be in three different metabolic phases

depending on the magnitude of the protein aggregate concentra-

tions and the energy demand. Phase 1 represents the normal state

of neurons, where the energy requirements are satisfied through

oxidative phosphorylation of lactate. The formation of protein

aggregates and/or an increase in the energy demand to satisfy

neuronal activity can shift the neuron to the Phase 2, characterized

by a mixed oxidative phosphorylation of lactate, the production of

3-phosphoglycerate from lactate and glucose, and the metabolism

of 3-phsophoglycerate via the SOG pathway, with concomitant

histidine uptake and ammonia excretion. A further increase in the

protein aggregate concentration and/or a further increase of the

energy demand can shift the neuron to Phase 3, where the energy

Figure 3. Metabolic flux distribution in Phase 3. Rate of selected reactions that are relevant to the metabolic state of Phase 3. The lines
represent the median over simulated sets of kinetics parameters and the error bars are the 90% confidence intervals. The white, grey and yellow
backgrounds represent Phase 1, 2 and 3, respectively. Abbreviations not found in Figure 2: PK, pyruvate kinase; PHGDH, phosphoglycerate
dehydrogenase; GC, glycine cleavage complex.
doi:10.1371/journal.pone.0063822.g003
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demand is sustained by glycolysis, with concomitant lactate

excretion, and the SOG pathway, with concomitant histidine

uptake and ammonia excretion.

The contribution of the SOG pathway to energy production is

at the current stage theoretical. This pathway has been predicted

to be upregulated in highly proliferating cells [26], which are also

subject to a high energy demand to fuel biosynthesis of the cell

components. Our ongoing experimental work in the context of

proliferating cells indicates that the activity of this pathway indeed

increases with increasing proliferation. Furthermore, inhibition of

the pathway, by knockdown of intermediary stems, or by

pharmacological inhibition with antifolates targeting the one-

carbon steps, causes energy stress (work in progress). While we

cannot warranty that there may be tissue differences, our work in

progress is providing support for the involvement of the SOG

pathway in energy generation.

The model also predicts that neurons have a maximum capacity

for energy generation and that this maximum capacity decreases

with increasing the concentration of protein aggregates. The

maximum capacity becomes zero at protein aggregate concentra-

tions of about 9.3 mM. Beyond the latter value the cell cannot

even satisfy is basal energy demand for cell maintenance and

therefore the neuron is predicted to die. We call this predicted cell

death ‘‘metabolic cell death by overcrowding’’. This prediction is

supported by empirical data showing a negative correlation

between the formation of intracellular aggregates and cell survival

in human embryonic kidney cells [8] and in neurons [9]. The

metabolic cell death by overcrowding may actually be a general

phenomenon in cell biology, since there is a negative correlation

between the formation of intracellular aggregates and cell survival

in the bacterium E. coli as well [32].

Further support for the in silico predictions comes from

measurements of mitochondrial content and of metabolic by-

product accumulation in the brain of neurodegenerative disease

patients. The model prediction of a decrease in mitochondria

content as the concentration of protein aggregates increases agrees

with the experimental observation of a lower content of

mitochondria in the neurons of Alzheimer’s [10,33] and

Huntington’s [11] patients. Higher lactate levels have been

observed in certain brain regions of Huntington’s disease patients

compared to normal controls [22,23], supporting the model

prediction of lactate production in Phase 3. The empirical

evidence indicates that healthy, mature, non-starved brains take

up ammonia [24] while the brains of Alzheimer patients release

ammonia [24,25], supporting the model prediction of a transition

from uptake (Phase 1) to excretion of ammonia (Phase 2 and 3).

The in silico predictions are also a motivation for further

experimental work. According to our analysis the switch from

ammonia uptake to ammonia excretion in Phase 2 precedes the

switch from lactate uptake to lactate excretion in Phase 3. This

prediction points to measurements of ammonia levels as an earlier

indicator of neurodegeneration than lactate levels. It also remains

to be verified whether the neurons follow the metabolic switches

Phase 1 R Phase 2 R Phase 3 as the neuronal activity is

increased.

Materials and Methods

Model description
As starting point, we utilize a genome-scale metabolic recon-

struction of a generic human cell [27] that includes most

biochemical reactions catalyzed by enzymes encoded in the

human genome. We add auxiliary reactions to represent nutrient

uptake, excretion of metabolic byproducts, basal ATP demand

needed for cell maintenance, basal rate of protein degradation,

basal rate of RNA degradation, and synthesis of cell biomass

components (proteins, lipids, RNA and DNA) (Table S1 in [26],).

We assume that the cell is in a steady state where the production

and consumption of every metabolite and macromolecules

balances, known as the flux balance constraint [27]. We use Smi

to denote the stoichiometric coefficient of metabolite m in reaction

i. We use fi to denote the steady state reaction rate (flux) of the ith

reaction in the metabolic network, where all reversible reactions

are represented by a forward and backward rate, respectively.

Reactions are divided into nutrient import reactions (RI), reactions

taking place outside the mitochondria (RnM) and reactions taking

place in the mitochondria (RM). We use wc to denote the relative

cell volume fraction occupied by the cth cellular compartment,

where a compartment represents the overall contribution of

macromolecules of certain type (e.g., ribosomes) or of certain cell

organelle (e.g., mitochondria). Specifically, here we consider

proteins that do not form part of enzyme complexes or ribosomes

(P0), all metabolic enzymes catalyzing reactions outside the

mitochondria (EnM), all metabolic enzymes catalyzing reactions

in the mitochondria (EM), ribosomes (R), and mitochondria (M).

We assume the energy demand fATP and the total relative volume

fraction occupied by macromolecules and organelles (wmax) are

known and are given as input parameters of the model. Finally, we

estimate the metabolic fluxes and compartment densities as the

solution of the following optimization problem:

Find the fi and wc that minimize the sum of nutrient import costs

X

i[RI

cifi ð1Þ

subject to the metabolic constraints: flux balance constraints

Figure 4. Phase diagram. Predicted metabolic phases as a function
of the concentration of protein aggregates and the energy demand.
The symbols represent energy demands where, for 50% of the kinetic
parameters choices, the glucose uptake starts increasing from zero
(circles), the lactate exchange switch from uptake to excretion (squares)
and the maximum attainable ATP demand (diamons), as a function of
the concentration of protein aggregates. The dashed, solid and dotted
lines represent the energy demands where in 5%, 50% and 95% of the
kinetic parameter choices the event specified by the corresponding
symbol was satisfied, after linear fits to the simulation points.
doi:10.1371/journal.pone.0063822.g004
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X

i

Smifi~0 ð2Þ

minimum/maximum flux constraints

ni,minƒfiƒni,max ð3Þ

minimum/maximum volume fraction constraints

0ƒwcƒwmax ð4Þ

molecular crowding constraints

P
i[RnM

aifiƒwEnM

P
i[RM

aif ƒwM

aM,ATP

P
i[RMjSATP,iw0

SATP,ifiƒwM

aRfprotein synthesisƒwR

wP0zwEnMzwRzwMƒwmax

ð5Þ

where ci is the nutrient import cost associated with the uptake

reaction i, ai = vi/keff,i are the crowding coefficients of metabolic

enzymes (enzyme molar volume/enzyme effective turnover)[34],

aR = vR/kR is the ribosome crowding coefficient (ribosome molar

volume/protein synthesis rate per ribosome), and aM,ATP = vs,M/rM
the crowding coefficient of mitochondria ATP generation (ATP

synthesis rate per mitochondria mass/mitochondria specific

volume) [35,36].

Nutrient import costs
We assume that the cost of importing molecules is proportional

to their size and use the molecular weight as a surrogate for size.

Within this approximation the import cost ci is equal to the

molecular weight of the molecule imported in the auxiliary uptake

reaction i (Table S1 in [26]).

Kinetic parameters
The effective turnover numbers keff,i, quantify the reaction rate

per enzyme molecule. For example, for an irreversible single

substrate reaction satisfying Michaelis-Menten kinetics, keff = kS/

(K+S), where k is the enzyme turnover number, K the half-

saturation concentration and S the substrate concentration. The

turnover numbers of some human enzymes are reported in the

BRENDA database [37], February 2010 release. More precisely,

the BRENDA database was downloaded and parsed for human

enzymes with reported turnover numbers. For some enzymes

more than one turnover value was reported and in such cases we

took the average between them. They have a typical value of 10

sec21 and a significant variation from 1 to 100 sec21 (Table S1).

However, for most reactions we do not know the turnover

number, the kinetic model, or the metabolite concentrations,

impeding us to estimate keff. To cope with this indeterminacy we

performed a sampling strategy, whereby the keff,i were sampled

from a reasonable range of values, and then focused on the

predicted average behavior and 90% confidence intervals (see

Sensitivity analysis below).

Crowding coefficients
Dividing the mitochondrium specific volume (3.15 mL/g in

mammalian liver [38] and 2.6 mL/g in muscle [39]) by the rate of

ATP production per mitochondrial mass (0.1–1.0 mmol ATP/

min/g [40,41,42]) we obtain aM values between 0.0026 to

0.032 min/mM. Except when specified, we use the median

0.017 min/mM. Dividing the ribosome molar volume

(vR = 4,000 nm366.02 1023/mol = 2.4 L/mmol) by the rate of

protein synthesis per ribosome (0.67 proteins/min [43]) we obtain

aR = 3.6 min/mM. The enzyme crowding coefficients were

estimated as ai = vE/ki. Multiplying the average molecular weight

of human enzymes (10,6843 g/mol) by the enzymes specific

volume (approximated by the specific volume of spherical proteins,

0.79 mL/g [44]) we obtain an estimated enzymes molar volume of

vE = 0.084 L/mmol.

Macromolecular composition
Proteins were divided into three pools: ribosomal-, components

of metabolic enzyme complexes-, and non-metabolic proteins.

Each ribosome contributes to nPR = 82 proteins/ribosome (49 in

the 60S and 33 in the 40S subunits [45]). The ribosomal protein

concentration was computed as PR = nPRwR/vR. Each enzyme

contributes with nPE = 2.6 proteins in average, estimated as the

average enzyme molecular weight (10,6843 g/mol, reported

above) divided by the median molecular weight of a human

protein (40,835 g/mol). The median molecular weight of a human

protein was estimated from the median protein length (355 amino

acids [46]) and the typical amino acid composition [31]. The

enzyme related protein concentration was computed as PE =

SinPEfi/ki. The concentration of non-metabolic proteins was

estimated as 85% (10% metabolic enzymes and 5% ribosomal

protein [46]) of the reported total protein content per cell dry

weight (0.018 mmol/g DW [31]), i.e. 0.015 mmol/g DW. The

lipids, DNA and RNA composition were estimated by their

relative abundance in a generic mammalian cell [31]. The

abundance per cell dry weight were converted to concentrations

after dividing by the typical cell specific volume 4.3 mL/g [47].

This resulted in a concentration of non-metabolic protein of

P0 = 3 mM. The maximum macromolecular density of human

cells in the absence of osmotic stress is around wmax = 40% [48].

Maintenance parameters
The ATP production rate necessary for cell maintenance is

1.55 mmol ATP/g DW/h [31]. The basal protein degradation

rate was set to kD = 0.01/h [49]. The basal rate of RNA

degradation was fixed to 0.085 per hour, estimated as the average

degradation rate of human mRNAs [50].

Flux balance for the protein content
The flux balance equation for proteins (equation (2) with

m = proteins) is formulated as follows. We account for three major

categories, proteins not associated with metabolism, proteins that

are components of enzyme complexes, and ribosomal proteins,

with their concentrations (moles/cell volume) denoted by P0, PE,

and PR, respectively. In non-proliferating cells, these concentra-

tions will decrease at a rate kD(P0+PE+PR). The total concentration

of proteins in enzyme complexes can be estimated as PE =

nPEE = nPESifi/keff,i, where nPE is the average number of proteins in

an enzyme complex (about 2.4) and E is the total concentration of

metabolic enzymes. Similarly, PR = nPRwR/vR, where nPR is the

number of proteins in a ribosome (82 for the 80S ribosomes) and

wR/vR is the concentration of ribosomes. Putting all these elements

together, the balance between protein turnover and synthesis

implies fProtein_sysnthesis-kD[P0+ nPESi(fi/keff,i) + (nPR/vR)wR] = 0.

Metabolic States of Neurons with Aggregates
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Simulations
The optimization problem in equations (1)–(5) was solved in

Matlab, using the linear programming function linprog (File S1).

All reversible reactions were represented by an irreversible

reaction on each direction with their own effective turnover

number keff,i. Flux bounds were set to vi,min = 0 and vi,max = ‘ unless

specified. The lower and upper bounds of the ATP maintenance,

basal RNA degradation, and basal protein degradation were set to

the maintenance parameters reported above. The lower and upper

bounds of the biomass producing reaction were set to zero.

Sensitivity analysis
The turnover numbers of human enzymes k are mostly

concentrated in the range from 1 to 100 sec21 (Table S1). Based

on this data we sampled the log10(keff) values from a uniform

distribution in the range between log10(1) to log10(100). For each

specified condition we run 100 simulations. On each simulation,

for each reaction, a value of keff,i is extracted from the distribution

described above. With this set of keff,i parameters we then solve the

optimization problem (1)–(5) and obtain estimates for the reaction

rates. Because the keff,i are real value random numbers, the solution

of the linear optimization problem is unique for each set of kinetic

parameters. Based on the 100 simulations we finally estimate the

median and 90% confident intervals for the rate of each reaction.

100 simulations were proven to be sufficient to capture the overall

range of behavior, since running 1,000 simulations did not result

in any significant change of the flux distributions. Specifically, for a

given ATP demand and a give reaction, we have performed a

Kolmogorov-Smirnov test to determine whether the flux distribu-

tion as obtained from 100 kinetic parameter sets is statistical

equivalent to that obtained using 1,000 kinetic parameter sets. We

performed this test for a protein aggregate density of P = 3 mM

and different ATP demands. Given that we performed this test for

thousands of reactions and to correct for multiple hypothesis tests,

we set 0.005 = 0.05/1,000 as the threshold to call statistical

significance. In all cases the hypothesis that the distributions are

equivalent (p.0.005) was satisfied, indicating that the flux

distributions obtained for 100 kinetic parameter sets are equivalent

o that for 1,000 parameter sets. Therefore, 100 kinetic parameter

sets is sufficient to have a reasonable exploration of the flux

distribution. The results of this statistical test are reported in the

Table S2.

Supporting Information

Table S1 Turnover numbers of selected human en-
zymes.

(XLS)

Table S2 Sensitivity analysis. The metabolic flux predictions

are dependent on the choice of kinetic parameters. For each

reaction, we determined its flux distribution in 100 kinetic

parameter sets or 1,000 parameters sets. This table reports the

mean flux of each reaction over 100 kinetic parameter sets and the

probability that the flux distribution as obtained using 100 kinetic

parameters is different from that using 1,000 kinetic parameters.

Values above 0.05 indicate that the null hypothesis is correct, i.e.

the distributions are similar and, therefore, 100 kinetic parameter

sets is sufficient.

(XLS)

File S1 Matlab code to run the metabolic model
reported here.

(ZIP)
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