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INTRODUCTION

In clinical studies, patients are often classified into low- and 
high-risk groups based on prognostic factors. For example, 
serum creatinine level might be an important prognostic fac-
tor for rejection after renal transplantation. If a patient has no 

acute rejection and a low serum creatinine level for six months 
after transplantation, administered steroids are often with-
drawn. A cutpoint value of 2.0 (unit: mg/dL) is commonly used 
as a threshold for serum creatinine to make this clinical deci-
sion. In this case, patients with a serum creatinine level less 
than or equal to 2.0 could be classified into the low-risk group 
and those with level greater than 2.0 into the high-risk group. 

When an event of interest is survival time, one of the most 
popular procedures is to minimize the p value associated with 
the log-rank statistic. A considerable amount of work has dealt 
with censored outcomes based on a maximally selected linear 
rank statistic.1-5 These methods can be applied to situations 
with only one type of event; however, patients may experience 
several types of events during follow up, which may compel an 
analysis with the competing risks (CR) framework. Woo, et al.6 
proposed a method to determine a cutpoint value of a prog-
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nostic factor on censored outcomes in the presence of CR. 
They also proposed a maximally selected Gray’s test statistic7,8 
for testing whether there is an association between the event 
of interest and the prognostic factor, and approximated the as-
ymptotic distribution using the arguments.4,9 However, it 
turned out that the test procedure was conservative under 
moderate to heavy censoring.6 In this article, we propose test 
statistics to circumvent these shortcomings. 

This article is organized in the following manner. We first 
propose a cutpoint estimator for a prognostic factor that pro-
duces the largest difference in the event of interest between 
individuals in low- and high-risk groups under a CR frame-
work. Two different procedures are proposed to test whether 
an association between the event of interest and the prognos-
tic factor is statistically significant at the estimated cutpoint of 
the prognostic factor. Simulations are conducted to investigate 
the performance of the cutpoint estimator in terms of bias and 
precision and the efficiency of the proposed tests in terms of 
power. We also analyze lung cancer data collected from Sam-
sung Seoul Hospital in Korea to illustrate our proposed meth-
odologies. Finally, brief discussions are provided. 

MATERIALS AND METHODS

Materials
From September 1, 1991 to December 31, 2005, 758 lung can-
cer patients underwent tumor removal surgery at Samsung 
Medical Center in Korea. This study was conducted over more 
than 16 years and the observed follow-up times ranged from 
0.3 to 195 months. In this study, relapse after the surgical pro-
cess corresponds to the event of interest, and death corre-
sponds to a CR. Among the patients, 580 relapsed (76.5%), 65 
died without relapse (8.6%), and 113 were censored (14.9%). 
The prognostic factor was tumor size (unit: cm) at surgery, 
which ranged from 0 to 19. A box plot of tumor size with the 
five numbers is displayed in Fig. 1. Moreover, summary statis-
tics of time to event occurrence and tumor size are presented 
in Table 1 depending on the event type, such as censoring, re-
lapse, or death. 

Models and notations
Let X, Y, and C be the time of the event of interest, the time of 
CR, and a censoring time, respectively. Let δ=1 if the event of 
interest occurred, 2 if the CR occurred, and 0 if censored. Let 

be observed data, where Zi is a continuous prognostic factor. 
Suppose that 

are the ordered distinct times at which the event of interest 
occurs and that 

is the set of labels of subjects that fail at t(u), u=1, 2, …, m. In ad-
dition, suppose that 

is the set of labels of subjects censored or failed due to CR in 
the interval [t(u), t(u+1)), u=0, 1, …, m. 

For a fixed value of μ, set g=1 if Z≤μ and 1 otherwise. Let 
dg,u(μ) and rg,u(μ) denote the number of subjects to whom the 
event of interest occurs at t(u) and the number of subjects who 
are at risk up to time t(u) in group g, respectively. Let 
ru=r1,u(μ)+r2,u(μ). Let Fg,μ(t) be the cumulative incidence func-
tion (CIF) for the event of interest and Sg,μ(t) be the survival 
function of being free from any event at t in group g, respec-
tively. The estimated CIF8 of Fg,μ(t) is given by

Table 1. Summary Statistics of Time to Event Occurrence and Tumor Size Depending on the Event Type

Event type Frequency 
Tumor size (cm) Time (months) to event occurrence

Mean Median SD IQR Mean Median SD IQR  
  Censoring 113 1.78 1.60 1.287 1.50 125.4 126.0 38.4 66.0  
  Relapse 580 3.65 3.25 2.120 2.00 25.1 16.4 25.2 25.6  
  Death 65 2.37 2.10 1.423 1.60 48.4 38.0 39.2 36.0  
SD, standard deviation; IQR, interquartile range.
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Fig. 1. Box plot of tumor size with the five numbers.
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where Ŝg,μ(t) is the Kaplan-Meier estimator for Sg,μ(t).10 Define

as a correction factor at t(u) in group g. Let r̃g,u(μ)=wg,u(μ)rg,u(μ) 
and r̃u(μ)=r̃1,u(μ)+r̃2,u(μ). Define the score for a subject in 
D(t(u)) at t(u) as 

where Ii,g(μ)=1 if subject i is a member of group g and 0 other-
wise. Also, define the score for a subject in C(t(u)) at t(u) as 

for l' C(t(u)). We call these scores the Gray-statistic-type 
scores and denote āμ by their average score.

Maximally selected rank statistics
The testing problem of interest is the independence of X and Z, 
setting up the null hypothesis as 

                                 (1)

for all t (0,∞) and all cutpoints μ in the prognostic factor Z. It 
was showed that, for a fixed value of μ, the Gray’s test statis-
tic7,8 for testing the hypothesis of (1) is equivalent to a linear 
rank statistic,6 

Let HZ(μ)=n-1∑n
i=1I{Zi≤μ} denote the empirical distribution 

function of the prognostic factor Z. Let mμ=nHZ(μ) and nμ=n–
mμ. Following the arguments,1,2,5 under H0, given the scores, 
the expectation and the variance of Lμ are 

and 

Then, the standardized statistic of Lμ is defined as 

Under H0, Tμ is asymptotically normally distributed using the 
arguments.11

Let ξ(є,Z)=min {μ:Hz(μ)≥є}. We restrict the possible cut-
points to an interval [ξ(є1,Z),ξ(є2,Z)] with 0<є1<є2<1. In the 
same fashion,1,2,5 we define a cutpoint estimator μ̂(є1,є2) as the 
value of μ that yields the maximum of the absolute of Tμ, i.e., 

In addition, we define a maximally selected rank statistic as 

From the arguments,1,2,5 the asymptotic distribution of Q(є1,є2) 
is equivalent to the distribution of the supremum of a stan-
dardized Brownian bridge. Thus, the approximation12 under 
H0 gives

    (2)

where ϕ(.) denotes a standard normal density. 
However, as shown in Table 2, the testing procedure based 

on the approximation of (2) seems to be conservative. Instead, 
we propose a permutation test based on B permuted samples 
by permutingthe observed values of the prognostic factor Z. 
To be specific, denote Qb(є1,є2)  by the bth(b=1, 2, …, B) permut-
ed value of Q(є1,є2)  based on 

{Db,i=(Ti, δi, Zbi): (b1, b2, …, bn) Pn},

where Pn is a set of all permutations of integers 1 to n. Suppose 
that the value of Q(є1,є2) based on the observed data set {Di: 
i=1, 2, …, n} is q0. Then, the probability in the left-hand side of 
(2) is empirically determined by 

called the empirical p value corresponding to the observed 
value of q0. 

RESULTS

Simulation studies
We performed simulations to investigate the finite-sample 
performance of the proposed methods in terms of bias and 
standard deviation (SD) of the cutpoint estimator and the em-
pirical power of the maximally selected test statistics. We gener-
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ated a time to the event of interest (X) and time to a CR (Y) us-
ing Gumbel’s bivariate exponential distribution13,14 with 
degree of dependency α set as 0 and 0.3. We generated a non-
informative censoring time C from an exponential distribu-
tion with a hazard rate of λ(>0), which was determined to sat-
isfy P(C<X >Y)=p, where p denotes the censoring fraction. We 
set p=0 and 0.3. We also generated the prognostic factor Z from 
a uniform distribution U(0,1) and set the true cutpoint value μ 
as 0.5. We set є1=0.1 and є2=0.9. The effect size θ=exp(β) was 
the relative risk between the two groups of patients, where Z 
was greater than or less than or equal to μ. We set β as 0, 1, 1.5, 
2, and 3: β=0 corresponded to the null hypothesis and β=1, 1.5, 
2, and 3 corresponded to the alternative hypotheses. We con-
sidered four combinations of α and p: (α,p)=(0,0), (0,0.3), 
(0.3,0), (0.3,0.3). We performed 500 replications for each con-
figuration of α and p with sample sizes of 50, 100, and 200. We 
also permuted each sample 250 times to obtain the empirical 
null distribution of Q(є1,є2). Fig. 2 depicts the empirical p val-
ues of the proposed test Q(є1,є2)  based on a simulated sample 
against the number b of permutation times for each combina-
tion of α and p under H0: β=0. As shown in Fig. 2, the number 
B=250 of permutation times was chosen as acceptable regard-
less of the sample size and the combinations of α and p. See the 
work6 for details of the data generation procedures. Fig. 3 de-
picts the empirical distribution function of μ̂ based on 2000 
replications, with the sample size of 100 for each combination 
of α and p when β=0, 1, 1.5, 2, and 3. As expected, regardless of 

the combinations of α and p, the distribution of μ̂ is centered 
around the true cutpoint value 0.5 of μ as β increases from 0 to 3. 

Table 2 displays the proportion of CR, the bias (Bias) and 
SD of the cutpoint estimator μ̂, and the approximated (A.Pow) 
and permutation-based (P.Pow) power of the proposed test 
statistic Q(є1,є2). These are based on 500 replications and 250 
permutations for each combination of α and p when n=50, 
100, and 200. As expected, as β increases, the SD of μ̂ decreas-
es gradually, and both A.Pow and P.Pow converge to 1 regard-
less of the combination of α and p and sample size n. For a 
fixed value of β, as n increases, both Bias and the SD of μ̂ de-
crease; also, both A.Pow and P.Pow increase for any combina-
tion of α and p. The permutation-based test (P.Pow), included 
in the interval (0.031,0.069), satisfies a significance level of 0.05 
for most cases, while the approximated test (A.Pow ) is very 
conservative. Furthermore, P.Pow is larger than A.Pow regard-
less of the combination of α and p and sample size n.  

Real data analysis
Based on the proposed test statistic Q(є1,є2), we split the pa-
tients into two groups for relapse, a high-risk group and a low-
risk group, to apply different treatments to each group. We set 
є1 and є2 as 0.1 and 0.9, respectively. As shown in Table 3, at the 
first split of 758 patients, the criterion was tumor size of 1.8, and 
the CIFs for relapse of the two groups were different (p value 
<0.001). We further investigated whether the patients within 
each subgroup were homogeneous in experiencing relapse 

Table 2. The Proportion of CR, BIAS, and SD of the Cutpoint Estimator μ̂ and the A.Pow and P.Pow Power of the Proposed Test Statistic Q (є1,є2) for Each 
Combination α of p and When n=50, 100, and 200

α p β CR 
n=50 n=100 n=200 

BIAS SD A.Pow P.Pow BIAS SD A.Pow P.Pow BIAS SD A.Pow P.Pow  

0 

0 

0 0.50 -0.023 0.26 0.018 0.062 0.003 0.27 0.038 0.054 -0.008 0.27 0.058 0.076  
1 0.38 -0.006 0.17 0.352 0.480 -0.007 0.13 0.660 0.738 -0.002 0.09 0.948 0.956  

1.5 0.34 -0.024 0.12 0.782 0.854 -0.011 0.06 0.984 0.988 -0.004 0.03 1 1  
2 0.30 -0.022 0.06 0.976 0.986 -0.012 0.03 1 1 -0.006 0.02 1 1  
3 0.27 -0.032 0.05 1 1 -0.013 0.02 1 1 -0.006 0.01 1 1  

0.3 

0 0.35 0.002 0.27 0.020 0.054 -0.003 0.27 0.030 0.040 -0.002 0.28 0.030 0.050  
1 0.26 0.020 0.17 0.312 0.438 -0.007 0.13 0.602 0.704 0.005 0.08 0.938 0.960  

1.5 0.22 -0.007 0.12 0.638 0.746 -0.006 0.07 0.954 0.972 -0.001 0.04 1 1  
2 0.19 -0.013 0.07 0.934 0.968 -0.009 0.04 1 1 -0.003 0.02 1 1  
3 0.14 -0.019 0.04 0.998 1 -0.011 0.02 1 1 -0.005 0.01 1 1  

0.3 

0 

0 0.50 -0.016 0.27 0.018 0.046 -0.017 0.27 0.032 0.062 0.001 0.27 0.030 0.042  
1 0.38 -0.009 0.18 0.316 0.456 0.012 0.12 0.672 0.728 0.002 0.08 0.928 0.944  

1.5 0.33 -0.029 0.11 0.784 0.860 -0.012 0.06 0.982 0.986 -0.004 0.04 1 1  
2 0.30 -0.026 0.05 0.970 0.990 -0.011 0.03 1 1 -0.006 0.02 1 1  
3 0.27 -0.026 0.03 1 1 -0.014 0.02 1 1 -0.006 0.01 1 1  

0.3 

0 0.35 -0.010 0.27 0.024 0.032 -0.011 0.27 0.032 0.040 -0.019 0.28 0.032 0.054  
1 0.26 0.008 0.18 0.254 0.400 0.014 0.14 0.596 0.646 0.003 0.08 0.930 0.954  

1.5 0.21 -0.012 0.12 0.702 0.790 -0.007 0.08 0.942 0.956 -0.005 0.04 1 1  
2 0.19 -0.021 0.08 0.934 0.966 -0.008 0.04 1 1 -0.003 0.02 1 1  
3 0.14 -0.020 0.04 1 1 -0.010 0.02 1 1 -0.005 0.01 1 1  

CR, competing risk; BIAS, bias; SD, standard deviation; A.Pow, approximated power; P.Pow, permutation-based power.
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after surgery in terms of Q(є1,є2). The group with a tumor size 
less than or equal to 1.8 was statistically homogeneous (p val-
ue=0.096), while the group having tumor size greater than 1.8 
was not homogeneous (p value<0.001). In the same way, we 
applied a binary split of only the group with a tumor size great-
er than 1.8. The next split criterion was a tumor size of 3, and 
only the group with a tumor size greater than 3 was not homo-
geneous (p value=0.020). The third split was 6.5, and both 
groups, tumor size less than or equal to 6.5 or greater than 6.5, 
were homogeneous with p values of 0.530 and 0.957, respec-
tively. The top left panel of Fig. 4 depicts the standardized lin-
ear rank statistics Tμ against tumor size (solid line). The 1st, 
10th, 90th, and 99th quantile points of tumor size along with 
the estimated cutpoint μ̂ of 1.8 are indicated on the axis of tu-
mor size with symbols of black square, black circle, black tri-
angle, and black diamond, respectively. In the top right panel, 
the CIFs of two groups, tumor size greater than 1.8 (dashed 
line) and less than or equal to 1.8 (solid line), are displayed. In 
the same way, plots in the second and third rows of Fig. 4 are 
respectively drawn with the subgroups of 594 patients having 
tumor size greater than 1.8 and of 334 patients having tumor 
size greater than 3. In summary, we could classify the patients 
with tumor size less than or equal to 1.8 into a low-risk group, 
while the patients included in a high-risk group (i.e., having 

tumor size more than 1.8) could be further classified into three 
subgroups, lowest, moderate, and highest high-risk groups, 
depending on tumor sizes at surgery of 1.8 to 3, 3 to 6.5, and 
over 6.5, respectively. 

DISCUSSION

Based on a maximally selected linear rank statistic, we estimat-
ed a cutpoint for a continuous prognostic factor that produced 
the largest difference in the event of interest between individu-
als in high- and low-risk groups in a CR framework. Approxi-
mation-based and permutation-based tests were proposed to 
test an association between the event of interest and the prog-
nostic factor at the estimated cutpoint of the prognostic factor. 
The permutation-based test procedure was proposed to over-
come the conservativeness of the test based on the approxima-
tion of the asymptotic distribution of the maximally selected 
rank statistic. Simulation results showed that the SD of the esti-
mated cutpoint decreased as the association between the event 
of interest and the prognostic factor became stronger, regard-
less of the combination of degree of dependency between two 
CR and a censoring fraction. Moreover, most cases showed 
that the permutation-based test satisfied a significance level 
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Table 3. Split Criterion of the Covariate Size, the Number of Patients of Each Node, the Estimated Cutpoint μ̂, the Proposed Test Statistic Q (є1,є2), and 
Approximated and Permutation-Based p values

   Split n CR Censoring μ̂ Q (є1,є2)
p value

Approximated Permuted  
758 0.09 0.10 1.8 10.66 <0.001   <0.001

Size ≤1.8 164 0.15 0.43 1.4 2.39 0.238  0.096  
Size >1.8 594 0.07 0.07 3 5.19  <0.001   <0.001
Size ≤3 260 0.10 0.12 2.7 0.77 0.854 0.894  
Size >3 334 0.04 0.04 6.5 3.00 0.057 0.020  
Size ≤6.5 292 0.05 0.04 5.5 1.55 0.790 0.530  
Size >6.5 42 0 0.02 7 0.75 0.835 0.957  
CR, competing risk.

of 0.05, while the approximated test was very conservative: the 
powers of the former were larger than those of the latter. We 
applied our method to data collected from a study on lung 
cancer patients. We used tumor size prior to surgery for classify-
ing the patients into two groups (low and high risks for relapse). 
Based on the results, the optimal cutpoint value of tumor size 
(unit: cm) was 1.8 with є1=0.1 and є2=0.9. In addition, the 
times to relapse between subgroups of patients with tumor 
size less than or equal to 1.8 (low risk of relapse) and more 
than 1.8 (high risk of relapse) were significantly different (p 
value <0.001). The patients with tumor size over 1.8 could also 

be further classified into three subgroups: those with tumor 
size of 1.8 to 3 (lowest high risk of relapse), 3 to 6.5 (moderate 
high risk of relapse), and over 6.5 (highest high risk of relapse). 

Following the argument,7 we also defined the risk set of the 
ith subject at time t as

(called an adjusted method). However, since the process Y i
G(t) 

excludes the contribution of the subjects who are censored by 
an earlier occurrence of the competing risks than an event of 
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interest, as suggested by a referee, we could replace this pro-
cess by the following process,15

 (3)

Here, Ĝ(t) is the Kaplan-Meier estimator of the censoring 
survival function G(t)=P(C>t).10 It is called Ĝ(t-)/Ĝ((Xi >Yi )-) in 
the second term of (3) the inverse probability of censoring 
weighing (called an IPCW method). In the future, both the 
adjusted and IPCW methods will be compared with extensive 
simulations. Furthermore, our proposed approach can be ex-
tended to cases of CR with multiple prognostic factors. As a 
matter of fact, for the survival data with K(≥2) prognostic fac-
tors, Lausen, et al.5 proposed an adjusted minimal p-value ap-
proach. However, under the CR frameworks, it may not be 
straightforward to derive analytically the asymptotic distribu-
tion of the minimum of Q(k;є1,є2) over k(k=1, 2, …, K), where 
Q(k;є1,є2) denotes the value of Q(є1,є2) corresponding to the kth 
prognostic factor. As an alternative, an empirical test analo-
gous to the permutation test presented in the “maximally se-
lected rank statistics” section would be applied to the CR data 
with multiple prognostic factors. 
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Fig. 4. Plot of standardized linear rank statistic and cumulative incidence function (CIFs) of two groups classified depending on the estimated cutpoint. 
Left panel: standardized linear rank statistic Tμ against tumor size (solid line), estimated cutpoint (dashed line), and the 1st, 10th, 90th, and 99th quantile 
points of tumor size of each sub-sample (black square, black circle, black triangle, and black diamond in order). Right panel: CIF for the event time of 
interest of two groups, ≤ and > μ̂. 
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