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Abstract

Commentary

IntroductIon

Without question, the field of genomics disrupted the way science 
is done. Innovative methods to sequence DNA at a relatively 
low cost and high throughput made previously cost‑prohibitive 
studies, such as whole genome sequencing, almost commonplace. 
Genetic epidemiology migrated from chip‑based microarray 
methods that served to estimate genome diversity to measuring 
it at base‑pair resolution. This led to more fine mapping that 
focused on identifying the causative rare variants as opposed to 
surrogate markers that happened to be in linkage disequilibrium 
with a common variant. This level of resolution, accuracy, and 
value from sequencing technologies has made sequencing the de 
facto standard in both research and clinical contexts. Discoveries 
are now commonly made by sequencing the entire genome of 
patients, rather than only a handful of candidate genes. In <2 
decades, the cost of a whole genome has dropped from $3B to 
nearly $1000. Innovation and scale continue to make sequencing 
attractive for the foreseeable future, particularly in the field of 
molecular pathology. At the Mayo Clinic alone, about 50 new 
genomics tests are developed annually.

Excitingly, advances in technology in the digital era are also 
driving the field of digital pathology forward at a pace to rival 
the genomics boom. Whereas genomics disrupted the status quo 
for genetic sequencing, digital pathology will be just as paradigm 
shifting (if not more so). For the most part, pathology has not 

significantly changed in 100 years. Diagnoses are made by highly 
trained medical experts through qualitative or semi‑quantitative 
descriptions on stained tissue sections mounted on glass slides 
and observed under light microscopy. Looking forward, many 
have recognized the need to move to a digital infrastructure.[1‑3] 
This emerging field of digital pathology has shown tremendous 
benefits for organization, analysis, sharing, teaching, telepathology, 
quantitative and reproducible diagnoses, and others.

Regulatory challenges have limited the adoption in the 
United States but have been successfully overcome in 
Canada and Europe. However, in April 2017, in a landmark 
achievement, the Philips IntelliSite whole slide imaging 
system was granted the Food and Drug Administration (FDA) 
approval for the review and interpretation of digital surgical 
pathology slides.[4] In this heroic effort, Mukhopadhyay et al. 
conducted 2000 surgical pathology cases using tissue from 
multiple anatomic sites to show the safety and efficacy of a 
whole slide imaging (WSI) platform which was equivalent 
to light microscopy.[5] Now that the threshold for comparison 
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(a.k.a. predicate devices) has been established, the FDA has 
now classified WSI systems as a Class II medical device. This 
somewhat simplifies the process for comparable devices to 
be approved. It is this classification that will spur significant 
investment by academia and industry to adopt, expand, and 
innovate in a digital pathology environment. This marks the 
beginning of an arms race in digital pathology to compete for 
the 3–8 billion dollar market.[6]

So why compare and contrast digital pathology and genomics? 
Most comparisons for the digitization of pathology are made to 
radiology,[7] where digitization was necessary given the nature 
of the data. Here, we posit that genomics is also a suitable 
corollary for digital pathology due to similarities in data size, 
analytical complexity, and the disruptive effect it will have in 
pathology. The size of data from digital pathology such as WSI 
is actually more comparable to genomics than radiology. WSI 
are typically 1–4 GB per slide, compared to 0.08 GB for X‑ray 
images, 0.1 GB for MR, and 0.5 for computed tomography 
scans[8] compared to the typical 2 GB human genome variant 
file. The 10–100‑fold difference in data size can overwhelm 
existing compute and storage infrastructures, thus warranting as 
significant investment in computational infrastructure – much 
like what was observed in the genomics revolution. This 
infrastructure is necessary since, like genomics, analysis of 
a single hematoxylin and eosin (H&E) may require multiple 
computational assessments. For example, a whole genome 
sequence analysis may require SNV and indel detection, copy 
number variation, structural variation calling, microsatellite 
analysis, and various measures of quality control, followed 
by manual inspections of regions of interest. H&E analytics 
for WSI in breast cancer tissues may require algorithms for 
detecting nuclei, quantitative the degree of pleomorphism, 
mitosis detection, classifying lobular involution, counting 
infiltrating immune cells, etc. Finally, the explosion of genomics 
has led to a recent and ongoing struggle to interpret, manage, 
share, and exploit value for such clinical testing paradigms. 
The same can be expected for pathology as the field becomes 
a more quantitative than qualitative discipline.

As the field of bioinformatics has grown alongside genomics, 
many of the same professionals that were responsible for 
implementing genomics will be leading efforts to operationalize 
digital pathology. Many of the lessons learned from genomics 
can, therefore, be applied.

the cost of data

The significant expense can be invested to generate digital data 
from genomics and digital pathology. This section describes 
costs associated with these methods, comparing and contrasting 
the similarities and differences.

Cost is an important consideration for adopting new 
technologies: perhaps less so for major academic institutions, 
but smaller departments with limited capital much chose 
carefully about how they invest their limited resources. 
There are many definitions of cost, including acquisition 

cost (capital cost of purchasing the instrument), an operating 
cost (how much money is spent every time the instrument is 
run), interpretation cost (e.g., what analytics, people, processes 
have to be in place to understand the data from the instrument), 
storage costs, and opportunity cost (gains and losses derived 
from an instrument given a fixed set of resources). Each of 
these costs is described below.

Capital cost
The first – and perhaps the easiest to understand for administrators 
who generally approve large‑scale investments and strategies – is 
the capital cost of the instrumentation or the acquisition cost. 
DNA sequencers can have different costs according to scale. For 
instance, Illumina offers a low throughput sequencer, MiSeq, that 
produces 8 gigabytes (Gb) in a 24‑h run and a high throughput 
version, NovaSeq, produces 6 terabytes (Tb) in a 44 h run.[9] 
These instruments are roughly $99K and $985K, respectively, 
equating to $34/Gb/day for the MiSeq and $0.90/Gb/day for 
the NovaSeq. A parallel for digital pathology would be slide 
scanners. A low throughput slide scanner would be akin to a 
$25K DigiPath Motic EasyScan Pro that can digitize 80 slides 
per day, whereas a high throughput alternative would be a Leica 
Aperio AT2 (700 slides per day, $200K). Normalized by the 
amount of data generated each day, the cost of slide scanners 
are significantly lower than for sequencers, with low throughput 
being $0.86/Gb/day and high throughput being upwards of $0.78/
Gb/day (assuming a 1 Gb file size). However, the sequencers have 
the added advantage of being able to sequence a single sample 
or many thousands of samples simultaneously, depending on the 
application. Barring tissue microarray, most slides correspond to 
a single patient and single stain. Note these estimates only relate 
to the capital expense and no additional processing that needs to 
be performed on a per sample basis, which is described below.

Data acquisition cost
Aside from the instrumentation, the cost to generate data is 
more favorable for digital pathology. Sequencers have a fixed 
amount of sequencing capacity that will always be used for 
every run. The reagent cost per run is fixed, so it does not matter 
if there is 1 sample or many. In order to make DNA amenable 
to sequencing, complex molecular biology is required over 
a period of 3–5 days (depending on the protocol). Given the 
ultra‑high sensitivity of sequencing instruments, the steps 
may have to be performed in one or more different physically 
isolated rooms so as not to introduce contamination. Every time 
a sequencer is run, it cost the operator about $1000 in reagents 
for a MiSeq and $9000 for a NovaSeq. Conversely, generating 
H and E is trivial, requiring <5 h and <$5 to generate. However, 
diagnostic H and E is the standard of care for many pathology 
laboratories, so this cost is essentially free. No additional 
building spaces are needed, and the slide processing protocol 
is identical. This gives digital pathology a tremendous fiduciary 
advantage as a data generation device.

Analytical cost
One often overlooked cost  is  the analysis costs. 
Bioinformaticians, those who traditionally lead the technical 
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analysis of these applications, are basically data scientists 
with specialized domain knowledge in biology. Sequencers 
generate billions of reads that require extensive quality 
control, alignment to a reference genome, identification of 
variants, functional annotation of variants, and removing false 
positives, all of which are performed by a bioinformatician. 
While some commercial graphical user interfaces (GUI) 
do exist and claim to perform this analysis, uptake by the 
community has been limited. It is critical to have a team 
capable of explaining why a particular algorithm made a 
particular decision. As of today, digital pathology requires 
less bioinformatics support, but this is rapidly changing 
and is a principal reason to expect widespread adoption of 
digital pathology. Tools for visualizing WSI and annotation 
of regions of interest are fairly simple to use, but the real 
power of digital pathology is the advances made in artificial 
intelligence or perhaps more appropriately augmented human 
intelligence (AHI). Algorithms are capable of detecting rare 
events such as mitoses, localizing metastatic breast cancer in 
lymph nodes, and classifying skin cancer with expert level 
accuracy. It is the bioinformaticians who will be applying new 
types of AHI algorithms to clinical use cases and automating 
repetitive tasks to increase the efficiency of the laboratory. 
All digital pathology applications should consider adding 
bioinformaticians to their teams’ full-time. While increasing 
the total cost of analysis, their contribution will be invaluable 
as these advanced techniques evolve.

Storage cost
There are also costs associated with storing and accessing 
data. As stated above, sequencer can generate 8–3000 Gb 
of data per day. Assuming 1 Gb for WSI file size, a fully 
operational WSI scanner would then generate between 
80 and 700 Gb per day. Given the same capital investment 
for a sequencing instrument, 5–50 scanners could be 
purchased, leading to ~4,000 Gb per day, which is more 
data that the largest sequencer. This is not to say that the 
services these two platforms provide are interchangeable 
and rather establish an understanding between the impact of 
spending a fixed amount of capital on a particular problem 
and how that could affect data storage capacity. Storage is 
relatively inexpensive ($0.01–0.02/GB/month) but becomes 
a nontrivial expense as data are generated over time. At this 
scale, it is important to consider the need for Information 
Technology (IT) support as these experts are responsible for 
ensuring adequate disk space, data security, planning for future 
investments, and strategic cost reductions. Even if digital 
pathology adopts a “cloud‑first” data management strategy, 
there are different tiers of data storage, and this support will 
be necessary for maintaining interoperability with the cloud 
providers. It is the IT professionals who will be required to 
adhere to regulatory guidelines, institutional policies, and 
institutional best practices for data management.

Opportunity cost
Separately, one has to consider not only cost but also value. 
Data are more valuable than gold: the more you use it and the 

more you have of it, the more valuable it becomes. This is 
especially the case in the age of artificial intelligence. Highly 
curated training data are essential for discovery and validation, 
and these high‑quality datasets are necessary to develop, test, 
and refine the computational algorithms that will drive the 
field of digital pathology. Those who recognize the intrinsic 
value of data will be more likely to lead the innovation and 
practice implementations. Therefore, the opportunity cost of 
not implementing and innovating a digital pathology is high.

Lessons Learned from GenomIcs that Inform 
dIGItaL PathoLoGy Growth

There are at least five significant “lessons learned” during the 
growth of genomics that are well suited to be transferred to 
digital pathology. Below, concrete examples provide a roadmap 
for success if realized sooner rather than later.

Partnership, teamwork, and innovation
In genomics, it did not take long for users to generate data a 
faster rate than they could interpret it. Scientists who were 
early adopters quickly realized that the data did not fit into 
Excel spreadsheets. Laboratories did not typically have the 
command‑line skills or computational and mathematical 
backgrounds to understand the data. Out of necessity, a 
cadre of bioinformaticians evolved from either the computer 
science or biology discipline. These specialists were in high 
demand to develop custom algorithms so that investigators 
could ask biologically relevant questions about the data, 
manage the growth of data, convert from one file format to 
another, etc. This led to the tongue in cheek label of “data 
janitors”[10] and the myth of “push‑button bioinformatics.”[11] 
While it may seem innocent, these stigmas have been a 
detriment to the informatics community. Informaticians 
became viewed as support staff rather than collaborators 
even though they may be responsible for increasing the value 
of the data. Beyond the simple translation of mapping reads 
and calling small genetic variations, bioinformaticians built 
algorithms to detect microsatellite instability, copy number 
variations, translocations, inversions, as well as new ways to 
visualize and integrate data. Bioinformaticians bring unique 
expertise to understanding how computation can be used to 
solve clinically relevant problems and should be treated as 
equal collaborators and not just “data janitors.” Now, more 
than ever, the contributions made by informatics professionals 
are being given equal weight in decision-making, formulating 
and writing research grants, and directing large research 
programs.

Digital pathology will benefit more from bioinformaticians 
if their value is appreciated at a faster pace than it was in 
genomics. After all, bioinformaticians will be the ones 
building new slide viewers, new algorithms to count nuclei, 
and integrating imaging and nonimaging data for decision 
support. The sooner their value is recognized, the sooner more 
innovation will occur.
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Competition spurs innovation
One way to spur innovations is through the organization 
of “challenges” or “code‑a‑thons.” By providing access to 
labeled training (and unlabeled test data), challenge organizers 
encourage participation through either monetary compensation 
or “bragging rights” in a particular domain. In genomics, 
a multinational collaboration was undertaken to produce 
a ground truth set that was previously unthinkable. The 
genome in a bottle consortium,[12] led by the National Institute 
of Standards and Technology, extensively characterized a 
commonly used set of DNA samples as well as established a 
reference material to which all manners of genome sequencing 
analyses could be compared. By establishing a ground truth 
for reference materials that were available to the community, 
a framework was established for comparing accuracy of 
sequencing modalities and informatics methods.[13] This work 
was later extended by the FDA as part of their Precision FDA 
Challenge series.[14] Submitters and their scores are publicly 
displayed relative to the evaluation data, allowing competitors 
and collaborators to compare accuracy of products side‑by‑side 
for a particular task.

Similar competitions have also been held for digital pathology. 
Exemplary examples of successful competitions include 
the Assessment of Mitosis Detection Algorithms,[15] Tumor 
Proliferation Assessment Challenge,[16] and CAMELYON 
challenges.[17] The CAMELYON challenge was an especially 
interesting competition whose aim was to identify all pixels 
containing metastatic breast cancer from a H and E‑stained 
lymph node WSI. The results of CAMELYON showed the 
accuracy of the top 5 algorithms were as accurate as an 
expert pathologist, and many were better than non‑specialist 
pathologists. This is an exciting demonstration of the potential 
of AHI at democratizing geographically local expertise since 
the algorithm could be deployed on thousands of computers 
across the world‑bringing standardized, reproducible, and 
highly accurate diagnoses to the masses.

Transparency and reproducibility
While qualitative subjective assessments in a digital 
environment are a profound move forward in the right 
direction, the real innovation in digital pathology will come 
from advances in AHI. These algorithms will be developed 
over time using the expert knowledge of disease‑specific 
pathologists. That said, the transition to quantitative assessment 
will be difficult. The expectation of AHI algorithms to improve 
diagnostic accuracy and throughput will be conditioned on 
the interpretability of the outputs. Luckily, this is an area of 
active research in the entire machine learning field, not just 
digital pathology. One such explainability model is Local 
Interpretable Model‑Agnostic Explanation.[18] Importantly, 
these explanations are not a “nice‑to‑have” but may be required 
from a regulatory standpoint.[19] It is imperative to point out 
that AHI algorithms are meant to help guide pathologists – not 
replace them. They represent another tool at the pathologist’s 
disposal to be used in the appropriate context with the 
appropriate amount of weight in their interpretation.

Another aspect to transparency is open‑source algorithms. 
Often, the ability to trust an algorithm is dependent on access 
to minute details that were used to make a decision or inference. 
An example in genomics would be whether or not duplicate 
reads were removed or flagged as this can significantly affect 
variant calling algorithms. Without computational experts to 
view the code, it becomes a black box and therefore cannot 
be improved for the use cases at hand. Some commercial 
genomics companies have managed to exist with closed source 
applications but struggle since it is highly challenging to keep 
up with the pace of discovery. For an example, the Genome 
Analysis ToolKit (GATK) started out as an open‑source project, 
gaining contributors and knowledge from the community 
of developers in genomics, and enforcing the community 
standards for input and output file formats. However, in 2015, 
the Broad Institute opted for a commercial license model,[20] 
but a swift negative reaction from the community forced a 
reversal of this decision[20,21] and is now covered by a more 
permissive BSD license. In a completely closed system, a 
bioinformatician would be unable to explore and modify the 
codebase – a common practice with open‑source software 
when faced with edge cases for a particular assay or laboratory 
process. In the digital pathology realm, this would be akin to 
the OpenSlide library[22] going to closed source. OpenSlide is 
the entry point for a number of image‑processing pipelines 
that normalize proprietary vendor image formats into a unified 
application programming interface (API) – a major boon for 
interoperability. As an open‑source library, bioinformaticians 
and programmers can more easily debug errors in code or 
add new features as the need arises. Finally, OpenSlide sets 
the expectation for future libraries that they be open as well, 
which helps not only transparency but also interoperability.

Focus on interoperability
Both genomics and digital pathology are rapidly evolving 
ecosystems. This places a considerable burden on infrastructure 
development teams who are responsible for supporting 
applications, adding new functionality, fixing bugs, etc. 
The problem can be compounded if the right architectural 
designs are not specified up front. Until recently, constructing 
genomic analysis pipelines usually meant building a monolithic 
codebase with multiple configuration options, temporary files, 
and output formats. These fragile architectures were usually 
built by bioinformaticians who were not necessarily formally 
trained in software design and good coding practices. As the 
industry has circled around standard specifications such as the 
VCF, BAM, and CRAM,[23] it has now become apparent that 
interoperability was underappreciated in the beginning. As 
new tools are developed or updated versions become available, 
informaticians are keen to put these updates in production. 
Swapping out algorithms has been made significantly easier 
through the use of formal pipeline languages such as WDL[24] 

and CWL.[25] Moreover, sharing data across institutions 
introduced other layers of complexity, which spawned the 
formation of the Global Alliance for Genomic Health (GA4GH, 
https://www.ga4 gh.org/). Significant amounts of work have 
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been centrally coordinated to standardize APIs for information 
exchange to facilitate modularity and interoperability.

These concepts of modularity in coding architecture and 
enforced adoption of industry standards could benefit more 
rapid adoption of and progress in digital pathology. OpenSlide 
is only a minor piece of this intricate puzzle. Like VCF, BAM, 
and CRAM, a standard exists for image formats: Digital 
Imaging and Communications in Medicine. In fact, a recent 
connect-a-thon seemed to solidify the industry’s resolve 
to adopt this standard[26] although changes will need to be 
made to OpenSlide to support this transition. Beyond reading 
images, standard APIs will also be needed for other aspects 
of digital pathology. For example, there are a multitude of 
whole slide annotation and visualization tools available. 
Some will be desirable for certain use cases but not others. 
What would be ideal is if developers would build more 
libraries (like OpenSlide) than full applications. This would 
ensure interoperability across platforms from slide viewing 
and annotating to APLIS integration and decision support.

Positive user experience leads to adoption
There are two main types of users to software systems: those that 
operate on the command‑line interface (CLI, e.g., bioinformaticians) 
and those that prefer a (GUI, e.g., consulting pathologists). Each 
user interface has its own challenges and demands, but a focus 
on the user experience is paramount to a software platform to be 
adopted using either interface.

In genomics, the first pieces of software developed were 
restricted to a CLI. It allowed programmers the flexibility 
to automate analyses and alter configuration parameters 
with ease. However, “help flags” may not contain sufficient 
information about how and where such parameters were used 
or how they may affect the final output. As the field evolved, 
CLI users required more extensive documentation – leading 
the adoption of entire websites (e.g., GATK) or standard 
documentation libraries (e.g., Sphinx[27] and ReadTheDocs[28]). 
Increased quality documentation allows users to have a better 
understanding for the application and leads to more adoption 
by the community.[29] At this stage, the digital pathology CLI 
landscape is underdeveloped. Few libraries are used across 
multiple projects, likely due to the lack of common standard 
formats. CLIs will likely play an integral part in adopting AHI 
algorithms, so harmonization is needed early in the process.

In digital pathology, the focus has been centered on developing 
GUIs. Development of GUIs is perhaps an even greater 
challenge than CLIs since it requires a visually appealing 
design as well as an ergonomic and functional user experience. 
While some nontraditional visualization paradigms are being 
developed (e.g., power walls[30] and virtual reality[31]), most 
GUIs are being developed for projection onto medical‑grade 
monitors.[32] This represents a significant shift in operational 
requirements on the part of the pathologist, whose tactile 
interaction with the optical microscope is replaced by the more 
traditional keyboard, mouse, and monitor. It will be imperative 
to co‑develop user‑friendly interfaces with pathologists so that 

their specific use cases can be met to minimize the discomfort 
of migrating to the digital environment.

There is, however, an intersection between CLI and GUI 
that has been quite successful in genomics: the Galaxy 
framework.[33] The aims of the Galaxy toolkit are to (1) make 
computationally complex analytics available to investigators 
with limited computational expertise, (2) construct complex, 
customizable, and reproducible workflows, and (3) publish 
those analysis to the web.[34] Importantly, the framework 
allows investigators access to all the options available 
through the CLI while abstracting away the system‑level 
administration. The Galaxy framework is currently being 
used in the “Cloud‑based Image Analysis and Processing 
Toolbox” project[35] but can easily be extended for additional 
digital pathology needs.

dIscussIon

Throughout this article, I have tried to highlight some of the 
similarities between digital pathology and genomics. However, 
there are key differences that were not discussed. For example, 
the clinical impact of genomics has proven its worth by becoming 
a dominant method in molecular pathology. The same cannot 
be said for digital pathology. Due to its relative immaturity, 
much of the work in digital pathology has been driven to satisfy 
the regulatory requirement of demonstrating equivalence to 
traditional light microscopy, rather than demonstrating improved 
clinical outcomes. Genomic technology too was once in 
infancy, and many early papers were essential to convince the 
field of its equivalency to orthogonal technologies. While not 
perfect, the corollary between genomics and digital pathology 
highlights significant opportunities for cross‑disciplinary method 
development and a chance to benefit from some of the missteps 
and delays from the past.

Given the significantly lower capital investment, less intrusive 
nature, higher quality assertions, quantitative and reproducible 
advantages, and sample acquisition costs, digital pathology 
is expected to be as disruptive and potentially more so than 
genomics. These are not the only issues that we will face as 
we cross the digital divide, but they do enable a starting point 
for discussions regarding how the community will flourish.
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