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SUMMARY

The transcription factor ATOH1 is critical for Notch-
mediated differentiation and maturation of intestinal
secretory cells. Here we identify direct targets of ATOH1 in
mouse small intestine and colon.

BACKGROUND & AIMS: The transcription factor atonal homolog1
(ATOH1) controls the fate of intestinal progenitors downstream of
theNotchsignalingpathway. Intestinalprogenitors thatescapeNotch
activation express high levels of ATOH1 and commit to a secretory
lineage fate, implicating ATOH1 as a gatekeeper for differentiation of
intestinal epithelial cells. Although some transcription factors
downstream of ATOH1, such as SPDEF, have been identified to
specify differentiation andmaturation of specific cell types, the bona
fide transcriptional targets of ATOH1 still largely are unknown. Here,
we aimed to identify ATOH1 targets and to identify transcription
factors that are likely to co-regulate gene expression with ATOH1.

METHODS: We used a combination of chromatin immunopre-
cipitation and messenger RNA–based high-throughput
sequencing (ChIP-seq and RNA-seq), together with cell sorting
and transgenic mice, to identify direct targets of ATOH1, and
establish the epistatic relationship between ATOH1 and SPDEF.

RESULTS: By using unbiased genome-wide approaches, we
identified more than 700 genes as ATOH1 transcriptional targets
in adult small intestine and colon.Ontology analysis indicated that
ATOH1 directly regulates genes involved in specification and
function of secretory cells. De novo motif analysis of ATOH1 tar-
gets identified SPDEF as a putative transcriptional co-regulator of
ATOH1. Functional epistasis experiments in transgenicmice show
that SPDEF amplifies ATOH1-dependent transcription but cannot
independently initiate transcription of ATOH1 target genes.

CONCLUSIONS: This study unveils the direct targets of ATOH1
in the adult intestines and illuminates the transcriptional events
that initiate the specification and function of intestinal secretory
lineages. (Cell Mol Gastroenterol Hepatol 2017;3:51–71; http://
dx.doi.org/10.1016/j.jcmgh.2016.10.001)

Keywords: ATOH1; SPDEF; Transcription; Intestinal Epithelium;
Villin-creER; TRE-Spdef; Atoh1GFP; Atoh1Flag.
See editorial on page 2.
he adult intestinal epithelium proliferates rapidly
Twith average cellular lifespans of approximately 5–7
days. To maintain epithelial integrity and perform its major
function of nutrient digestion and absorption, intestinal
stem cells (ISCs) located at the base of crypts of Lieberkühn
must self-renew and produce transit-amplifying cells, which
subsequently differentiate into 1 of 2 cell classes: absorptive
lineage cells, including enterocytes and colonocytes; and
secretory lineage cells, including mucus-secreting goblet
cells, hormone-secreting enteroendocrine cells, and antimi-
crobial peptide-secreting Paneth cells.1–3 Under physiolog-
ical conditions, signaling pathways, such as Notch and Wnt,
modulate homeostasis and differentiation of the intestinal
epithelium, directing ISCs/progenitors toward either the
absorptive or secretory fate by controlling the expression of
a downstream transcriptional network.4,5 Dysregulated ISC
proliferation or aberrant differentiation may cause gastro-
intestinal diseases, such as inflammatory bowel disease and
intestinal cancer.5,6

Canonical Notch signaling relies on direct cell–cell con-
tact and plays an important role in modulating homeostasis
and differentiation of the intestinal epithelium. In the
intestines, Notch signaling controls the fate of ISCs/
progenitors by regulating the expression of the basic
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helix-loop-helix transcription factor atonal homolog 1
(ATOH1).5 Previous studies have suggested that ATOH1 is
required for the differentiation of all secretory cells.7 Germ-
line Atoh1 deletion causes mice to die shortly after birth and
fail to form any secretory cells without affecting enter-
ocytes.7 Consistent with these observations, conditional
deletion of Atoh1 in the adult intestinal epithelium results in
the loss of all secretory cells.8 In contrast, overexpression of
ATOH1 directs progenitor cells to the secretory cell fate in
the embryonic intestine.9 Previous studies have indicated
that pharmacologic inhibition of Notch signaling using
g-secretase inhibitors or specific antibodies blocking the
Notch receptors results in loss of proliferative progenitor
cells and secretory cell hyperplasia.10–12 However, Atoh1-
deficient intestines fail to respond to Notch inhibition, indi-
cating that the primary role of Notch is to regulate the
expression of Atoh1, and in doing so control secretory vs
absorptive cells fate.13–15 Consistent with the concept, a
recent study suggested that ATOH1 controls Notch-
medicated lateral inhibition in the adult intestinal epithe-
lium.16 These results indicate that ATOH1 is a critical
gatekeeper for the program of Notch-mediated differentia-
tion and cell fate determination of intestinal epithelial cells.
Although previous studies have suggested that some tran-
scription factors, such as SAM pointed domain containing
ETS transcription factor (Spdef) and growth factor indepen-
dent 1 (Gfi1), are downstream of ATOH1 and are important
for differentiation of specific secretory cell types,17–19 the
bona fide targets of endogenous ATOH1 at the genome-wide
level in the adult intestine still largely are unknown.

To better understand the molecular functions of ATOH1
in vivo, we used a combination of chromatin immunopre-
cipitation (ChIP) and RNA-based, high-throughput
sequencing techniques to identify direct transcriptional
targets of ATOH1 in ileal and colonic crypts. In addition, our
data unveiled a novel molecular mechanism whereby SPDEF
functions as a transcriptional co-regulator of ATOH1,
amplifying ATOH1-dependent transcription of a subset of
secretory genes. This study provides novel insight toward
understanding cell fate decisions within the intestines.
Materials and Methods
Animals

VilCreERT2; Fabp1Cre; Atoh1fl/fl; Rosa26 LSL-rtta-ires-EGFP;
TRE-Spdef; Spdef null; Atoh1GFP/GFP; and Atoh1Flag/Flag mice
have been described previously.8,18,20–24 To achieve deletion
of Atoh1 from intestinal epithelium, Atoh1fl/fl; VilCreERT2 mice
and littermate controlswere given an intraperitoneal injection
of 1 mg/mouse tamoxifen (Sigma, St. Louis, MO) dissolved in
corn oil for 3 consecutive days. Animals were killed 5 days
after the first injection. To achieve SPDEF induction, Fabp1Cre;
Atoh1fl/fl; Rosa26 LSL-rtta-ires-EGFP; TRE-Spdef mice, and litter-
mate controls were given 2 mg/mL tetracycline in water for 5
consecutive days. To achieve Notch inhibition, mice were
treated either with vehicle or GSI-20 (also called dibenzaze-
pine [DBZ]; EMD–Calbiochem, Darmstadt, Germany) at 15
mmol/L/kg once a day for 5 days. All mouse studies were
approved by the Institutional Animal Care and Use Committee.
Crypt Isolation
Intestinal crypts were prepared as previously

described.25 Entire colons and 6–7 cm distal small intestine
were dissected out and flushed with ice-cold phosphate-
buffered saline (PBS) with 5 mmol/L phenylmethylsulfonyl
fluoride. Intestines were opened lengthwise and cut into
1-cm pieces. Tissues were incubated with shaking buffer
(25 mmol/L EDTA, protease inhibitor cocktail; Calbiochem)
at 4�C for 30 minutes by gentle shaking. Shaking buffer was
replaced by ice-cold Ca2þ/Mg2þ-free Dulbecco’s PBS fol-
lowed by vigorous shaking for approximately 8–10 minutes
to generate disassociated crypts. For the colon, it takes
15 minutes to disassociate crypts. Intestinal crypts were
isolated by filtering through a 70-mm cell strainer (BD
Falcon) for small intestinal crypts and a 100-mm cell
strainer (BD Falcon, Tewksbury, MA) for colonic crypts, and
then spun down at 150g for 10 minutes.

Cell Culture
Human colorectal cancer cell line HCT was grown in

RPMI1640 (10-040-CV; Corning, New York, NY) supple-
mented with 10% fetal bovine serum (S1200-500;
BioExpress, Kaysville, UT), penicillin, and streptomycin
(17-602E; Lonza, Basel, Switzerland).

Plasmids and DNA Transfection
Expression plasmid of ATOH1-GFP was a gift from

Dr Tiemo Klisch (Baylor College of Medicine).20 HCT116
green fluorescent protein (GFP) cells were transfected by
using Lipofectamine 2000 (11668-019; Invitrogen, Wal-
tham, MA) following the manufacturer’s instructions.

Chromatin Immunoprecipitation
Crypts and transfected cells were used in chromatin

immunoprecipitation (ChIP) experiments with antibodies
against GFP (NB600-303; Novus, Littleton, CO), Flag M2
(F1804; Sigma), H3k27Ac (ab4729; Abcam, Cambridge,
MA), or H3K27me3 (ab6002; Abcam). For each ChIP sample,
2–3 mg of antibodies were used to bind to 10 mL Protein G
Dynabeads (100-03D; Invitrogen) following the manufac-
turer’s instructions. Samples from either crypts or 5–10 �
106 HCT116 cells transfected with ATOH1-GFP were cross-
linked in 1% formaldehyde (15710; Electron Microscopy
Sciences, Hatfield, PA) in cross-linking buffer (50 mmol/L
HEPES pH 8.0, 1 mmol/L EDTA pH 8.0, 1 mmol/L ethylene
glycol-bis[b-aminoethyl ether]-N,N,N0,N0-tetraacetic acid pH
8.0, 100 mmol/L NaCl, RPMI1640) at room temperature for
30 minutes and then quenched by adding glycine to a final
concentration of 135 mmol/L on ice for 5 minutes. Cross-
linked cells were washed twice with ice-cold PBS and
stored at -80�C before sonication. Chromatin was sheared to
300- to 1000-bp fragments in 1 mL ice-cold sonication
buffer (10 mmol/L Tris-HCl pH 8.0, 1 mmol/L EDTA pH 8.0,
1 mmol/L ethylene glycol-bis[b-aminoethyl ether]-
N,N,N0,N0-tetraacetic acid pH 8.0, supplemented with a
protease inhibitor cocktail; 539134; Calbiochem), using a
250D Sonifier Ultrasonic Processor Cell Disruptor (Branson,
Danbury, CT) with a one-eighth inch microtip (50% power



January 2017 ATOH1 Regulation and SPDEF 53
output, interval 1-second on/1-second off, for a total of 24
minutes). Sarkosyl was added to a final concentration of
0.5% and the sheared chromatin was incubated at room
temperature for 10 minutes and then spun down to remove
debris. For immunoprecipitation, 500 mL sheared chromatin
was mixed with 150 mL binding buffer (440 mmol/L NaCl,
0.44% sodium deoxycholate, 4.4% Triton X-100) and incu-
bated with 10 mL antibody-bound protein G Dynabeads at
4�C overnight. ChIP samples were washed in washing buffer
(1% Nonidet P-40, 1% sodium deoxycholate, 1 mmol/L
EDTA pH 8.0, 50 mmol/L HEPES pH 8.0, 500 mmol/L LiCl)
5 times and then eluted in elution buffer (50 mmol/L
Tris-HCl pH 8.0, 10 mmol/L EDTA pH 8.0, 1% sodium
dodecyl sulfate) at 65�C for 15 minutes. Both ChIP and input
samples were incubated at 65�C overnight to reverse
formaldehyde cross-linking. DNA was purified by phenol-
chloroform extraction. Precipitated DNA fragments were
used for ChIP sequencing (ChIP-seq) or polymerase chain
reaction (PCR). The ChIP-seq library was made following
the instructions of the NEBNext ChIP-Seq Library Prep
Master Mix Set (E6240; New England Biolabs, Ipswich, MA).
The primers used for ChIP-PCR are listed in Supplementary
Table 1.

RNA Preparation
Sorted ATOH1-GFP–positive cells and purified crypts

from either Atoh1 deletion or littermate control mice were
collected immediately in TRIzol reagent (Invitrogen). RNA
was isolated following the manufacture’s instructions and
subsequently purified with the RNeasy kit (Qiagen), using
on-column DNAse digestion (Qiagen, Hilden, Germany). RNA
quality controls were performed by the Gene Expression
Core at Cincinnati Children’s Hospital Medical Center using
an Agilent (Santa Clara, CA) Bioanalyzer nanochip. The RNA
integrity number of the RNA samples for RNA-seq was at
least 8.8.

Reverse-Transcription and Real-Time PCR
A total of 1 mg RNA was used to synthesize comple-

mentary DNA using Superscript III First Strand Synthesis
System (Invitrogen) following the manufacturer’s
instructions. Quantitative PCR was performed with Brilliant
III Ultra Fast SYBR Green Master Mix (Agilent Technologies)
using the primers listed in Supplementary Table 2.

Tissue Staining
Intestinal tissues were fixed in 4% paraformaldehyde in

PBS at 4�C overnight, transferred to 70% ethanol, paraffin-
embedded, and sectioned at 5-mm thickness. Paraffin-
embedded sections were deparaffinized and rehydrated
before staining. For immunofluorescence, antigen retrieval
was achieved in sodium citrate buffer (10 mmol/L sodium
citrate pH 6.0). The sections were blocked in 4% normal
donkey serum in PBS at room temperature for 1 hour.
Primary antibodies against GFP (1:1000; Abcam) and
chromagranin A (1:5000; Immuostar, Hudson, WI), mucin 2
(1:1000; Santa Cruz, Dallas, TX), or lysozyme (1:5000;
Zymed Laboratories, San Francisco, CA) were co-incubated
on the sections in blocking buffer (4% normal donkey
serum in PBS) at 4�C overnight. After washing 3 times by
PBS, donkey anti-goat–Alexa 488 and donkey anti-rabbit–
Alexa 594 secondary antibodies (1:200; Invitrogen) were
incubated on the sections at room temperature for 1 hour.
All sections were washed 3 times by PBS and mounted with
Vectashield medium with 40,6-diamidino-2-phenylindole
(Vector Laboratories, Burlingame, CA).

In Situ Hybridization
Fresh intestinal tissues were harvested from mice and

lightly fixed by 4% paraformaldehyde on ice for 15 minutes.
Fixed tissueswere cryoprotectedwith30%sucrose inPBS and
then embedded in optimal cutting temperature compound
(OCT). In situ hybridization staining was performed as previ-
ously described.26 In situ hybridization staining was per-
formedby theRNA In SituHybridization Core at BaylorCollege
of Medicine.

Fluorescence-Activated Cell Sorting
Isolated crypts were dissociated as previously

described.25 Briefly, crypts were dissociated with TrypLE
express (Invitrogen) supplemented with 10 mmol/L
Y-27632 and 1 mmol/L N-acetylcysteine (Sigma-Aldrich) for
5 minutes at 37�C. Cell clumps were removed using a 35-mm
cell strainer (Fisher Scientific, Waltham, MA) and the flow-
through was pelleted at 500 � g at 4�C for 5 minutes. Cell
pellets were resuspended in 5% bovine serum albumin, 1
mmol/L EDTA, and 10 mmol/L Y27632 (Sigma-Aldrich) in
PBS at 2–5 � 106 cells/mL. 7-AAD was added 20 minutes
before fluorescence-activated cell sorting (FACS) to evaluate
cell viability. A FACSAria II equipped with a 100-mm nozzle
was used (BD Biosciences, San Jose, CA). GFP-positive and 7-
AAD–negative single cells were sorted into 500 mL TRIzol
reagent (Invitrogen) for RNA sequencing.

RNA-Seq Data Preprocessing and Analysis
Total RNA from 14 samples from mouse colon and ileum

(2 biological replicates of wild-type and Atoh1-mutant
crypts, 3 biological replicates of GFPþ cells) were prepared
for RNA sequencing using the Illumina HiSeq 2000 with
single-end, 50-bp reads (Illumina, San Diego, CA). For each
sample, 14–23 million of 50-bp, single-end reads were
generated. The raw reads were aligned to the Mus musculus
genome (Ensembl mm9) using TopHat v1.4.1 (http://tophat.
cbcb.umd.edu/) with default parameters.27 The mappability
for each sample was greater than 80%. To measure the
expression level from aligned sequence reads for differential
gene analysis, we used the free Python program HTSeq.28

The htseq-count function of HTSeq (http://www-huber.
embl.de/users/anders/HTSeq/) allowed us to quantify the
number of aligned reads that align with the exons of the
gene (union of all the exons of the gene). The read counts
obtained were analogous to the expression level of the gene.
By using the raw counts, differential gene analysis was
performed using the DESeq package in the R environment.
DESeq includes functions to test for gene expression
changes between samples in different conditions by the use
of the negative binomial distribution and a shrinkage

http://tophat.cbcb.umd.edu/
http://tophat.cbcb.umd.edu/
http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/
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estimator for the distribution’s variance.29 The nbinomTest
function of DESeq was used to test if each gene was
expressed differentially. The significance of the observed
changes are indicated by the P value, and the false-discovery
rate (FDR) reported in this study is the P values adjusted for
multiple testing with the Benjamini–Hochberg procedure
implemented within DESeq. Heatmaps of gene expressions
were plotted using the heatmap.2 function implemented in
the gplots package in R.
ChIP-Seq Data Preprocessing and Analysis
ChIP samples from mouse colon and ileum were

sequenced using an Illumina HiSeq 2000. Fourteen samples
were prepared: H3k27me3, H3k27Ac, 2 replicates of
ATOH1-GFP, and 3 replicates of input for each tissue. Each
sample was sequenced at a depth of 9–18 million, 50-bp,
single-end reads. Reads were trimmed from both ends
before mapping to the reference genome. The trimmed
reads were first mapped to the Mus musculus genome
(Ensembl mm9) using Bowtie2 with the preset of the very-
sensitive setting (specific parameters are as follows: -D 20
-R 3 -N 0 -L 20 -i S,1,0.50).30 The mappability for each
sample was greater than 75% except for the GFP samples.
By using the mapping files, regions with enriched ATOH1
binding were identified using well-established, peak-calling
software, Model-based Analysis of ChIP-Seq (MACS).31 The
input samples were used as the control for calling peaks
from the ATOH1, histone methylation, or histone acetyla-
tion data sets. Peaks (ATOH1 and histone-bound regions)
then were annotated using the mouse mm9 gene model.32

In the binding site comparison analysis, we used deep-
tools to generate peak-based correlation heatmaps and
scatterplots.33 ATOH1 ChIP-Seq data from the cerebellum
were obtained from GEO DataSets (GSE22111). First, all
aligned ChIP-seq data in bam format were ratio-normalized
to their respective inputs and converted to bigwig format
using the bamCompare module from deeptools. Next, the
whole genome was binned into 10-kb windows and
respective coverage was computed across the 3 different
tissues (ileum, colon, and cerebellum), using the compu-
teMatrix module of deeptools. PlotCorrelation was used to
compute genome level correlations and to generate scat-
terplots. To directly compare ileal vs colonic ATOH1
binding sites (Figure 3C), log2-normalized enrichment of
binding regions were plotted on both axes, which was
defined using the following formula. This is analogous to
Figure 1. (See previous page). ATOH1 is required for all secre
combined with Alcian blue (AB) and periodic acid–Schiff (PA
Atoh1GFP/GFP indicates that endogenous ATOH1 is expressed
fluorescent analysis of ileum and colon from Atoh1GFP/GFP mice i
lineages. Goblet cells were labeled by mucin 2 (MUC2). Paneth c
were labeled by chromogranin A (CHGA). (C) Immunofluorescen
enteroendocrine (EE) cells compared with goblet and Paneth ce
the intestinal epithelium was achieved by using Atoh1lox/lox;VilC
Alcian blue staining showed that the secretory lineages were
wild-type control Atoh1lox/WT;VilCreERT2 mice. Scale bars: 100 m
wild type.
the average peak height (RPM) analyzed as described
previously.34

log2

�
Atoh1 normalized peak height
Input normalized peak height

�

ATOH1 De Novo Motif Analysis
The hypergeometric optimization of motif enrichment

(HOMER) software suite was used to identify DNA motifs
enriched in the ChIP-seq data sets. First, sites bound by
ATOH1 were subjected to de novo motif identification using
findMotifsGenome.pl within HOMER. Second, de novo
motif identification was performed on ATOH1 binding sites
within the colon ATOH1 targetome. Significantly enriched
motifs were matched to the most similar transcription
factor–binding motifs from the JASPAR 2014 database. FIMO
was used to retrieve genes with SPDEF binding motifs from
the ATOH1 targetome.
Gene Ontology Analysis
Gene ontology (GO) analysis was performed with

Database for Annotation, Visualization, and Integrated
Discovery (DAVID; available: http://david.abcc.ncifcrf.gov/)
using the ATOH1 targetome genes lists (Figure 5) to identify
the biological processes and molecular functions in which
the input gene lists are enriched. The -log10(FDR) of the
enriched functions were plotted to indicate the significance
of the enrichment of each function.
Results
ATOH1 Transcriptional Profile in the Adult
Distal Small Intestinal and Colon Crypts

Previous studies have shown that ATOH1 is required
for the differentiation of secretory cell lineages in the
intestines.7 Conditional deletion of Atoh1 in the adult
intestine confirmed that ATOH1 is expressed in and
essential for the formation of all secretory cells.8 Consis-
tent with these observations, Alcian blue and periodic
acid–Schiff staining indicated that mice with an
ATOH1–GFP fusion protein inserted into the Atoh1 locus
(Atoh1GFP/GFP) express ATOH1–GFP in goblet and Paneth
cells (Figure 1A). Specifically, ATOH1–GFP expression is
co-localized with all secretory cells, including mucin
2–positive goblet cells, lysozyme 1–positive Paneth cells, as
tory lineages in ileum and colon. (A) Immunohistochemistry
S) staining of the ileum and colon from transgenic mice

in goblet and Paneth cells. Scale bars: 100 mm. (B) Immuno-
ndicates that endogenous ATOH1 is expressed in all secretory
ells were labeled by lysozyme 1 (LYZ1). Enteroendocrine cells
ce analysis indicates the expression level of ATOH1 is lower in
lls in Atoh1GFP/GFP mice. (D) Conditional deletion of ATOH1 in
reERT2 mice. After tamoxifen injection for 3 consecutive days,
nearly absent in both the ileum and colon compared with
m. DAPI, 40,6-diamidino-2-phenylindole; KO, knockout; WT,

http://david.abcc.ncifcrf.gov/
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well as chromogranin A–positive enteroendocrine cells
(Figure 1B and C).35

To define ATOH1-associated transcripts in adult in-
testines, we first generated 3 messenger RNA (mRNA)
expression profiles by RNA-seq of the following: (1) wild-
type crypts, (2) Atoh1 deletion crypts, and (3) purified
ATOH1-positive cells. We isolated Atoh1 deletion and
littermate wild-type crypts from 6- to 8-week old Atoh1lox/
lox;VilCreERT2 and Atoh1lox/WT;VilCreERT2 mice, respectively.
After tamoxifen injection for 3 consecutive days, secretory
lineages were nearly absent throughout the entire intestinal
epithelium (Figure 1D). ATOH1-positive cells were isolated
by flow cytometry of 7AAD-negative (live), GFP-positive
cells from either ileal or colonic crypts of Atoh1GFP/GFP

mice (Figure 2A). RNA sequencing was performed on the
Illumina Hi-Seq 2000 with single-end, 50-bp reads. Three
purified ATOH1–GFP–positive, 2 Atoh1 wild-type, and 2
Atoh1 deletion samples were collected from the ileum and
colon of independent animals with corresponding genotypes
(total, 14 samples). By using hierarchal clustering analysis,
we observed that samples generated from independent
experiments for each group clustered together, indicating
that the RNA-seq data were highly reproducible and reliable
(Figure 2B). To evaluate whether these RNA-seq data
represent a secretory cell–associated gene signature, we
assessed the expression of genes characteristic of individual
cell types in the intestine. We selected 71 genes repre-
senting 5 different intestinal cell types, and created a heat
map of gene expression from our RNA-seq data sets
(Figure 2C). As expected, compared with wild-type crypts,
the expression of goblet and Paneth cell genes was enriched
in purified ATOH1-positive cells, but decreased in Atoh1
deletion crypts (Figure 2C). Of note, compared with
wild-type crypts, we did not observe significant enrichment
of enteroendocrine genes in isolated ATOH1-positive cells.
However, the expression of enteroendocrine genes was
decreased in Atoh1 deletion crypts, indicating that although
enteroendocrine cells require ATOH1 for their formation,
they were not efficiently purified during FACS of
ATOH1–GFP cells, likely owing to their low level of
ATOH1–GFP (Figure 1C). As expected, ATOH1-positive
cells expressed lower absorptive enterocyte/colonocyte
and intestinal stem cell genes (Figure 2C). Finally, to identify
genes that are regulated by ATOH1, we compared these
3 expression groups with each other and identified
genes with at least a 1.5-fold difference in expression level
with an adjusted P value less than .05. We identified 2322
genes in the colon and 2364 genes in the ileum that were
enriched in ATOH1-positive cells (Figure 2D, Supplementary
Figure 2. (See previous page). Transcriptional profile of ATO
by flow cytometry from either ileal or colonic crypts of Atoh1GF

independent RNA-seq samples generated from ATOH1-positiv
Numbers in the figure indicate Pearson correlation coefficients. (
in the intestine. (D) Venn diagram indicates overlap of genes th
(E) Heat map of mRNA expression of genes we identified shows
and colon. (F) Venn diagram indicates overlap of genes that ar
knockout; WT, wild type
Table 3). Hierarchal clustering analysis for the intersection
area (68 genes in the ileum and 84 genes in the colon
enriched in ATOH1-expressing cells) verified the sample-to-
sample reproducibility of the transcripts we identified
(Figure 2E, Supplementary Table 4). On the other hand, we
identified 3187 genes in the colon and 3099 genes in the
ileum that were expressed at a lower level in
ATOH1–GFP–positive cells (Figure 2F, Supplementary
Table 5). Taken together, we generated ATOH1-associated
transcripts in adult small and large intestines under
homeostatic conditions.
ATOH1 Genomic Binding Sites in Adult
Ileal and Colonic Crypts

To identify targets of ATOH1 binding in the adult intestinal
epithelium, we performed chromatin immunoprecipitation-
sequencing (ChIP-seq). Ileal or colonic crypts were isolated
from 10- to 12-week-old adult Atoh1GFP/GFP mice (which
express a functional ATOH1-GFP fusion protein and are
phenotypically normal35) followed by ATOH1, H3K27Ac, and
H3K27me3ChIP-Seq.We prepared duplicate ATOH1ChIP-seq
libraries from 2 independent experiments for both tissues.
Analysis of pooleddata identified2008ATOH1binding sites in
the ileum and 9219 ATOH1 binding sites in the colon (FDR <
1e-10) across the entire genome (Figure 3A, Supplementary
Tables 6 and 7). Next, we performed Q enrichment score
(QES) analysis to verify the quality of these ATOH1 binding
sites.36 Compared with the reference values for the quality
metrics generated from 392 data sets from ENCODE (https://
www.encodeproject.org/), the QES from our ATOH1 ChIP-seq
(QES, 0.24 in colon; QES, 0.16 in ileum) was ranked at a level
betweenmoderate high to very high (http://charite.github.io/
Q/tutorial.html#output_of_q), suggesting a high quality of
these ATOH1 peaks (Supplementary Table 8). To study the
ATOH1binding patterns between tissues,wefirst assessed the
co-occurrence of all ATOH1 binding sites in the ileum and
colon; for comparison, we included ATOH1 ChIP-seq results
from the developing cerebellum20 in this analysis (Figure 3B).
Our results showed that ATOH1 binding sites were similar
between the ileum and colon (Spearman correlation coeffi-
cient, 0.42) as compared with cerebellum (correlation coeffi-
cient, 0.06–0.08). Next, we restricted our comparison with
sites that were enriched significantly in either ileum or colon
(shown in Figure 3A), which showed stronger correlation of
co-occurring ATOH1 binding sites (Figure 3C). Although a fair
portion of the ATOH1-bound peaks called from colonwere not
considered significant peaks in ileum (Figure 3C, red points),
the enrichments were correlated highly (ie aligned with the
H1-positive cells. (A) Live ATOH1-positive cells were sorted
P/GFP mice for RNA-seq. (B) Hierarchal clustering analysis of
e cell sorting, wild-type crypts, and Atoh1 deletion crypts.
C) Heat map of gene expression of individual cell type markers
at are enriched significantly at least 1.5-fold in each group.
a significant enrichment in ATOH1-positive cells in the ileum

e decreased significantly at least 1.5-fold in each group. KO,
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x ¼ y line, shown as a dotted line), indicating strong enrich-
ment for ATOH1 at similar sites in the small intestine and
colon. For each tissue, the distribution of peaks across func-
tional domains in the genome was analyzed (Figure 3A).
ATOH1 peaks were enriched strongly in gene-associated
functional domains, such as promoter (by default defined
from -1 kb to þ100 bp of transcription start site [TSS]), un-
translated region, intron, and exon, where they usually map-
pedwithin 1 kb of the TSS, indicating that the peaks generated
from our ATOH1 ChIP-seq were not located randomly on the
genome but instead were associated with core promoters
(Figure 3E). Consistent with its predicted activity as a tran-
scription activator, ATOH1 binding sites were highly co-
localized with active enhancer marker H3K27Ac, but not
inactive chromatin-associated H3K27me3 (Figure 3D).
Because we aimed to identify ATOH1 direct transcriptional
targets, we defined genes that have ATOH1 binding sites
within 20 kb of the TSS as ATOH1-associated genes. We
identified 1024 and 4876 ATOH1-associated genes in ileum
and colon, respectively (Figure 3F). Based on initial overlap
analysis, 92.7% (949 of 1024 genes) of ATOH1-associated
genes in the ileum also were bound by ATOH1 in the colon
(Figure 3F). Taken together, using ChIP-seq, we identified
bona fide ATOH1 binding sites in intestinal tissues under
homeostatic conditions.

Motif Analysis of ATOH1 Binding Regions
Previous studies in the developing cerebellum have

indicated that ATOH1 binds to a 10-nucleotide motif
(AtEAM) containing a consensus E-box (5’-CANNTG-3’)
binding motif of basic helix-loop-helix transcription fac-
tors.20 We performed de novo motif analysis for our ATOH1
ChIP-seq data using HOMER.32 As expected ATOH1-bound
chromatin was enriched significantly in consensus E-box
motifs in both colon and ileum (P ¼ 1e-96 in ileum and
1e-722 in colon) (Figure 3G). This indicated that direct
binding sites of ATOH1 were enriched in our ChIP-seq data.
In addition to E-box, additional DNA binding motifs for
several other transcription factor classes were enriched
significantly within ATOH1-bound chromatin (Figure 3G).
According to our RNA-seq data, we identified several tran-
scription factors that were highly expressed within
ATOH1–GFP–purified cells, and whose consensus DNA
binding motif matched to these binding sequences derived
de novo from ATOH1 ChIP-seq analysis (Figure 3G).
Included in this list of transcription factors are E2A, HEB,
Figure 3. (See previous page). ATOH1 genomic binding reg
ChIP-seq peaks. (B) Comparison of colonic ATOH1, H3K27Ac
counts in the 40 kb surrounding ATOH1 peaks. (C) Genome-wid
and cerebellum. Scatterplots show the distribution of enrichmen
Numbers in the figure indicate Spearman correlation coefficien
significant enrichment in ATOH1-bound chromatin from either
peaks from both the ileum and colon, red points are significa
significant peaks from the ileum only. (E) Distribution of ATOH1 C
that have ATOH1 binding sites within 20 kb of the TSS are d
overlap of ATOH1-associated genes in the ileum and colon. (G)
identified by HOMER de novo motif analysis. P values are for m
were listed. TFs, transcription factors.
RUNX1, YY1, NFIC, and HLTF, suggesting that these factors
may bind cooperatively with ATOH1 to regulate secretory
cell transcription. In fact, E2A and HEB are class I basic
helix-loop-helix proteins known to interact with ATOH1,37

suggesting that these are its relevant partners within the
intestine. Taken together, these results show that our
ATOH1 ChIP-seq comprehensively identified ATOH1 targets
in small and large intestines.
Validation of ATOH1 Binding Sites
To validate our ATOH1 ChIP-seq data, we performed

ChIP PCR in a different transgenic mouse model, which has
an ATOH1–Flag fusion protein inserted into the Atoh1 locus
(Atoh1Flag/Flag).38 We first focused on the ATOH1-associated
genes Sox9, Gfi1, and Spdef, which have been implicated in
secretory lineage differentiation. The high mobility group-
box transcription factor SOX9 is expressed in the epithelial
cells of the intestinal crypts and is required for goblet and
Paneth cell differentiation.39,40 Previous studies have sug-
gested that both the zinc-finger transcription factor Gfi1 and
the Ets-transcription factor SPDEF are downstream targets
of ATOH1.17,19 GFI1 directs secretory progenitors toward a
goblet or Paneth cell fate, in part by repression of the pro-
endocrine transcription factor NEUROG3.41 SPDEF plays
an important role in goblet and Paneth cell terminal dif-
ferentiation in the intestines.17,18 Our ATOH1 ChIP-seq data
indicated that ATOH1 binds to the core promoter regions of
Sox9, Gfi1, and Spdef (Figure 4A). Consistent with our ChIP-
seq results, we confirmed by ChIP PCR that ATOH1–Flag
was enriched at the promoters of these target genes, but not
upstream negative control regions (Figure 4B). Next, to
confirm our ATOH1 ChIP-seq data further, we selected
another 8 ATOH1-associated genes for validation. All 8
ATOH1 binding regions were validated by ChIP PCR,
including Neurog3, Dll4, Tff3, Creb3l1, Galnt12, Bcas1, Foxa1,
and Cbfa2t3 (Figure 4B). Taken together, these results
confirm that ATOH1 binding sites identified by our ChIP-seq
analysis were robust and highly reliable.
Identifying ATOH1 Transcriptional Targets
To identify direct ATOH1 transcriptional targets in the

intestines, we compared ATOH1-associated genes identified
by our ATOH1 ChIP-seq analysis (Figure 3F) with
up-regulated genes in ATOH1-positive cells identified by our
RNA-seq analysis (Figure 2D). We defined the ATOH1
ions in ileum and colon. (A) Genome distribution of ATOH1
, and H3K27me3 signals generated from ChIP-seq fragment
e ATOH1 binding sites were compared between ileum, colon,
t scores for the entire genome separated into 10-kb segments.
ts. (D) Comparison of enrichment scores in the regions with
ileum or colon. Black points indicate regions with significant
nt peaks from the colon but not ileum, and blue points are
hIP-seq peaks according to the distance from TSS. (F) Genes
efined as ATOH1-associated genes. Venn diagram indicates
Logos for the top motifs enriched in ATOH1-binding sites are
otif enrichment. Transcription factors matched to each motif
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Figure 4. Validation of
ATOH1 binding sites. (A)
ATOH ChIP-seq data
generated from
Atoh1GFP/GFP mice indicate
ATOH1 binds to the pro-
moter regions of Sox9,
Gfi1, and Spdef. The peak
density plots show frag-
ment counts across the
indicated genomic interval.
Sox9, Gfi1, and Spdef
genes are labeled in blue
with exons as thick rect-
angles (coding sequence is
slightly thicker) and introns
as lines connecting rect-
angles. The arrows show
primers designed for ChIP
PCR. The green rectangles
indicate regions selected
for ATOH1-Flag ChIP PCR.
(B, C) Ileal and colonic
crypts isolated from
Atoh1Flag/Flag mice were
used to validate ATOH1
ChIP-seq peaks by ChIP
PCR. ATOH1 was enriched
in all ATOH1 binding re-
gions predicted by our
ATOH1 ChIP-seq, but not
the negative control (NC)
regions.
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targetome as the 658 genes in the colon and 193 genes in
the ileum with significantly enriched expression in ATOH1-
positive cells that also were bound by ATOH1 (Figure 5A,
Supplementary Table 9). Consistent with the concept that
ATOH1 functions as a key transcription factor for differen-
tiation of the intestinal epithelium, several ATOH1 target
genes were known to be involved in intestinal secretory
lineage differentiation and function, such as Notch ligands
Dll1 and Dll4; transcription factors Spdef,17,18 Sox9,39,40
Gfi1,19,41 and Creb3l142; transcription co-repressors
Cbfa2t2 and Cbfa2t343–46; and secretory lineage-specific
genes such as Best2, Spink4, Muc2, Sct, EphB3, Xbp1, and
Clca3.17,47–49 To gain broader insight into ATOH1 target
genes in the intestines, we performed GO analysis using
DAVID. ATOH1 target genes were associated with ontology
terms including positive regulation of transcription ma-
chinery (adjusted P < .03), suggesting that ATOH1 is a
regulator of other transcriptional regulators, consistent with



A

B

C

D

Figure 5. Direct ATOH1
transcriptional targets in
adult intestines. (A) Over-
lap of ATOH1-associated
genes from ChIP-seq and
genes significantly
enriched in ATOH1-
positive cells from RNA-
seq identifies the ATOH1
targetome, a list of putative
direct transcriptional
ATOH1 targets in the ileum
and colon. (B) GO analysis
using DAVID identified
ontology terms associated
significantly with ATOH1
targetome. (C) Venn dia-
gram indicates overlap of
ATOH1-bound genes from
ChIP-seq and genes
decreased significantly in
ATOH1-positive cells from
RNA-seq. (D) GO analysis
using DAVID identified
ontology terms. BMP,
bone morphogenetic pro-
teins; GTPase, guanosine
triphosphatase.
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a function as a master regulator of intestinal differentiation
(Figure 5B). In addition, ATOH1 target genes are mem-
bers of ontology groups such as intracellular transport,
guanosine triphosphatase regulator activity, Rab guanosine
triphosphatase binding, acetylgalactosaminyltransferase
activity, and positive regulation of metabolic process, and so
forth, indicating roles for ATOH1 in directing the program of
modification and secretion of proteins from intestinal
secretory cells (Figure 5B, Supplementary Table 10). We
also found that ATOH1 targets were enriched in BMP
signaling pathway constituents, suggesting a previously
undefined role for ATOH1 in intestinal BMP signaling
(Figure 5B). To gain more insight into the function of ATOH1
in the intestines, we next asked whether genes significantly
de-enriched in ATOH1-positive cells (Figure 2F) also were
bound by ATOH1 (Figure 3F). Surprisingly, a large number
of genes, 1085 genes in the colon and 194 genes in the
ileum, were identified (Figure 5C, Supplementary Table 11).
Of note, among these genes, 2 important Notch pathway
genes, Notch receptor Notch1 and transcription factor Hes1,



Figure 6. In situ validation of ATOH1 tar-
getome. Fresh-frozen ileal tissues were
generated from Atoh1 deletion (Fabp1Cre;
Atoh1lox/lox; knockout [KO]) or littermate
control (Fabp1Cre; Atoh1þ/þ; wild type [WT])
mice. The mRNA expression of ATOH1 target
genes, including (A) Nfia, (B) Hepacam2,
(C) Krt18, (D) Txndc11, (E) Atxn1, and
(F) Sh3bgrl3, were shown by in situ hybrid-
izations. Light periodic acid–Schiff staining
was performed after in situ hybridization
to provide contrast for imaging. Scale bars:
100 mm.
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were identified. Interestingly, we also found several genes
that previously have been described to be important for
Microfold cells and enterocytes, such as Spib, Elf3, and
Ppargc1b.50–52 In this scenario, one possibility is that
ATOH1 functions as a transcriptional activator of these
genes in a subset of ATOH1-positive cells, but other factors
repress their expression in the majority of cells, or drive
stronger expression in ATOH1-negative cells, resulting in
stronger relative expression in ATOH1-negative cells. How-
ever, we cannot exclude the possibility that ATOH1 func-
tions as a negative regulator of transcription of these
genes. GO analysis indicated that these de-enriched
ATOH1 targets were associated significantly with several
biological processes including nucleotide binding, positive
regulation of cellular biosynthetic process, positive
regulation of transcription, actin cytoskeleton organization,
guanosine triphosphatase regulator activity, negative regu-
lation of transcription, and epithelium development
(Figure 5D, Supplementary Table 12). Taken together, these
results indicated that ATOH1 functions as a master tran-
scription factor, directly regulating the program of differ-
entiation and function within secretory cells in the
intestines.
In Situ Validation of ATOH1 Targetome
Identifies Novel Secretory Cell Markers

To validate the mRNA expression of the genes identified
in the ATOH1 targetome, we performed in situ hybridiza-
tions on the ileum of transgenic mice where ATOH1 is
deleted (Fabp1Cre; Atoh1lox/lox) and in littermate controls
(Fabp1Cre; Atoh1þ/þ).8 Six genes that have not been fully
studied in the intestinal secretory cells were selected
randomly from the list of ATOH1 targets (Supplementary
Table 9). These included the transcription factor nuclear
factor I/A (Nfia), HEPACAM family member 2 (Hepacam2),
keratin 18 (Krt18), thioredoxin domain-containing 11
(Txndc11), ataxin 1 (Atxn1), and SH3 domain binding
glutamate-rich protein–like 3 (Sh3bgrl3). We found that the
mRNA expression of Nfia is restricted in Paneth cells and
completely depleted in Atoh1 deletion tissues (Figure 6A).
In addition, we identified Hepacam2 as an ATOH1-
dependent goblet cell gene in the ileum (Figure 6B).
Krt18 expression is scattered in what appear to be pro-
genitor cells in the crypts and a minority of cells in the
villus. In Atoh1mutant tissues, Krt18-positive cells in villus,
but not in crypts, retain the expression of Krt18, suggesting
these Krt18-positive cells in villus are not derived from
ATOH1-positive secretory lineage (Figure 6C). Finally, we
found that Txndc11, Atxn1, and Sh3bgrl3 are expressed not
only in goblet cells, Paneth cells, and transit amplifying
cells, but also in the other epithelial cell types
(Figure 6D–F). Although the mRNA level of these 3 genes
are decreased in Atoh1 mutant tissues, it is clear that they
also are expressed in some remaining cells through
ATOH1-independent transcription. Taken together, these
results indicated that the ATOH1 targetome we generated
in this study is a valuable resource for identifying novel
secretory cell genes.
ATOH1 Transcriptional Targets in
Human Colorectal Cancer Cells

ATOH1 is highly conserved between species.53 In colo-
rectal cancers (CRCs), ATOH1 functions as a tumor sup-
pressor.54 Re-expression of ATOH1 in colon cancer cells not
only inhibits proliferation but also promotes apoptosis,
suggesting a potential window for new CRC therapeutics.
Therefore, identification of ATOH1 targets in human CRCs
will provide novel insights into CRC therapeutics. We asked
whether ATOH1 shares similar transcriptional targets
between normal intestines and human CRC cells. First, we
focused on Cbfa2t3, a direct ATOH1 target that we identified
in mouse colon. CBFA2T3 (also referred to as MTG16 or
ETO2) is one of the MTG family of transcriptional co-
repressors that contributes to intestinal crypt proliferation
and regeneration after injury.45,46 Our ATOH1 ChIP-seq data
indicated that ATOH1 strongly binds to the first exon/intron
of Cbfa2t3 (Figure 7A). By using the University of California
Santa Cruz genome browser (genome.ucsc.edu), we identi-
fied a corresponding region within the human CBFA2T3
promoter that contained several putative ATOH1 binding
motifs (Figure 7A). To determine whether ATOH1 binds to
the CBFA2T3 promoter in human CRC cells, we performed
ChIP-PCR for transiently expressed ATOH1-GFP in human
colon cancer cell line HCT116. Compared with mock-
transfected cells, ATOH1 was enriched in the promoter re-
gion of CBFA2T3, but not in the downstream negative con-
trol region (Figure 7B). We extended our analysis of
potentially conserved ATOH1 targets by examining another
8 ATOH1 colonic target genes, including HDAC1, RAPGEF3,
SOX9, GFI1, SPDEF, MAML3, KIT, and CREB3L1. By using a
similar approach as described for CBFA2T3 earlier, we
identified orthologous human sequences with predicted
ATOH1 binding sites for all 8 genes. ChIP PCR confirmed
that ATOH1 bound to all 8 predicted ATOH1 binding re-
gions, but not in the negative control regions, indicating
strong conservation of ATOH1 binding sites across species
(Figure 7B). To further determine whether ATOH1 could
functionally regulate the expression of these genes in hu-
man CRCs, we isolated ATOH1-positive cells by flow
cytometry followed by reverse-transcription quantitative
PCR (RT-qPCR). Compared with ATOH1-negative cells, the
expression of CBFA2T3, SPDEF, RAPGEF3, and MAML3 were
up-regulated significantly in ATOH1-positive cells
(Figure 7C). In addition, the expression of GFI1 and KIT was
increased in ATOH1-positive cells. In contrast, ATOH1
induced a small but significant decrease in HDAC1 expres-
sion (Figure 7C). Taken together, these results suggested
that ATOH1 functionally regulates the majority of these
genes not only in mouse colon, but also in human CRCs.
SPDEF Cooperates With ATOH1 to
Amplify Target Gene Expression

We next sought to identify transcription factors that are
likely to co-regulate gene expression with ATOH1. Our
unbiased de novo motif analysis (Figure 3E) identified many
potential co-regulators, but most of these sites included
intergenic regions of unknown significance. Therefore, we

http://genome.ucsc.edu
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Figure 7. (See previous page). ATOH1 transcriptional targets in human colorectal cancer cells. (A) Highly conserved
promoter sequence of Cbfa2t3 bound by ATOH1 between human and mouse genome. Several putative ATOH1 binding motifs
5’-CANNTG-3’ within the ATOH1 peak were highlighted (red). (B) Human colon cancer cell line HCT116 was transfected
transiently with ATOH1-GFP and used for ChIP PCR. Anti-GFP antibodies were used for ChIP. (C) Real-time PCR analysis of
complementary DNAs synthesized from mRNA isolated from FACS purified ATOH1-GFP–positive or ATOH1-GFP–negative
HCT116 cells 48 hours after transient transfection. Relative fold change is presented as means ± SEM of 3 independent
experiments (*P < .05, **P < .01, and ***P < .001).

A

B

Figure 8. SPDEF functions as a transcriptional co-regulator of ATOH1. (A) Flow chart for identifying SPDEF binding motifs
within ATOH1 binding regions in the colon ATOH1 targetome. P values are for motif enrichment. (B) Real-time PCR analysis of
complementary DNAs synthesized from mRNA isolated from mouse colonic crypts. Spdef null or littermate wild-type control
mice were treated with either vehicle or dibenzazepine (DBZ) for 5 consecutive days. Relative fold change is presented as
means ± SEM (*P < .05 and ***P < .001). ANOVA, analysis of variance; TFs, transcription factors.
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Figure 10. Proposed model of transcriptional co-
regulation by ATOH1 and SPDEF.

January 2017 ATOH1 Regulation and SPDEF 67
performed a motif scan analysis of the colon-specific ATOH1
targetome. Specifically, HOMER was used to scan for 10-mer
motifs that were enriched significantly in the ATOH1 tar-
getome while optimized for 50 motifs during the search
(findMotifsGenome.pl –len 10 –S 50). This analysis showed
SPDEF binding motifs enriched within the ATOH1 targetome
(Figure 8A), with SPDEF motifs associated with 75 of 658
(11%) of ATOH1 target genes in the colon (Supplementary
Table 13). Of note, among these genes we found several
goblet cell–associated genes, including Atoh1, Spdef, Muc2,
Reg4, Klk1, Creb3l1, and Slc12a8. Previous studies have
suggested that SPDEF plays a critical role in controlling
goblet cell terminal differentiation.17,18 To determine the
interdependence between ATOH1 and SPDEF to control
expression of these putative co-regulated genes, we
assessed the effect of overexpression of ATOH1 or SPDEF in
the absence of the other protein. We enhanced ATOH1
expression using the g-secretase inhibitor, DBZ, in wild-type
and Spdef null mice, and assessed target gene expression in
colonic crypts by RT-qPCR. As expected, DBZ treatment
increased the expression of Atoh1 and all downstream
target genes in wild-type mice (Figure 8B, open circles).
Deletion of Spdef significantly blunted the effects of DBZ-
ATOH1–mediated transcription in a subset of ATOH1 target
genes, including Creb3l1, Slc12a8, Muc2, and Reg4, but not
others, such as Cbfa2t3 and Klk1 (Figure 8B, closed squares).
These results suggested that ATOH1 is sufficient to drive
target gene expression and that as a direct target of ATOH1,
SPDEF provides positive feedback to amplify ATOH1-
dependent transcription of a subset of secretory
cell–associated genes, especially goblet cell genes.

To further establish the relationship between ATOH1
and SPDEF, we asked whether SPDEF could activate
expression of secretory cell genes in the absence of ATOH1.
To test this hypothesis, transgenic mice in which ATOH1 is
deleted in the intestinal epithelium (Fabp1Cre; Atoh1lox/lox)
were bred with tetracycline-inducible SPDEF transgenic
mice (Rosa26LSL-rtta-ires-EGFP; TRE-Spdef). In this mouse
model, Fabp1-Cre is expressed in a patchy pattern in the
ileum and colon (Figure 9A).8 With the Rosa LSL-rtta-ires-EGFP

reporter, we were able to sort GFP-positive Atoh1
deletion cells from control (Fabp1Cre; Atoh1lox/lox;
Rosa26 LSL-rtta-ires-EGFP) and littermate (Fabp1Cre; Atoh1lox/lox;
Rosa26 LSL-rtta-ires-EGFP; TRE-Spdef) mice; we induced SPDEF
expression in Atoh1-mutant cells by treating these mice with
tetracycline in water for 5 consecutive days (Figure 9A).
Thus, after isolating 7AAD-negative (live) cells by flow
cytometry from control or SPDEF-induced colonic crypts,
we were able to analyze the mRNA expression by RT-qPCR
of the following: (1) wild-type (GFP-negative cells from
Figure 9. (See previous page). SPDEF functions as a transc
using the inducible mouse model (Fabp1Cre; Atoh1lox/lox; Rosa2
transcription. Arrowheads indicate loxP sites. SPDEF expres
tetracycline (2 mg/mL). Fabp1-Cre is expressed in a patchy patt
GFP (Atoh1 deletion region) combined with Alcian blue staining
adjacent wild-type colonic epithelium. (B) GFP-positive cells w
PCR analysis. Relative fold change is presented as means
knockout; OE, overexpression; WT, wild type.
either control or TRE-SPDEF mice), (2) Atoh1 deletion
(GFP-positive cells from control mice), and (3) Atoh1 dele-
tion and Spdef overexpression (GFP-positive cells from
TRE–SPDEF mice) cells (Figure 9A). As expected, in Atoh1
deletion (GFP-positive) cells, the mRNAs of ATOH1 targets
were decreased significantly compared with wild-type (GFP-
negative) cells (Figure 9B, open triangles). In contrast,
despite robust transgene induction (w20-fold), SPDEF was
not sufficient to activate transcription of Creb3l1, Slc12a8,
Muc2, Reg4, Cbfa2t3, and Klk1 in Atoh1 deletion cells
(Figure 9B). Taken together, these results indicated that
SPDEF amplifies ATOH1-mediated transcription of secretory
cell genes, but is insufficient to drive secretory cell gene
expression in the absence of ATOH1 (Figure 10).

Discussion
In this study, we used a combination of RNA-seq and

ChIP-seq techniques together with cell sorting and state-of-
the-art transgenic mice to identify more than 700 direct
transcriptional targets of ATOH1 in the small and large in-
testines. Of note, these unbiased genome-wide approaches
were performed in primary ileal and colonic crypts under
homeostatic conditions, thereby increasing the relevance
and credibility of identified target genes. Our data showed
that ATOH1 strongly binds to core promoter and enhancer
regions, which were marked by the active chromatin histone
riptional co-regulator of ATOH1. (A) Experimental strategy
6 LSL-rtta-ires-EGFP; TRE-Spdef). Arrows indicate the direction of
sion was induced by feeding mice with water containing
ern in the ileum and colon. Immunohistochemistry staining of
(for goblet cells) staining indicates the Atoh1 deletion and the
ere FACS-purified from colonic crypts followed by real-time
± SEM (***P < .001). ANOVA, analysis of variance; KO,



68 Lo et al Cellular and Molecular Gastroenterology and Hepatology Vol. 3, No. 1
modification H3K27Ac, suggesting that ATOH1 likely func-
tions as a transcriptional activator. Although the physio-
logical function of ileum and colon are very different, the
ATOH1-associated genes were highly similar in these 2
tissues. The ontology analysis indicated that ATOH1 directly
regulates several important biological processes and
controls the transcription machinery of secretory lineage
differentiation, suggesting that ATOH1 is required for
specifying and maintaining secretory cells throughout the
intestinal epithelium.

The Notch signaling pathway is critical for gastroin-
testinal cell fate determination.5,55,56 In the adult in-
testines, activation of Notch signaling induces the
expression of HES1, which directly represses Atoh1, and
thus directs progenitors to differentiate along the absorp-
tive lineage. On the other hand, adjacent progenitors that
escape Notch activation express ATOH1, which commits
these cells to the secretory lineage. Considerable genetic
evidence suggests that ATOH1 is a key transcription factor
that controls Notch-mediated lateral inhibition.16 However,
the details underlying this mechanism are characterized
incompletely. Previous studies have suggested that delta-
like protein (DLL) 1 and DLL4 are key Notch ligands
required for maintaining ISC homeostasis and differentia-
tion.57 Simultaneous deletion of Dll1 and Dll4 phenocopies
the loss of Notch activity and causes the complete con-
version of proliferating progenitors into postmitotic
secretory cells, resulting in loss of the active ISC popula-
tion.57 In this study, we identified Dll1 and Dll4 as direct
targets of ATOH1, confirming a central role for ATOH1 in
control of lateral inhibition from ATOH1-positive secretory
progenitors to adjacent absorptive progenitors/stem cells.
In addition to Dll1 and Dll4, several other Notch signaling
pathway components were identified as ATOH1-associated
genes, such as CBF1, Suppressor of hairless, Lag-1 (CSL)
transcriptional co-activator Maml3 and Crebbp, CSL tran-
scriptional co-repressor Hdac1, Ncor2, Ctbp1 and Ctbp2,
Notch ligand Jag1, Notch receptor Notch1, and Notch
antagonist Numb.58–63 Taken together, our data suggest
that ATOH1 functions as a master transcription factor for
Notch-mediated lateral inhibition by directly activating
Notch ligands to reinforce secretory cell fate commitment.
Expression of ATOH1 is likely to be the key event in
commitment of differentiating cells to the secretory
lineage.

ATOH1 is required for the differentiation of all intestinal
secretory cells.7 Consistent with these observations, the
expression of goblet cell–, Paneth cell–, and enteroendocrine
cell–specific genes were decreased after conditional deletion
of ATOH1 throughout the intestinal epithelium. Interest-
ingly, our immunofluorescence staining suggested that
ATOH1 is expressed at much lower levels in enter-
oendocrine cells than in goblet and Paneth cells. This
observation can explain why we did not find
enteroendocrine-specific genes in ATOH1-positive cells
purified from Atoh1GFP/GFP mice. The lower expression level
of ATOH1 in enteroendocrine cells may be caused by post-
translational modification or by the other negative
transcriptional feedback. We speculate that different levels
of ATOH1 specify different subtypes of secretory cells,
which may contribute to secretory cell allocation.64

Several transcription factors downstream of ATOH1,
such as SPDEF and GFI1, were shown to regulate secretory
cell differentiation.17–19 However, little is known about how
these transcription factors modulate secretory gene
expression. Our data indicated that SPDEF amplifies ATOH1-
dependent transcription of a subset of goblet cell genes
(Figure 8B). Although we cannot determine whether the
amplification of ATOH1-dependent transcription is contrib-
uted directly by SPDEF binding to the chromatin or caused
indirectly by the other critical components lost in Spdef null
mice, de novo motif analysis indicated a significant enrich-
ment of the SPDEF binding motif within the ATOH1 targe-
tome, suggesting the possibility that SPDEF coordinates
with ATOH1 on the promoter or enhancer regions of these
genes (Figure 8A). We further found that SPDEF itself is not
sufficient to activate ATOH1 targets, suggesting a hierarchy
of transcription factor–mediated gene expression during
intestinal cell differentiation (Figure 9B). One caveat of this
experiment was that Atoh1 deletion tissues lack specified
secretory cells, therefore the majority of these cells are
enterocytes. Thus, SPDEF might not be able to regulate
secretory gene transcription in the enterocyte context owing
to limited chromatin accessibility. However, our unpub-
lished data suggested that SPDEF is able to drive mucus-like
production in Atoh1 deletion tissues, indicating SPDEF
retains at least part of its biological function in enterocytes
(data not shown). Moreover, a previous study indicated that
secretory and absorptive progenitors show similar distri-
butions of histone marks and DNase hypersensitivity,
suggesting intestinal lineage determination is not dependent
on chromatin priming.16 Based on our findings in this and
previous studies, as a master transcription factor, it is most
likely that ATOH1 is expressed at the earliest step of
secretory progenitor differentiation, and it must be contin-
uously expressing in all secretory lineages for their main-
tenance. Within secretory progenitor cells, an unknown
mechanism results in NEUROG3 or GFI1 expression; those
cells that express GFI1 commit to the Paneth/goblet cell
fate; we suggest that ATOH1 expression levels may mediate
this decision. Subsequently, when SPDEF is activated in the
progenitors, it strengthens the expression of ATOH1-
dependent goblet genes, resulting in goblet cell terminal
differentiation. We suggest that in addition to ATOH1-
dependent targets, SPDEF also may regulate transcription
of ATOH1-independent goblet gene expression (Figure 10).
Future studies to determine how transcription networks
select alternate secretory cell fates will expand our current
knowledge of stem cell biology and chromatin biology of the
intestinal cells.

Previous studies have suggested that ATOH1 functions
as a tumor suppressor in human CRCs.54 To gain more
insight into this activity, we examined whether ATOH1
shares similar transcriptional targets in mouse colonic
crypts and human colon cancer cell line HCT116. Inter-
estingly, even though ATOH1 binds to all of the human
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ATOH1 targets predicted by our murine ChIP-seq analysis,
only 4 of 9 of these ATOH1 targets were regulated in a
similar manner at the transcriptional level. Because ca-
nonical Wnt/b-catenin signaling is hyperactivated in
HCT116 owing to a gain-of-function b-catenin mutation, it
is possible that this interferes with ATOH1 target gene
expression in colon cancer cells. It also is possible that
Wnt/b-catenin target genes, such as SOX9, are expressed
at maximal levels in CRC cells and further transcriptional
activation by ATOH1 is not possible.65 Alternatively, the
transcriptional machinery of ATOH1 might rely on
different cofactors that are not available in these cancer
cells. These data highlight the difficulty of using cancer
cell lines to extrapolate information about transcriptional
targets in normal tissues.

We previously identified SPDEF as a tumor suppressor in
both murine and cell culture CRC models.66 Consistent with
these observations, in this study, we show that ATOH1 binds
to SPDEF and directly regulates its expression in both
mouse intestines and human colon cancer cells. Given pre-
vious findings that ATOH1 is a colorectal tumor suppres-
sor,13,54,67 our study suggests that SPDEF may be a key
mediator of ATOH1’s tumor-suppressive activity. Further
studies of direct transcriptional targets of ATOH1, such as
SPDEF, in human CRCs will provide insight into therapeutic
strategies for targeting human CRCs through the
Notch–ATOH1 axis.

Next-generation sequencing provides unbiased genome-
wide approaches to studying transcriptional machinery.
However, there are some caveats to this study. First,
although we performed the ATOH1 ChIP-seq in purified
intestinal crypts, these data derive from a mixed cell pop-
ulation. Thus, we cannot distinguish whether ATOH1 bind-
ing sites were present in all ATOH1-positive cells or are
found only in a subpopulation. Second, ChIP-seq cannot
identify binding sites in relatively rare subpopulations of
cells (eg, enteroendocrine cells), and therefore these may be
missed in this study. We noted that the ATOH1 ChIP-seq
from colonic crypts identified more binding sites than
from ileal crypts. This is possibly owing to the gradient of
endogenous ATOH1 expression in the adult intestine—much
higher in the colon than ileum. Advanced ChIP-seq and RNA-
seq techniques for small amounts of sorted cells will be
helpful to address these caveats in the future. Further
integration of the ATOH1 transcriptional network with
other pathways regulating intestinal differentiation and
homeostasis is an important future direction for this
project.68–70

In summary, this study unveiled the direct targets of
ATOH1 in the adult intestine, providing novel insight toward
understanding the cell differentiation and biological func-
tion of intestinal secretory lineages. We further showed
interaction between ATOH1 and SPDEF to regulate the
expression of a subset of target genes, suggesting that basal
expression of secretory cell genes may require amplification
factors to achieve full expression. Thus, our results identify
novel interactions between secretory lineage-specific tran-
scription factors that control cellular differentiation and
maturation in the adult intestines.
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