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SUMMARY

Tests used in the empirical sciences are often (implicitly) assumed to be represen-
tative of a given research question in the sense that similar tests should lead to
similar results. Here, we show that this assumption is not always valid. We illus-
trate our argument with the example of resting-state electroencephalogram
(EEG). We used multiple analysis methods, contrary to typical EEG studies where
one analysis method is used. We found, first, that many EEG features correlated
significantly with cognitive tasks. However, these EEG features correlated
weakly with each other. Similarly, in a second analysis, we found that many
EEG features were significantly different in older compared to younger partici-
pants. When we compared these EEG features pairwise, we did not find strong
correlations. In addition, EEG features predicted cognitive tasks poorly as shown
by cross-validated regression analysis. We discuss several explanations of these
results.

INTRODUCTION

Representative paradigms with elaborated tests are crucial in all empirical sciences. In the brain sciences,

neuroimaging methods are used to investigate mechanisms underlying cognition and perception. Typi-

cally, a link between a neuroimaging feature (e.g., brain volume, connectivity) and a cognitive function

of interest is declared if the chosen test delivers a significant result (after accounting for confounding vari-

ables). There is often the implicit assumption that the significant neuroimaging feature is representative of

the neural mechanism under investigation. Here, we explicitly tested this assumption with the example of

resting-state electroencephalogram (EEG).

In resting-state studies, EEG is recorded for around 5 min during which participants do nothing else than

rest quietly. Signal processing methods are applied to quantify spatial and/or temporal characteristics of

spontaneous brain activity. The outcomes of the analysis methods, i.e., EEG features, are interpreted to

reflect brain processes linked to certain aspects of perception and cognition. For example, activity in

the alpha and theta bands has been linked to memory and executive functions,1–3 alpha-band activity to

visual perception,4,5 temporal autocorrelations of alpha-band oscillations and EEG microstates dynamics

to reaction times,6,7 connectivity features and alpha activity to intellectual abilities,8–10 just to give a few

examples. Similarly, EEG features reveal abnormalities in patients with schizophrenia,11–15 depression,16–19

and healthy older adults,20–23 among others.

Each of these findings indicates a significant link between a given EEG feature and an aspect of cognition or

a disease. In this respect, this approach has been very successful. Yet, these results provoke the questions

of how the different EEG features relate to each other and how representative they are of the underlying

mechanisms. For example, one might expect different EEG features, recorded from the same patients,

to correlate with each other if they are supposed to point to the same aspect of the disease.

Here, we analyzed data from resting-state EEG recordings and a battery of cognitive tests. To obtain a

comprehensive set of neurophysiological features, we applied widely used analysis methods to the

same EEG data, including time-domain, frequency-domain, connectivity, and nonlinear dynamical analysis

methods both in the electrode and source spaces. We extracted 175 EEG features. From the battery of

cognitive tests, we obtained 12 cognitive variables describing several cognitive aspects. We correlated

each EEG feature with each cognitive variable using methods that permitted us to examine linear and

nonlinear relationships. Next, we correlated the features revealing significant correlations with the same
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cognitive variable using univariate and multivariate correlation methods. This comparison allowed us to

investigate whether the features, showing a significant correlation with one of the cognitive variables, point

to a common mechanism. In a second project, we conducted group comparisons between younger and

older adults using each EEG feature. A significant group difference would indicate that the EEG features

tap into important age-related changes in brain processing. To test whether the features showing group

differences target common age-related aspects, we correlated the EEG features revealing significant

group differences. Furthermore, we used principal component analysis to assess the latent dimensions

of multiple EEG features showing significant correlations to a cognitive variable and significant group dif-

ferences between younger and older adults. As a complementary analysis, we evaluated cross-validated

regression models using each EEG feature to predict the cognitive variables. Importantly, we did not

want to elaborate on any particular relationship between an EEG feature and cognitive ability or an EEG

feature and aging. We were interested in how significant results from single analyses relate to each other.

RESULTS

We analyzed data from the publicly available LEMON database.24 This database includes resting-state

EEG recordings and a battery of cognitive tasks. The sample used for the present study consisted of 201

participants, 138 younger adults (mean age = 25.43, SD = 3.39, 42 females) and 63 older adults (mean

age = 67.66, SD = 4.79, 31 females). Using multiple analysis methods, we obtained 175 EEG features

from the resting-state EEG recordings. The EEG features can be composed either of 61, 80, or 4 variables,

corresponding to the number of electrodes, brain regions, or microstate parameters, respectively. From

the battery of 6 cognitive tests, we obtained 12 cognitive variables. Details are shown in experimental

model and subject details.

Correlations between EEG features and cognitive variables

We computed Spearman and distance correlations between each EEG feature and cognitive variable.

Thus, for each age group and correlation type, we performed 2100 (175*12) analyses. With this evaluation,

we sought to identify the EEG features reflective of a neural process linked to each cognitive ability. Next,

the EEG features showing a significant correlation to a cognitive variable were pairwise correlated either

using Spearman or distance correlations and multivariate distance correlations. Strong correlations be-

tween EEG features would suggest that the features point to the same mechanism representative of the

cognitive aspect under study. In younger adults, 109 analyses were significant using Spearman correlations

and 121 using distance correlations (after correction for multiple comparisons for each pair of EEG feature

and cognitive variable). For most cognitive variables, we found more than one EEG feature showing a sig-

nificant correlation (Figure 1A). The correlations between these EEG features were weak in most of the

cases. Similar results were found using multivariate distance correlations (
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
), which permitted us to

correlate EEG features considering all the variables, i.e., electrodes, brain regions, or microstate parame-

ters (Figure 1B). Results for older adults were similar and are presented in Figure S1.

For instance, for younger adults, both the life time statistics of the amplitude envelopes in the theta band

(life time theta) and the node strength of delta connectivity measured in the electrode space using phase

locking value (node str e-plv delta) correlated significantly with the workingmemory variable obtained from

the test of attentional performance (Tap working memory; rmax = �0.28 and rmax = 0.29, respectively).

However, life time theta and node str e-plv delta did not correlate strongly with each other (r = �0.11;ffiffiffiffiffiffiffiffiffiffi��R �
n

��q
= 0.07; Figure 2). Similarly, using distance correlations, both the occurrence of microstate class C

(microstate C) and the betweenness centrality of gamma connectivity measured in the electrode space us-

ing weighted phase lag index (betw cen e-wpli gamma) showed significant correlations with the module A

variable of the trail making test (Tmt-A;R n max = 0.25 andR n max = 0.36, respectively). However, the two

EEG features only weakly correlate with each other (R n = 0.15;
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
= 0.01; Figure 3). rmax and R n max

denote themaximum significant Spearman or distance correlation (among all the electrodes, brain regions,

or microstate parameters) of the EEG feature with the cognitive variable.

While the correlations between EEG features were generally low (Figure 1B), some EEG features obtained

from different analysis methods were highly correlated with each other. For example, in younger adults,

both the Hjorth activity parameter (hjorth activity) and the standard deviation of the amplitude envelopes

in the beta band (std ampl beta) showed significant correlations with the attention span module of the Cvlt
2 iScience 26, 106017, February 17, 2023



Figure 1. Result of the correlation analysis in younger adults

(A) EEG features with significant correlations to cognitive variables. On the right side of the panel, we indicate the range (min-max) of the magnitudes of the

significant correlations (see correlations between EEG features and cognitive variables in quantification and statistical analysis).

(B) Median (confidence interval: 25th and 75th percentiles) Spearman and distance correlations between the EEG features showing a significant correlation

with the same cognitive variable. On the right side of the panel, we indicate the 25th, 50th, and 75th percentiles of the multivariate distance correlations

(
ffiffiffiffiffiffiffiffiffiffijR �

n j
p

; ranging from 0 to 1) between the EEG features (with all its variables) showing a significant correlation with the same cognitive variables.
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(Cvlt attention span; rmax = 0.28 and rmax = 0.30, respectively). The two EEG features correlated strongly

with each other (r = 0.84;
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
= 0.77). Similarly, using distance correlations, the animal categories var-

iable of the Rwt test (Rwt animal categories) correlated significantly with the occurrence of microstate class

B (microstate B; R n max = 0.27) and with the clustering coefficient of alpha connectivity measured in the

electrode space using weighted phase lag index (clust coef e-wpli alpha;R n max = 0.28). The EEG features

microstate B and clust coef e-wpli alpha exhibit a moderate correlation with each other (R n = 0.41;ffiffiffiffiffiffiffiffiffiffi��R �
n

��q
= 0.35). All pairs of EEG feature and cognitive variable that showed significant results are presented

in Figure 4.

Next, we used a principal component analysis (PCA) to examine whether EEG features, showing a signifi-

cant correlation with a cognitive variable, can be grouped into a set of latent variables. Then, we used the

EEG latent variables in a multiple regression model to predict the cognitive scores (see dimensionality

reduction and multiple regression in quantification and statistical analysis). We found that a small number

of EEG latent variables tended to explain a considerable amount of the variance of the EEG features that

had a significant correlation (Spearman or distance correlation) with a cognitive variable (see Figures S5–

S10). For instance, in younger adults, we applied PCA on the 18 EEG features that showed a significant

Spearman correlation to the Tap working memory scores in younger adults (Figure 2). The first principal

component explained 31.99% of the variance of the 18 EEG features. The first three principal components

explained 57.61% of the variance of the 18 EEG features (Figure S6). Results are similar across cognitive vari-

ables. The proportion of variance explained by the first principal components of the EEG features showing

a Spearman correlation to a cognitive variable ranged from 29.32% (Rwt animal categories; 7 EEG features)

to 62.83% (Rwt s words; 8 EEG features; median across cognitive variables: 44.15%). For EEG features

showing a significant distance correlation to a cognitive variable, the variance explained by the first prin-

cipal components ranged from 27.81% (Rwt animal categories; 11 EEG features) to 58.64% (Rwt s words;

9 EEG features; median across cognitive variables: 33.90%).
iScience 26, 106017, February 17, 2023 3



Figure 2. Spearman correlations between the EEG features that correlated significantly with the Tap working

memory variable in younger adults

Themain diagonal has the rmax (maximum Spearman rho) of the electrode or brain region showing the largest significant

correlation to the cognitive variable. On the right side, we show the pairwise multivariate distance correlations between

the EEG features (with all its variables).
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Finally, we investigated whether a combination of EEG latent variables explains the cognitive variables bet-

ter than a single latent variable. Thus, we asked whether various uncorrelated EEG features carry comple-

mentary information of the cognitive variables. To this end, we computed a multiple regression model.

First, we used only the first PC as the predictor variable and then added, one by one, more PCs to themodel

(up to the third PC, i.e., three predictors). To comparemodels with different numbers of predictor variables,

we used adjusted-R2 to measure the goodness of fit. The analysis was performed for younger and older

adults separately. For the EEG features showing a significant Spearman correlation with a cognitive vari-

able in younger adults, the adjusted-R2 values ranged from 0.00 (Pts 2 subtest 3) to 0.22 (Tmt-B) using

only the first principal component in the regression model (median adjusted-R2 across cognitive variables:

0.15), and from 0.11 (Cvlt attention span) to 0.32 (Cvlt delayed memory) using the first three principal

components (median adjusted-R2 across cognitive variables: 0.21; Table S2). For EEG features showing

a significant distance correlation, in younger adults, the adjusted-R2 values ranged from 0.07 (Tap alert-

ness) to 0.20 (Tmt-B) using only the first principal component in the regression model (median adjusted-

R2 across cognitive variables: 0.12), and from 0.09 (Tap alertness) to 0.22 (Rwt animal categories) using

the first three principal components (median adjusted-R2 across cognitive variables: 0.14; Table S4). Results

for older adults are presented in Tables S3 and S5. Importantly, the estimates of predictive performance

were not obtained using cross-validation. As such, results should be taken with caution.

Interim conclusions: There are significant correlations between cognitive variables and EEG features ob-

tained with different analysis methods, including connectivity, spectral power, and microstate methods.

Classically, studies in the field investigate the relationship between one EEG feature and one cognitive var-

iable in great detail with the tacit assumption that the EEG feature is representative of a proposed brain

mechanism. However, we found that even though various EEG features show a significant correlation

with a cognitive variable, these EEG features usually do not strongly correlate with each other. We found

that a set of latent dimensions composed of multiple EEG features may explain some cognitive variables

better than a single latent dimension. Yet, this was not the case for most cognitive variables. Hence, one

cannot take it for granted that an EEG feature is representative of the research question at hand just

because there is a significant correlation between the feature and a cognitive or another variable. We
4 iScience 26, 106017, February 17, 2023



Figure 3. Distance correlations between the EEG features that correlated significantly with the Tmt-A variable in

younger adults

The main diagonal contains the R n max (maximum distance correlation) of the electrode, brain region, or microstate

parameter showing the largest significant correlation to the cognitive variable. On the right side, we show the pairwise

multivariate distance correlations between the EEG features.
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are not claiming that studies based on single correlations cannot provide meaningful information about

brain mechanisms. We are just pointing out that a significant result does not guarantee it. We examine

this notion further in the general discussion.

Prediction of cognitive variables using EEG features

The features studied in EEG research are hypothesized to reflect neurophysiological processes involved in

cognitive function. Therefore, we would expect that EEG features predict cognitive scores adequately. In

this section, to test for predictive ability, we go beyond correlations and used cross-validated machine

learning (ML) models. Thus, we tested the ability of single EEG features to predict each cognitive variable

in an out-of-sample manner. This approach has several advantages. First, ML models handle multivariate

predictors very well. Neuroimaging data are often composed of information from several brain regions

or electrodes, and thus, multivariate methods provide a compact way to use all the information. Second,

models can be evaluated using cross-validation, where different parts of the data are used to train and

test the models, providing a rigorous test for the generalizability of results. We tested two models, namely

ridge models, which are sensitive to linear relationships between predictors and predicted variables, and

random forest models, which detect nonlinear relationships.

In total, 2100 (175*12) models were built using one EEG feature and one cognitive variable for each ML

model (ridge or random forest) and age group (younger and older). Predictive performance was estimated

using the coefficient of determination (R2). Models were trained using cross-validation on 67% of the data

and tested on the left-out 33%. We repeated the entire procedure 50 times, with different allocations of

participants in the train and test sets, and obtained the median predictive performance (see cross-vali-

dated prediction of cognitive variables using EEG features in quantification and statistical analysis).

Note that R2 calculations (using the sums of squares formula and not the squared correlation) can result

in negative values when the model prediction on data not used in model training is less accurate than it

would be by just predicting the mean value of the data.25,26 For younger adults, the 25th, 50th, and 75th per-

centiles of the 2100 (175*12) R2 values obtained using ridge regression were 0.00, 0.00, and 0.03 for the
iScience 26, 106017, February 17, 2023 5



Figure 4. Prediction of cognitive variables using EEG features

Cross-validated R2 is shown (median R2 across 50 iterations). A ridge regression model was built for each pair of EEG feature and cognitive variable.

Abbreviations: A =Cvlt attention span, B = Cvlt delayed memory, C = Pts-2 subtest 3, D = Rwt animal categories, E = Rwt s words, F = Tap alertness, G = Tap

simon congruent, H = Tap simon incongruent, I = Tap working memory, J = Tmt-A, K = Tmt-B, L = Vocabulary test. Green and orange squares indicate that

Spearman and distance correlation analyses were significant, respectively. Purple squares indicate that both Spearman and distance correlations were

significant for the same EEG and cognitive variable pair. Colormap limits are set between 0 and 0.2. Negative R2 values are shown as zero.
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training data and �0.04, �0.03, and �0.02 for the testing data (Figure 4). For the random forest regression

models, the 25th, 50th, and 75th percentiles of the R2 values were 0.65, 0.74, and 0.78 for the training data,

and�0.14,�0.10, and�0.06 for the testing data. For older adults, the 25th, 50th, and 75th percentiles of the

R2 values obtained using ridge regression were 0.00, 0.00, and 0.06 for the training data and �0.09, �0.06,

and �0.04 for the testing data. For random forest regression models, the 25th, 50th, and 75th percentiles of

the R2 values were 0.80, 0.82, and 0.83 for the training data, and �0.24, �0.16, and �0.10 for the testing

data. See Data S2 to S5 for detailed results.

Interim conclusions: Predictions play a crucial role in science. With this analysis, we set out to assess the

ability of EEG features to predict cognitive variables. We used cross-validated prediction models. There

is a hypothesized relationship between neurophysiological features at rest and cognitive performance.

Thus, if EEG features truly reflect core aspects of cognitive functioning, one might expect EEG to predict

cognitive performance well. Surprisingly, we found generally weak predictive performance using two

different regression models. Hence, there is the possibility that we might need to rethink to what extent

neurophysiological features obtained from resting-state recordings truly have a clear-cut link to behavioral

measures. Another option is that the relationships might be less strong than often implicitly thought. We

like to stress that our results provide only a general overview of brain-behavior predictive success and are

only related to resting-state EEG features.

Group comparisons of the EEG features between younger and older adults

Classically, case-control studies using EEG are set out to identify neurophysiological processes differing in

two groups (e.g., patients and controls, younger and older adults). The tacit assumption is that a significant

result shows that an EEG feature under study points, for example, to a cause of a disease. In this analysis, we

examined differences between older and younger adults. Each of the 175 EEG features was subjected to

group comparisons between older and younger adults. 108 out of the 175 EEG features (61.71%) contained

at least one variable showing significant group differences between older and younger adults, indicating

that important age-related effects are detected. The absolute effect sizes (r; ranging from 0 to 1) of the

representative variables ranged between 0.18 (microstate E) and 0.58 (spectral entropy beta), correspond-

ing to small to large effect sizes.27 The 25th, 50th, and 75th percentiles of the absolute significant effect sizes

(one value per significant EEG feature) were 0.26, 0.31, and 0.42, respectively. For 56 out of the 108 EEG

features showing significant group differences, the effects were positive, namely, older adults showed

higher values than younger adults and the opposite was the case for the remaining 52 EEG features

(Figure 5).

Older adults showed significantly decreased node strength in theta connectivity measured in the source

space using lagged phase synchronization (node str s-lps theta; r = -0.31), increased long-range temporal

correlations in the delta band (dfa exponent delta; r = 0.29), as well as longer mean duration of the micro-

state class A (microstate A; r = 0.50), to name a few. Group differences were also observed in EEG features

in the different frequency bands, for instance, older adults showed reduced spectral entropy in the delta

band (spectral entropy delta; r = -0.41), reduced spectral amplitudes in the theta band in the source space

(source ampl theta; r = -0.40), reduced node strength in alpha connectivity measured in the source space

using lagged phase synchronization (node str s-lps alpha; r = -0.25), increased waiting time statistics of the

amplitude envelopes in the beta band (waiting time beta; r = 0.33), and increased node strength in gamma

connectivity measured in the electrode space using phase locking value (node str e-plv gamma; r = 0.26).

Interim conclusions:We identified various EEG features that showed group differences in older compared

to younger participants. The effect sizes of the group differences ranged from small to large, with a median

significant effect size of r = 0.31. Hence, these features point to age-related changes in brain processing.

There is the question of whether the EEG features, showing clear-cut group differences, point to the same

neurophysiological mechanism differing in older participants.

Correlations between EEG features showing age-related differences

In the previous analysis, we found 108 EEG features showing differences in older compared to younger par-

ticipants. In this section, by pairwise correlating these EEG features, we ask whether the targeted brain

processes point to a common mechanism underlying age-related differences. We calculated Spearman

correlations between the representative variables (i.e., showing the largest group effect) of the 108 EEG

features showing group differences (Figure 6). We found that 41.74% of the correlation values were
iScience 26, 106017, February 17, 2023 7



Figure 5. Effect size and confidence intervals of the group differences between younger and older adults for each

of the 175 EEG features

Negative effect sizes indicate that older adults had significantly reduced values compared to younger adults. Black

dotted horizontal lines serve as a guide to the labels of the EEG features showing significant group differences.
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Figure 6. Spearman correlations between the 108 EEG features that showed a significant group difference between younger and older adults

The r correlations belonging to younger and older adults are presented in the upper and lower triangular parts of the matrix, respectively. To calculate the

correlations, from each EEG feature, we selected the electrode, brain region, or microstate parameter showing the biggest effect size in the group

comparisons between older and younger adults. See Figure S2 for the results using multivariate distance correlations.
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significant for younger adults and 33.77% for older adults (without correction for multiple comparisons).

Since significance depends on the sample size, we focus on the magnitudes of the pairwise correlations.

The 25th, 50th, and 75th percentiles of the magnitudes of the 5778 (108*107/2) correlation values were

0.06, 0.13, and 0.29, for younger adults and 0.08, 0.17, and 0.31, for older adults.

Importantly, since the choice of EEG reference may influence the results,28 we obtained zero-referenced

EEG features and compared them to those with average reference and current source density (CSD; for
iScience 26, 106017, February 17, 2023 9
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connectivity features in the electrode space), which were the ones used in the previous analyses. We found

a very good agreement between average/CSD and zero-referenced EEG features, as quantified by intra-

class correlations (ICC) and distance correlations (see comparison between EEG reference choices in quan-

tification and statistical analysis). For younger adults, the 25th, 50th, and 75th percentiles of the ICC values

between average/CSD and zero-referenced EEG features were 0.57, 0.92, and 0.97 (ICC ranges from 0 to 1),

while for older adults, the percentile values were 0.65, 0.93, and 0.97, suggesting that the choice of refer-

ence does not affect the results. For younger adults, the 140 distance correlation values between average/

CSD and zero-referenced EEG features were 0.79, 0.98, and 0.99, while for older adults, the distance cor-

relations were 0.81, 0.99, and 1, for the 25th, 50th, and 75th percentiles. While for most EEG features the ICC

and distance correlation values were high, network EEG features, in particular, betweenness centrality fea-

tures showed rather low ICCs (see Data S6). However, this did not change the relationship between EEG

features (see: Figures S3 and S4). For zero-referenced EEG features, the pairwise correlations between

the 140 EEG features (see Data S6) in younger adults were 0.09, 0.19, and 0.36, whereas in older adults

the pairwise correlations were 0.11, 0.17, and 0.33, for the 25th, 50th, and 75th percentiles. For average/

CSD EEG features, the correlations were 0.10, 0.20, and 0.38 for younger adults, and 0.12, 0.20, and 0.35

for older adults (25th, 50th, and 75th percentiles of the multivariate distance correlation).

EEG features may be more adequately summarized considering the whole set of electrodes, brain regions,

or microstate parameters. Hence, in addition to the previous univariate correlation assessment, we calcu-

lated multivariate distance correlations, which allowed us to compare EEG features using all their variables

(Figure S2). The results are similar. For younger adults, the magnitudes of the multivariate distance corre-

lations (
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
) were 0.12, 0.23, and 0.41, whereas for older adults themagnitudes were 0.12, 0.21, and 0.38,

for the 25th, 50th, and 75th percentiles. In younger adults, 58.54% of the multivariate distance correlations

were significant, whereas 53.01% were significant for older adults (without correction for multiple

comparisons).

Furthermore, to investigate whether the EEG features showing a group difference between older and

younger participants can be grouped into a set of latent variables, we used PCA on the representative vari-

ables (i.e., the variables showing the largest group difference between older and younger participants) of

the 108 EEG features. For older adults, the first PC explained 24.01% of the variance of the EEG features.

The second and third PCs explained 13.47% and 7.54%, respectively (Figure S11). The first PC consists

essentially of EEG features obtained from nonlinear dynamical and entropy analysis methods (e.g., rqa

trapping time, lzc primitive, and permutation entropy). The second PC is mainly composed of beta and

delta band features (e.g.,mean ampl beta, node str e-plv delta, and relative ampl delta) and also nonlinear

dynamical features (e.g., katz fractal dim and lyapunov exponent). The third PC contains mainly temporal

and connectivity EEG features (e.g., microstate D, node str e-plv alpha, and life time delta). These latent

dimensions could be interesting for future investigations of age-related differences in neurophysiology.

Most of the strong correlations were found between EEG features obtained from very similar methods. For

example, the node strength and the clustering coefficient of delta connectivity estimated in the electrode

space using the imaginary part of coherence (node str e-icoh delta and clust coef e-icoh delta, respectively)

showed strong correlations with each other (r = 0.97,
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
= 0.99 and r = 0.97,

ffiffiffiffiffiffiffiffiffiffi��R �
n

��q
= 1 in younger and

older adults, respectively). Similarly, EEG features obtained using recurrence quantification analysis,

including determinism (rqa determinism) and laminarity (rqa laminarity), were strongly correlated (r =

0.99,
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
= 0.98 and r = 0.99,

ffiffiffiffiffiffiffiffiffiffi��R �
n

��q
= 1 in younger and older adults, respectively). The life and waiting

time statistics of the amplitude envelopes in the gamma band (life time gamma and waiting time gamma)

showed also strong positive correlations (r = 0.91,
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
= 0.97 and r = 0.83,

ffiffiffiffiffiffiffiffiffiffi��R �
n

��q
= 0.98 in younger and

older adults, respectively), to name a few examples.

Interim conclusions: Identifying brain mechanisms underlying cognition or perception is crucial in the brain

sciences. Our analysis showed that various EEG features, all showing group differences in older compared

to younger adults, mainly correlate weakly with each other. While there are strong correlations between

similar methods, for example, between entropy and nonlinear measures, these features did not correlate,

for instance, with EEGmicrostates, connectivity, or autocorrelation features. Hence, while the EEG features

point to meaningful brain processes showing clear-cut group differences, they do not point to a general
10 iScience 26, 106017, February 17, 2023
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neurophysiological deficit in older compared to younger adults. The main conclusion from this analysis, as

well as the previous ones, is that statistically significant effects might explain much less of the research

question than it is often implicitly assumed.
DISCUSSION

Science relies on tests targeting the crucial aspects of a research field. Classically, these tests show a sig-

nificant group difference between an intervention and a control condition, between a case and a control

group, or strong correlations to real-world or experimental outcomes. Then, in-depth studies are carried

out to describe the test in great detail in order to understand the causes of the observed effects. It usually

is assumed that these tests are representative of the interrogated mechanisms in the sense that other tests

supposed to target the same mechanism should strongly correlate with each other. Here, we have shown

that this rationale might not always hold. To exemplify our argument, we analyzed a publicly available data-

base containing resting-state EEG recordings and performance scores from a battery of cognitive tests of

older and younger adults.24

We extracted 175 EEG features from the EEG recordings and 12 cognitive variables from the battery of cogni-

tive tests. To identify the associations between EEG features and cognitive variables, we correlated each EEG

feature with each cognitive variable using Spearman and distance correlations. For younger adults, Spearman

correlations were significant for 109 analyses, while 121 analyses were significant using distance correlations.

For older adults, Spearman correlations were significant for 57 analyses and distance correlations for 60 (Fig-

ure S1). Then, we correlated the EEG features that showed a significant correlation with a cognitive variable

(Figure 1). Surprisingly, the correlations were weak in most cases, suggesting that not all the EEG features

are representative of the investigated cognitive variable. Using PCA, we found that a set of latent dimensions

composed of multiple EEG features may explain some cognitive variables better than a single latent dimen-

sion. Next, we found 108 EEG features revealing a significant group difference between older and younger

participants. These features also did not show strong correlations, even though they showed clear-cut group

effects. Using cross-validated regression analysis, we found very weak evidence that EEG features are

adequate predictors of the cognitive variables suggesting that it may be possible that the link between a

cognitive aspect and an EEG feature is less informative than believed.

How can these results be explained? There are at least five possibilities. First, EEG features might have low

test-retest reliability. Even though there are significant correlations with the cognitive tasks, the low test-retest

reliability may have led to weak correlations between EEG features (cf.29). While here we do not have a mea-

sure of test-retest, certain EEG features have shown adequate reliabilities in previous studies.30–35 Second,

there might be clear-cut group differences but the variance in the groups is low. In this case, one would

not expect high correlations, the so-called reliability paradox.36 However, variance, for example, was rather

high in the older participants in our study. Third, the EEG features do not reflect the intended brain aspects

well. For instance, the EEG features may point to nonlinear brain mechanisms. Yet, some of the EEG analysis

methods are linear and as such, theymight miss nonlinear patterns. Hence, the correlations between EEG fea-

tures might be misled by the linear methods. Fourth, the EEG features target a commonmechanism and, to a

substantial amount, also target-unspecific, i.e., idiosyncratic, aspects, which have little to do with the targeted

mechanism but contribute to the large inter-individual variability. For example, some EEG features might be

sensitive to fatigue,37 whereas others are not. Hence, if substantial parts of the variance correspond to such

target-unspecific aspects and different EEG features tap into different target-unspecific aspects, the correla-

tions may be low. Fifth, each EEG feature targets a different aspect of a highly heterogeneous, multifactorial

mechanism. Previous research indicates that this scenario might be true in certain instances. For example, by

combining different resting-state or evoked EEG features, previous studies have improved classification be-

tween groups or experimental conditions.38–43 Similarly, previous studies have reported that a combination

of EEG features allowed a better characterization of certain brain processes.44–46 Our results using PCA

also show evidence that, for some cognitive variables, latent dimensions of EEG features might bemore infor-

mative than single features. All these studies suggest that combining measures and features from the same

paradigms might offer new insights into complex processes.

In our analysis, significant results camewith small tomedium effect sizes in the range from 0.20 to 0.37 (|r|) in

the correlation analysis, and with small to large effect sizes in the range of 0.18–0.58 (|r|) in the case-control

analyses according to Cohen27 and from typical (0.2–0.3) to relatively large (>0.3) according to Gignac and

Szodorai.47 However, even for ‘‘large’’ effect sizes, there is a large proportion of unexplained variance. For
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example, for r = 0.5, the unexplained variance is 75%, and a Cohen’s d of 0.8 corresponds to a discrimina-

bility of 65% only (for the optimal decision criterion, i.e., hits = correct rejections). A good discriminability of

90% corresponds to a d = 2.5. Hence, the question is where does all the dominant noise come from? In an

optimistic scenario, it comes from measurement noise. For example, EEG is a relatively noisy technique

(e.g., electrode misplacement and volume conduction). Thus, the true effects might be larger. The pessi-

mistic scenario is that noise is low and inter-individual variability is high, i.e., there are multiple factors and

each paradigm taps into one, or a nonlinear combination of all of them plus a large amount of target-un-

specific variance. This large amount of unexplained variance could account for why one may obtain both

significant group differences and low correlations. Hence, even if clear-cut effects are found, this does

not guarantee that a paradigm represents the intended aspects well. Therefore, when a test leads to a sig-

nificant result, one needs to ask how representative the test is for the research question at hand. Particularly

in complex systems where everything is correlated with everything to some degree, there can be many

tests, which show significant but negligible effects.

Our impression is that the above considerations have been overlooked and hold true in many other

research areas. As an example, in schizophrenia research, several studies have found atypical patterns in

several resting-state EEG features, which are thereon studied in detail and linked to the crucial aspects

of the disease. Here, again, the tacit assumption is that the EEG feature under study taps into the common

and representative aspects of the disease, and for that reason, they should correlate with similar features.

However, we have shown that this is not always the case. In a previous EEG study, we extracted 194 EEG

features from the resting-state recordings of 121 patients with schizophrenia and 75 healthy controls.

We found that 69 out of the 194 EEG features showed a significant group difference between patients

with schizophrenia and healthy controls. However, the features showed mainly weak correlations with

each other, questioning to what extent a single EEG feature is representative of the disease.48 In another

example, in vision research, weak correlations have been found between performances in various visual

tasks in older and younger adults.49–52 Visual illusions also correlate weakly,53,54 suggesting that the under-

lying visual functions cannot be explained using only one visual paradigm. Similarly, four visual tasks

assumed to capture visual magnocellular stream function showed weak relationships with each other.55

The authors concluded that none of these tasks is a general measure of magnocellular function, as was

assumed. Eisenberg et al.56 showed that several questionnaires and cognitive tasks thought to point to

the same psychological construct correlate weakly with each other and predict real-world outcomes poorly.

The authors concluded that the construct lacks coherence.

Most natural sciences face severe crises. The brain sciences are among the fields hard-hit. First, many

studies are underpowered and/or subject to questionable research practices. False positives are the

consequence.57–59 Second, even if the very same data are used, different analysis tools can lead to different

results. This problem becomes more severe with complex analysis pipelines and more degrees of

freedom.60–62 Third, the uncontrolled use of open data for hypothesis testing can increase false posi-

tives.63–65 Fourth, here, we have shown that there is one additional problem. Studies may have been con-

ducted perfectly with clear-cut, significant results. Still, the studies may not target the mechanism assumed

or they are less representative of the research question than believed. Overall, our results show that single

measurements, even with ‘‘large’’ effect sizes, may be less meaningful than thought. To what extent the

above-mentioned scenarios hold must be shown for each study individually.
Limitations of the study

One of the main limitations of our study is that resting-state EEG and behavior were not measured simul-

taneously. Hence, whether there are causal links between EEG features and cognitive variables is not clear-

cut. The evoked EEG features show a more direct link to the temporal aspects of cognitive processing, and

thus stronger brain-behavior relationships might be expected. As such, our results and interpretations of

the weak correlations between EEG and cognition do not concern evoked EEG paradigms. Furthermore,

there are at least two limitations that should be considered when interpreting the results from our predic-

tion analysis. First, our sample size is small for a reliable assessment of predictive ability.66 Second, we do

not have an independent dataset to test our predictive models. We tried to account for these limitations

using a repeated train-test split procedure, which produces unbiased estimates of predictive ability for

small sample sizes. Nonetheless, larger sample sizes and independent datasets are needed. Finally, we

do not have a measure of the test-retest reliability of the EEG features. Hence, EEG features with poor re-

liabilities may mislead the correlations. While our results show that similar EEG features correlate strongly
12 iScience 26, 106017, February 17, 2023
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with each other (resembling test-retest), measuring and accounting for reliability, e.g., using disattenuated

correlations, will tell about the ‘‘true’’ correlations between EEG features.
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term intra-individual variability of the
background EEG in normals. Clin.
Neurophysiol. 110, 1708–1716. https://doi.
org/10.1016/S1388-2457(99)00122-4.

34. Nikulin, V.V., and Brismar, T. (2004). Long-
range temporal correlations in alpha and
beta oscillations: effect of arousal level and
test–retest reliability. Clin. Neurophysiol.
115, 1896–1908. https://doi.org/10.1016/j.
clinph.2004.03.019.

35. van der Velde, B., Haartsen, R., and Kemner,
C. (2019). Test-retest reliability of EEG
network characteristics in infants. Brain
Behav. 9, e01269. https://doi.org/10.1002/
brb3.1269.

36. Hedge, C., Powell, G., and Sumner, P.
(2018). The reliability paradox: why robust
cognitive tasks do not produce reliable
individual differences. Behav. Res. Methods
50, 1166–1186. https://doi.org/10.3758/
s13428-017-0935-1.

37. Meisel, C., Bailey, K., Achermann, P., and
Plenz, D. (2017). Decline of long-range
temporal correlations in the human brain
during sustained wakefulness. Sci. Rep. 7,
11825. https://doi.org/10.1038/s41598-017-
12140-w.

38. Abel, J.H., Badgeley, M.A., Meschede-
Krasa, B., Schamberg, G., Garwood, I.C.,
Lecamwasam, K., Chakravarty, S., Zhou,
D.W., Keating, M., Purdon, P.L., and Brown,
E.N. (2021). Machine learning of EEG
spectra classifies unconsciousness during
GABAergic anesthesia. PLoS One 16,
e0246165. https://doi.org/10.1371/journal.
pone.0246165.

39. Al Zoubi, O., KiWong, C., Kuplicki, R.T., Yeh,
H.W., Mayeli, A., Refai, H., Paulus, M., and
Bodurka, J. (2018). Predicting age frombrain
EEG signals—a machine learning approach.

https://doi.org/10.1111/ejn.13672
https://doi.org/10.1016/j.neuroimage.2020.116631
https://doi.org/10.1016/j.neuroimage.2020.116631
https://doi.org/10.1016/S0160-2896(01)00101-5
https://doi.org/10.1016/S0160-2896(01)00101-5
https://doi.org/10.1016/j.clinph.2005.04.026
https://doi.org/10.1016/j.clinph.2005.04.026
https://doi.org/10.3389/fnhum.2020.00010
https://doi.org/10.3389/fnhum.2020.00010
https://doi.org/10.1038/s41467-020-16914-1
https://doi.org/10.1038/s41467-020-16914-1
https://doi.org/10.3389/fnhum.2015.00234
https://doi.org/10.3389/fnhum.2015.00234
https://doi.org/10.1016/j.neuroimage.2012.03.008
https://doi.org/10.1016/j.neuroimage.2012.03.008
https://doi.org/10.3389/fpsyt.2016.00022
https://doi.org/10.3389/fpsyt.2016.00022
https://doi.org/10.1016/S0006-3223(00)00907-0
https://doi.org/10.1016/S0006-3223(00)00907-0
https://doi.org/10.1002/hbm.20275
https://doi.org/10.1002/hbm.20275
https://doi.org/10.1016/j.jpsychires.2012.08.003
https://doi.org/10.1016/j.jpsychires.2012.08.003
https://doi.org/10.1038/s41386-020-0749-1
https://doi.org/10.1016/j.nicl.2018.06.012
https://doi.org/10.1016/j.nicl.2018.06.012
https://doi.org/10.1002/hbm.20175
https://doi.org/10.1016/j.neuroimage.2019.116373
https://doi.org/10.1016/j.neuroimage.2019.116373
https://doi.org/10.1016/j.neurobiolaging.2018.07.004
https://doi.org/10.1016/j.neurobiolaging.2018.07.004
https://doi.org/10.1371/journal.pone.0141995
https://doi.org/10.1371/journal.pone.0141995
https://doi.org/10.1038/sdata.2018.308
https://doi.org/10.1038/sdata.2018.308
https://doi.org/10.1021/acs.jcim.5b00206
https://doi.org/10.1021/acs.jcim.5b00206
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref26
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref26
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref26
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref26
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref26
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref27
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref27
http://refhub.elsevier.com/S2589-0042(23)00094-9/sref27
https://doi.org/10.1016/j.clinph.2010.03.056
https://doi.org/10.1016/j.clinph.2010.03.056
https://doi.org/10.1126/science.aal3618
https://doi.org/10.1126/science.aal3618
https://doi.org/10.1016/j.clinph.2007.06.018
https://doi.org/10.1016/j.clinph.2007.06.018
https://doi.org/10.1038/s41598-020-68981-5
https://doi.org/10.1038/s41598-020-68981-5
https://doi.org/10.1371/journal.pone.0114163
https://doi.org/10.1371/journal.pone.0114163
https://doi.org/10.1016/S1388-2457(99)00122-4
https://doi.org/10.1016/S1388-2457(99)00122-4
https://doi.org/10.1016/j.clinph.2004.03.019
https://doi.org/10.1016/j.clinph.2004.03.019
https://doi.org/10.1002/brb3.1269
https://doi.org/10.1002/brb3.1269
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.1038/s41598-017-12140-w
https://doi.org/10.1038/s41598-017-12140-w
https://doi.org/10.1371/journal.pone.0246165
https://doi.org/10.1371/journal.pone.0246165


ll
OPEN ACCESS

iScience
Article
Front. Aging Neurosci. 10, 184. https://doi.
org/10.3389/fnagi.2018.00184.

40. Imperatori, L.S., Cataldi, J., Betta, M.,
Ricciardi, E., Ince, R.A.A., Siclari, F., and
Bernardi, G. (2021). Cross-participant
prediction of vigilance stages through the
combined use of wPLI and wSMI EEG
functional connectivity metrics. Sleep 44,
zsaa247. https://doi.org/10.1093/sleep/
zsaa247.

41. Price, G.W., Michie, P.T., Johnston, J., Innes-
Brown, H., Kent, A., Clissa, P., and
Jablensky, A.V. (2006). A multivariate
electrophysiological endophenotype, from
a unitary cohort, shows greater research
utility than any single feature in the western
Australian family study of schizophrenia.
Biol. Psychiatr. 60, 1–10. https://doi.org/10.
1016/j.biopsych.2005.09.010.

42. Sitt, J.D., King, J.-R., El Karoui, I., Rohaut, B.,
Faugeras, F., Gramfort, A., Cohen, L.,
Sigman, M., Dehaene, S., and Naccache, L.
(2014). Large scale screening of neural
signatures of consciousness in patients in a
vegetative or minimally conscious state.
Brain 137, 2258–2270. https://doi.org/10.
1093/brain/awu141.

43. Wolff, A., Di Giovanni, D.A., Gómez-Pilar, J.,
Nakao, T., Huang, Z., Longtin, A., and
Northoff, G. (2019). The temporal signature
of self: temporal measures of resting-state
EEG predict self-consciousness. Hum. Brain
Mapp. 40, 789–803. https://doi.org/10.
1002/hbm.24412.

44. Hatz, F., Hardmeier, M., Bousleiman, H.,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

EEG and cognitive data Leipzig Study for Mind-

Body-Emotion Interactions

https://doi.org/10.1038/

sdata.2018.308

Software and algorithms

MATLAB https://matlab.mathworks.com/ Version R2020b

Python https://www.python.org/ Version 3.6

R Studio https://www.r-project.org/ Version 4.0.1

Cartool https://sites.google.com/

site/cartoolcommunity

Version 3.8

LORETA https://www.uzh.ch/keyinst/loreta Version v20200414

Other

Scripts for data processing Github repository https://github.com/dgl59311/

stats_eegfeatures
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact: Dario Gordillo.
Materials availability

The study did not generate new materials.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d All original code has been deposited at Github and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data from 227 participants were collected in Leipzig, Germany, as part of the Leipzig Study for Mind-Brain-

Body Interactions (LEMON24). The sample comprises data from two age groups, 153 younger adults (be-

tween 20 and 35 years old) and 74 older adults (between 59 and 77 years old). Participants underwent a

physiological and psychological screening at the Day Clinic for Cognitive Neurology of the University Clinic

Leipzig and the Max Planck Institute for Human Cognitive and Brain Sciences. Written informed consent

was provided by all the participants before data collection. Study protocols were in accordance with the

Declaration of Helsinki and were approved by the ethics committee of the University of Leipzig (reference

number 154/13-ff).

The data were made publicly available. In the present study, only data from participants that had resting-

state EEG recordings were analyzed. Preprocessed resting-state EEG recordings were available for 203 par-

ticipants (https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/EEG_MPILMBB_LEMON/).

We excluded two participants (sub-010276, and sub-010277) due to differences in the sampling rate. The final
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sample used for the present study consisted of 201 participants, 138 younger adults (mean age = 25.43, SD =

3.39, 42 females), and 63 older adults (mean age = 67.66, SD = 4.79, 31 females).
METHOD DETAILS

EEG collection and preprocessing

EEG was recorded using a 62-channel active electrode ActiCAP system (Brain Products GmbH, Germany)

placed according to a 10-10 system arrangement with the FCz electrode as the reference. The ground

was placed on the sternum. Impedances of the electrodes were kept below 5 kU. EEG signals were

band-pass filtered online between 0.015 Hz and 1 kHz. Data were digitized with a sampling rate of

2500 Hz. During recording, participants alternated between eyes-closed and eyes-open conditions, after

1 min. A 16-min recording was obtained for each participant. Following data acquisition, signals were

band-pass filtered between 1 and 45 Hz (eighth order, Butterworth filter). Data were downsampled to

250 Hz.

Further offline preprocessing consisted of the rejection of artifactual channels and segments following a

visual inspection. The dimensionality of the data was reduced using principal component analysis (PCA).

The PCs (NR 30) allowing to explain 95% of the total variance were retained. Other physiological artifacts,

such as eye movements, blinks, or heartbeats, were identified using independent component analysis and

removed. Finally, the retained components were back-projected to the electrode space. Further details on

data acquisition and preprocessing are available in.24

In the present study, we used 8-min blocks corresponding to the eyes-closed condition segments. Missing

electrodes were interpolated using spherical spline interpolation in EEGLAB67 to fit the same 61-channel

montage for all participants. Then, the recordings were re-referenced to the average and down-sampled to

125 Hz.
Cognitive assessment

In total, participants performed six cognitive tests. The data weremadepublicly available by the LEMON study

(https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/Behavioural_Data_MPILMBB_LEMO

N/Cognitive_Test_Battery_LEMON/). From the six cognitive tests, we extracted 12 variables. The tests and the

extracted variables are described below. More details can be found in the documentation of the database.

California verbal learning task

The California Verbal Learning Task (CVLT) measures memory processes and verbal learning capacity.68

Participants listened to a 16-word list (list A) over five trials. The words belonged to four different semantic

categories. After each trial, participants were asked to recall as many words from list A as they could. Then,

another 16-word list (list B) was presented as an interference list, which had to be recalled right after its pre-

sentation, and had to be followed by a recall of list A. After a delay of 20 min, participants were asked to

recall the words from list A, with or without semantic category cues. Based on Donders,69 and Mahjoory

and colleagues,70 we extracted two scores: attention and delayed-memory scores. The attention score

was calculated by adding up the number of words that were correctly recalled after hearing list A for the

first time and the number of correctly recalled words from list B. The delayed memory score was calculated

by adding the number of correctly recalled words from list A after listening to list B, and the number of

correctly recalled words from list A after the 20-min delay, with and without cues.

Test of attentional performance

The Test of Attentional Performance (TAP) consists of three modules that assess different aspects of atten-

tion.71 In the first module, participants had to press a button as soon as a cross appeared on the screen. Two

conditions were tested: with and without a pre-stimulus audio signal. The alertness score was estimated

from this module as the reaction time averaged across the two conditions. The second module corre-

sponded to the Simon task. In the Simon task, participants had to press a left or right button to indicate

the direction of an arrow appearing on the left or the right side of the screen. Congruent (i.e., the direction

of the arrow matched its location) and incongruent (e.g., left-pointing arrow on the right side of the screen)

trials were presented. The average reaction times (RT) and the percentage correct (PC) were recorded and

combined into a rate correct score (i.e., RT/PC.72 We extracted two scores from this module, given by the

rate correct score for the congruent and incongruent trials of the Simon task. In the third module,
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participants were presented (serially) with numbers from 1 to 9, and they had to press a button whenever

the current number was the same as the second to last number (2-back task). We extracted a working mem-

ory score from this module, given by the percentage of correct matches.

Trail making test

The Trail Making Test (TMT) measures cognitive flexibility.73 In module A, participants had to connect digits

from 1 to 25 in ascending order. In module B, 13 numbers and 12 letters had to be alternately connected in

their numerical and alphabetical order (e.g., 1-A-2-B-3-C-.). We extracted two scores from the TMT given

by the inverse efficiency score (i.e., Task completion time/PC) for modules A and B.

Vocabulary test

The Vocabulary Test (VT) measures verbal intelligence and language comprehension.74 Participants had to

identify a target word among five distracting words. There were 42 trials. We extracted one score from the

VT, given by the number of correctly identified target words over all the trials (VT-score).

Performance testing system-2 Subtest 3

The Subtest 3 of the Performance Testing System-2 (Pts-2) assesses logical deductive thinking.75 For 3 min,

40 rows of eight symbols were presented to the participants. For each row, participants had to identify the

symbol that did not follow the logical rule. We extracted one score from the Pts-2, given by the total num-

ber of correctly identified symbols.

Regensburger word fluency test

The Regensburger Word Fluency Test (Rwt) measures verbal fluency.76 The Rwt test consisted of two mod-

ules. In the first module, for 2 min, participants had to list as many words starting with the letter ‘‘S’’ as they

could. In the second module, participants had to list words representing animals, for 2 min. We extracted

two scores from the Rwt, given the total number of correct words in each module.
EEG features extraction

Using time-domain, frequency-domain, nonlinear, and connectivity analysis methods, we extracted 175

features from the resting-state EEG signals. For some analysis methods, we filtered the EEG signals into

five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma

(30–45 Hz). The dimensionality of the analysis outcomes (i.e., EEG features) depended on the analysis

method. For instance, for each participant, we obtained either 61 or 80 variables if the analyses were con-

ducted in the electrode or source space, respectively, or 4 variables for EEG features extracted using mi-

crostates analysis. Hence, each EEG feature is always composed of more than one variable. We described

the analysis methods below. The list of all the EEG features extracted is available in Data S1.

Statistics of amplitude envelopes

For each frequency band, we calculated five statistical descriptors of the distribution of the signal.

Amplitude envelopes were extracted using Hilbert transform. The descriptors were: mean and standard

deviation of the amplitude envelopes, kurtosis, skewness, and total power of the signals. First, EEG signals

were divided into non-overlapping 4-s segments and filtered into five frequency bands. Then, the statistical

descriptors were calculated for the amplitude envelope values of each electrode, at each time segment.

The average across time segments was used for further analyses. The analyses were conducted in the elec-

trode space. We obtained 25 EEG features from these analyses (Features: 1–5, 68–72, 81–85, 151–155, 166–

170; in Data S1).

Spectral amplitudes

To estimate spectral amplitudes, first, EEG signals were divided into non-overlapping 4-s segments. For

each electrode time series, at each time segment, we used Fourier analysis to obtain the frequency ampli-

tudes. Relative spectral amplitudes were defined for each frequency band, as the ratio between the sum of

the squared Fourier coefficients within the bounds of the frequency band of interest (e.g., within 1–4 Hz, for

the delta band), and the squared Fourier coefficients of the full-band signal. The average across time seg-

ments was used for further analyses. This analysis was conducted in the electrode space. We obtained five

EEG features from this analysis (Features: 137–141; in Data S1).
iScience 26, 106017, February 17, 2023 19
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In addition, we estimated the current source amplitudes for each frequency band using the software LOR-

ETA.77 We defined 80 brain regions of interest (80; 40 per hemisphere) according to the AAL atlas (see

Table S1). ROIs included gray matter voxels within a 10-mm radius of the seed. This analysis was conducted

in the source space. We obtained five features from this analysis (Features: 156–160; in Data S1).

Temporal correlations

For each frequency band we calculated long-range and short-range temporal correlations of EEG oscillations.

Long-range (>1 s) temporal correlations (LRTC) were calculated using detrended fluctuation analysis (DFA78).

Short (�< 1 s) temporal correlations were calculated using life – and waiting-time statistics.79 For DFA, first, we

extracted the amplitude envelopes from the EEG time series using Hilbert transform. The amplitude enve-

lopes were integrated. Then, we defined 30 window sizes, varying from 3 to 50 s, distributed evenly on a log-

arithmic scale. The integrated signal was divided into 50% overlapping segments for each previously defined

window-size. At each of these segments, the integrated signal was detrended, and the fluctuation function

(i.e., variance) was obtained. The average fluctuation function across segments of each window size was calcu-

lated. The average fluctuation functions were plotted in logarithmic axes, and a line was fit. The slope of the

line indicated the scaling exponent and this value was used for further analyses. To estimate short-range tem-

poral correlations, we extracted the amplitude envelopes of the EEG time series using Hilbert transform. The

median amplitude envelopewas used as a threshold, whichdefined the onset and endof the oscillation bursts.

The distributions for life and waiting times were built using the durations of all the burst events that occurred

above or below the threshold, respectively. The 95th percentile of the distributions of life and waiting times

were used for further analyses. The analyses were performed in the electrode space. We obtained 15 EEG fea-

tures from these analyses (Features: 58–62, 73–77, 171–175; in Data S1).

Network and connectivity measures

First, EEG functional connectivity was calculated using five connectivity algorithms. Three of these

algorithms (i.e., phase locking value, imaginary part of coherence, and weighted phase lag index) were

defined in the electrode space, and two (i.e., lagged coherence and lagged phase synchronization) in

the source space. EEG Functional connectivity was calculated at each of the five frequency bands. Elec-

trode connectivity analyses were performed using FieldTrip.80 Before estimating electrode connectivity,

scalp current densities were obtained from the EEG time series using the FieldTrip function ft_scalpcurrent-

density with the spline method. For source connectivity analyses, first, cortical activity was estimated with

the exact low-resolution electromagnetic tomography (eLORETA) algorithm using the software LORETA.

We defined 80 brain regions (40 per hemisphere) according to the AAL atlas (see Table S1). ROIs included

gray matter voxels within a 10-mm radius of the seed. Then, using the Brain Connectivity Toolbox (BCT 81),

three network statistics (i.e., betweenness centrality, clustering coefficient, and node strength) were calcu-

lated from each of the connectivity matrices. The BCT functions employed were betweenness_wei, cluster-

ing_coef_wu, and strength_und. The extracted EEG features consisted of the network analysis outcomes.

We obtained 45 features in the electrode space (Features: 7–21, 32–46, 101–115, in Data S1) and 30 features

in the source space (Features: 22–31, 47–56, 116–125, in Data S1).

Microstates

First, for a given participant, the voltage maps at the peaks of the global field power (GFP) signal were ex-

tracted. Maps at GFP peaks have been indicated to have a higher signal-to-noise ratio, providing a more

stable representation of the EEG topographies.82 Then, a k-means clustering procedure was performed on

these maps with k (i.e., the number of cluster centroids) equal to 5. GFP peak maps were then assigned to

the cluster centroid to which they showed the highest spatial correlation, as long as the correlation value

was above 0.5, otherwise, maps were left unassigned.

Second, a k-means clustering procedure was performed on the concatenated cluster centroids from all the

participants, obtained in the previous step. The algorithmwas initialized 200 times for each value of k, with k

varying from 1 to 15. The optimal number of subject-level cluster centroids was selected according to a

metacriterion based on seven independent indicators for optimal cluster solution.83 Out of the 200 initial-

izations, the cluster solution showing the highest fraction of explained variance was the one retained. The

polarity of the voltagemaps was always ignored.Maps were only assigned to a givenmicrostate class if they

showed a spatial correlation larger than 0.5. Finally, the cluster centroids obtained from the subject-level

analysis were assigned to the EEG data of each participant, this time, not only considering the GFP peaks

but all the data. Voltage maps showing a correlation below 0.5 to any of the cluster centroids were left
20 iScience 26, 106017, February 17, 2023
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unassigned. Temporal smoothing (Besag factor = 10 and window half size = 2) was applied to avoid the

interruption of quasi-stable segments.84 Segments equal to or smaller than three samples were rejected.

For each microstate class, we extracted four temporal statistics namely the global explained variance,

mean duration, time coverage, and frequency of occurrence. Microstates analysis was performed using

the software Cartool version 3.8.85 We obtained five EEG features from this analysis (Features: 86–90, in

Data S1).

Entropy and complexity measures

We quantified the complexity of EEG signals using five different methods: approximate entropy, sample

entropy, spectral entropy, permutation entropy, and Lempel-Ziv complexity. First, we divided the EEG sig-

nals into non-overlapping 4-s segments. Approximate,86 permutation,87 and sample88 entropies were

calculated for the full-band EEG signals, using an embedding dimension value of three. Approximate en-

tropy was computed using the function approximateEntropy from the Predictive Maintenance Toolbox for

MATLAB. Permutation entropy was calculated based on Unakafova.89 Sample entropy was computed using

the code provided by Martı́nez-Cagigal.90 The time delay to estimate approximate and permutation en-

tropies was set to one. Lempel-Ziv complexity was calculated from the full-band EEG time series,91 using

the code provided by Thai.92 Spectral entropy was calculated for each frequency band, and it was defined

as the Shannon’s entropy of the ratio between the normalized power spectral density (PSD) within the fre-

quency band bounds (e.g., within 1–4 Hz, for the delta band), and the full-band EEG signal. All calculations

were performed at each time segment, and the average across segments was used for further analyses. The

analyses were conducted in the electrode space. We obtained 10 EEG features from these analyses (Fea-

tures: 6, 79, 80, 126, 150, 161–165, in Data S1).

Nonlinear dynamical measures

Before obtaining nonlinear dynamical features, the EEG signals were divided into non-overlapping 4-s seg-

ments. To obtain recurrence quantification analysis (RQA) features, first, for each electrode time series at

each segment, we built recurrence plots and extracted eight RQA features using the CRP toolbox for MAT-

LAB.93 The RQA features were: determinism, entropy, laminarity, maximal diagonal line length, maximal

vertical line length, mean diagonal line length, recurrence times entropy, and trapping time. Recurrence

plots were constructed using a fixed radius allowing a 10% recurrence rate. The Lyapunov exponent94

and correlation dimension95 were obtained using the functions lyapunovExponent, and correlationDimen-

sion, available in the Predictive Maintenance Toolbox for MATLAB. We also calculated the Higuchi’s,96 and

Katz’s97 fractal dimensions using the code provided by Monge-Álvarez.98 The kmax parameter in Higuchi’s

fractal dimension calculation was set to 25. All nonlinear dynamical features were obtained from the

full-band EEG signals. For RQA measures, correlation dimension, and Lyapunov exponent, the

embedding parameters (time delay and embedding dimension) were calculated using the function

phaseSpaceReconstruction from the Predictive Maintenance Toolbox in MATLAB. The analyses were con-

ducted in the electrode space. We obtained 12 EEG features from these analyses (Features: 57, 63, 67, 78,

142–149, in Data S1)

Phase-amplitude coupling

EEG features describing cross-frequency (CF) interactions via phase-amplitude coupling were obtained us-

ing the modulation index.99 First, EEG time series were divided into non-overlapping 4-s segments and

were filtered into the five frequency bands. For each band-pass filtered electrode time series, at each

segment, the amplitude envelope and the instantaneous phase were extracted using the Hilbert transform.

Then, we defined ten different CF interactions, these were between delta phase-theta amplitude, delta

phase-alpha amplitude, delta phase-beta amplitude, delta phase-gamma amplitude, theta phase-alpha

amplitude, theta phase-beta amplitude, theta phase-gamma amplitude, alpha phase-beta amplitude,

alpha phase-gamma amplitude, and beta phase-gamma amplitude. For each CF interaction, we obtained

the corresponding phase and amplitude time series (e.g., phase time series in the theta band and ampli-

tude time series in the gamma band for theta phase-gamma amplitude). Then, the phase values were

binned into 18 values (from �180 to 180�) and the mean amplitude value (of the modulated frequency)

over each bin was calculated. Hence, we obtained the mean amplitude value of the modulated frequency,

for each phase value of the phase-modulating frequency. The Kullback-Leibler (KL) divergence indicated

whether the amplitude values are uniformly distributed according to the phase values (i.e., no phase-ampli-

tude coupling). The KL divergence was calculated for each of the ten cross-frequency interactions, and the
iScience 26, 106017, February 17, 2023 21
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average value across time segments was used for further analyses. The analysis was conducted in the elec-

trode space. We obtained ten EEG features from this analysis (Features: 91–100, in Data S1).

Time-domain amplitude features

Peak-to-peak amplitude asymmetry and coefficient of variation were calculated for each frequency band

using range-EEG analysis.100 Range features were obtained using the code provided by Toole and Boy-

lan.101 We also obtained the Hjorth parameters activity, mobility, and complexity from the full band EEG

time series.102 First, we divided the EEG time series into non-overlapping 4-s segments. Then, we calcu-

lated the time-domain amplitude features for each time segment and electrode signal. The average across

segments was used for further analyses. The analyses were conducted in the electrode space. We obtained

13 EEG features from these analyses (Features: 64–66, 127–136, in Data S1).
QUANTIFICATION AND STATISTICAL ANALYSIS

Correlations between EEG features and cognitive variables

This section describes the analysis behind the results presented in the correlations between EEG features

and cognitive variables subsection in results. To investigate the associations between the 175 EEG features

and the 12 cognitive variables, we calculated Spearman correlations and distance correlations. Hence, we

conducted 2100 correlation analyses (175*12; for each correlation metric) for older and younger adults

separately, because of the large age differences between the samples (see experimental model and sub-

ject details). Four older adults had missing values in some cognitive variables (sub-010044 in Tap alertness,

sub-010047 in Tmt-A, sub-010050 in Tap working memory and Tap simon incongruent, and sub-010099 in

Rwt s words and Rwt animal categories). These participants were only excluded in the analyses where the

EEG features were correlated with the variables in which they had missing values. These participants were

included for the rest of the correlation analyses.

For each pair of EEG feature (with all its electrodes, brain regions, or microstate parameters) and cognitive

variable (e.g., approximate entropy and Tmt-A), we calculated Spearman correlation coefficients and dis-

tance correlations. EEG features can have a different number of variables, depending on whether the anal-

ysis method was conducted in the electrode space, source space, or using microstates analysis (see

method details). Thus, for EEG features obtained in the electrode space (e.g., approximate entropy) we

obtained 61 correlations to one cognitive variable (each electrode was correlated with the cognitive vari-

able). For EEG features in the source space (e.g., source spectral amplitude in the alpha band, source ampl

alpha) we obtained 80 correlations and 4 correlations for each microstate class. The p values of the corre-

lations were corrected using False Discovery Rate (FDR103) with an error rate of 5%. The p values of the dis-

tance correlations were obtained using 1000 repetitions of a bootstrapping procedure and corrected with

FDR. We used the distance_corr function implemented in the pingouin 0.5.1 package for Python.104

Next, to evaluate whether EEG features showing significant correlations with the same cognitive variable

relate to each other, we calculated Spearman or distance correlations between these EEG features, de-

pending on the method used in the previous step (i.e., either Spearman or distance correlation). From

each EEG feature showing a significant correlation to a cognitive variable, we took the electrode, brain re-

gion, or microstate parameter showing the highest correlation to be the representative variable for that

EEG feature in the analysis. The EEG features revealing a significant correlation to the cognitive variables

were also compared using multivariate distance correlations,105 which considered all the variables of the

EEG features (see correlations between EEG features showing age-related differences section below).
Dimensionality reduction and multiple regression

This section describes the analysis behind the results presented in the correlations between EEG features

and cognitive variables subsection in results. We analyzed the EEG features that showed a significant cor-

relation to a cognitive variable using principal component analysis (PCA). Importantly, EEG and cognitive

variables were log-transformed to improve normality using the function PowerTransformer from scikit-

learn. For example, for the Tap working memory variable, we found 18 EEG features showing a significant

correlation. We took one variable from each of these 18 EEG features (the one showing the largest corre-

lation to the Tap working memory variable) and used a PCA. We calculated the proportion of explained

variance. This analysis was performed for each cognitive variable and age group separately.
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Then, to understand whether the set of latent variables obtained using PCA can explain the cognitive vari-

ables, we used multiple regression. We used the function OLS from the statsmodels 0.13.2 package for

Python.106 We obtained the latent variables from the EEG features that showed a significant correlation

to a cognitive variable. Each EEG feature contributed with one variable (i.e., electrode, brain region, or

microstate parameter), which was the one showing the highest correlation to the corresponding cognitive

variable. We generated a regression model, first, using the first PC of the EEG data, and then, we added

PCs one by one, up to the third PC (i.e., model 1: PC1, model 2: PC1 and PC2, model 3: PC1, PC2, and

PC3). To quantify predictive performance, we used adjusted-R.2 In this analysis, we did not use cross-vali-

dation to calculate adjusted-R2 values.
Cross-validated prediction of cognitive variables using EEG features

This section describes the analysis behind the results presented in the prediction of cognitive variables us-

ing EEG features subsection in results. We investigated how well the EEG features predicted the cognitive

variables using ridge regression and nonlinear random forest regression. We used the Scikit-learn 1.0.2

package for Python.26 For each pair of EEG feature (with all its electrodes, brain regions, or microstate pa-

rameters) and cognitive variable, prediction performance was calculated using 50 repetitions of a train-test

split procedure. The predictive performance was calculated using the coefficient of determination R2. First,

33% of the data were left out for validation (testing set) and the remaining 67% of the data (training set)

were used for model optimization. For linear ridge models, before training the model we applied a power

transform to the data to improve normality using the PowerTransformer function. The amount of penaliza-

tion l (100 values from 10� 3 to 105 on an evenly spaced logarithmic scale) was selected using cross-valida-

tion with the efficient leave-one-out method implemented in the function RidgeCV. For random forest

models, we used the function RandomForestRegressor. The parameters of the random forest models

were selected using a grid search procedure with 3-fold cross-validation as implemented in the Grid-

SearchCV function. We used 100 estimators and adjusted the tree-depth considering the values 4, 6, 8,

or no constraint, and also adjusted the maximum number of features using log2, sqrt, or auto as options.

The model with the parameters giving the best performance in the training set was applied to the testing

set. The prediction performance R2 was calculated using the function r2_score. The R2 values were aggre-

gated for each of the 50 repetitions of the procedure and themedian predictive performance was reported.

The analysis was conducted for the sample of older and younger adults separately.
Group comparisons of EEG features between older and younger adults

This section describes the analysis behind the results presented in the Group comparisons of the EEG fea-

tures between younger and older adults subsection in results. We conducted group comparisons between

older and younger adults using each of the 175 EEG features. For each variable (61 electrodes, 80 brain

regions, or 4 microstate parameters) of a given EEG feature, we conducted a Mann-Whitney test using

the function wilcox_test from R Studio version 4.0.1 107 and the package coin 1.4_2.108 The p values and

effect size r-values (with bootstrap confidence intervals) were obtained using the R Studio package rstatix

0.7.0.109 The p values were corrected for multiple comparisons using FDR with an error rate of 5%, within

each EEG feature.
Correlations between EEG features showing age-related differences

This section describes the analysis behind the results presented in the correlations between EEG features

showing age-related differences subsection in results. First, for each EEG feature that contained at least

one variable showing a significant difference between younger and older adults (after correcting for mul-

tiple comparisons), we selected the variable (i.e., the electrode, brain region, or microstate parameter) with

the largest effect size to be the representative variable for that feature for the correlation analysis. For each

age group separately, we computed pairwise Spearman correlations between these variables.

Second, to consider not only one but all variables of the EEG features revealing significant group differ-

ences, we used an unbiased multivariate distance correlation test for independence in high dimensions.105

In high dimensions, the original distance correlation statistic (used in the correlation between EEG features

and cognitive variables section) increases even under independence. The absolute unbiased estimate ac-

counts for the bias in high dimensions and thus can provide an effect size of the relationship between two

EEG features with all its variables (electrodes, brain regions, or microstate parameters) ranging from 0 to 1.

We reported the square root of the absolute unbiased distance correlation (
ffiffiffiffiffiffiffiffiffiffi��R �

n

��q
) because the unbiased
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distance correlation approximates the population squared distance correlation. The effect sizes and p

values were obtained using the function dcorT.test from the R Studio package energy 1.7_10.110
Comparison between EEG reference choices

To investigate the effect of the EEG reference choice on our results, we re-analyzed the EEG data using

zero-reference as implemented in the REST toolbox.111 We obtained 140 EEG features (not considering

source space EEG features) with this reference choice. These zero-referenced EEG features were

compared to average or current source density CSD (for electrode connectivity features) referenced

EEG features, which were the ones used in themain analyses, using intraclass correlations and distance cor-

relations. For the comparison, we used the intraclass correlation with an absolute agreement (ICC2; to ac-

count for mean differences across references) as implemented in the function intraclass_corr from the pin-

gouin 0.5.1 package for Python. Since EEG features have different numbers of variables (i.e., electrodes or

microstate parameters), we calculated the ICC2 values for each variable of each EEG feature. For example,

for the EEG featuremicrostate A, we obtained 4 ICC2 values (for global explained variance, mean duration,

time coverage, and frequency of occurrence).

Furthermore, to examine whether the choice of reference affects the correlations between EEG features,

we pairwise correlated the 140 EEG features obtained with zero reference using multivariate distance cor-

relations, for younger and older adults separately.
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