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Simple Summary: Herein, the oncogenic role of UBE2M as an E2 NEDD8-conjugating enzyme
was explored in hepatocellular carcinoma (HCC) cells, since neddylation plays a critical role in
tumorigenesis. To address this issue, human tissue array and TCGA analysis were conducted in
HCCs to find overexpression of UBE2M in HCCs. In addition, a differential profile was confirmed
in UBE2M-depleted HepG2 cells. Furthermore, UBE2M depletion activated p53 expression and
stability, while the ectopic expression of UBE2M disturbed p53 activation and enhanced degradation
of exogenous p53 mediated by MDM2 in HepG2 cells via binding to MDM2 and ribosomal protein
L11 by immunoprecipitation and immunofluorescence. These findings provide evidence that UBE2M
is critically involved in liver cancer progression as a p53 negative regulator by binding to MDM2 and
ribosomal protein L11.

Abstract: Though UBE2M, an E2 NEDD8-conjugating enzyme, is overexpressed in HepG2, Hep3B,
Huh7 and PLC/PRF5 HCCs with poor prognosis by human tissue array and TCGA analysis, its
underlying oncogenic mechanism remains unclear. Herein, UBE2M depletion suppressed viability
and proliferation and induced cell cycle arrest and apoptosis via cleavages of PARP and caspase 3
and upregulation of p53, Bax and PUMA in HepG2, Huh7 and Hep3B cells. Furthermore, UBE2M
depletion activated p53 expression and stability, while the ectopic expression of UBE2M disturbed
p53 activation and enhanced degradation of exogenous p53 mediated by MDM2 in HepG2 cells.
Interestingly, UBE2M binds to MDM2 or ribosomal protein L11, but not p53 in HepG2 cells, despite
crosstalk between p53 and UBE2M. Consistently, the colocalization between UBE2M and MDM2 was
observed by immunofluorescence. Notably, L11 was required in p53 activation by UBE2M depletion.
Furthermore, UBE2M depletion retarded the growth of HepG2 cells in athymic nude mice along
with elevated p53. Overall, these findings suggest that UBE2M promotes cancer progression as a p53
negative regulator by binding to MDM2 and ribosomal protein L11 in HCCs.

Keywords: UBE2M; MDM2; p53; ribosomal protein L11; hepatocellular carcinoma

1. Introduction

Hepatocellular carcinoma (HCC) is known as the sixth most common cancer and the
third leading cause of cancer-associated mortality in the world [1]. Recently, HCC has been
associated with neddylation [2] and various signaling pathways [3] and is genetically and
phenotypically regarded as a heterogeneous cancer [4].

Neddylation is considered as one of important signaling pathways in tumorige-
nesis, since post-translational modification critically modulates protein activation by
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ubiquitin-proteasome system (UPS) [5–7]. Thus, UPS dysregulation was found in multiple
myeloma [8], uveal melanoma [9], lung cancer [10] and liver cancer [11]

It is well documented that neddylation cascades are activated by neural precursor
cell-expressed, developmentally downregulated protein 8 (NEDD8) E1 activating enzyme
(NAE) and NEDD8 E2 enzymes (UBE2M (UBC12) and UBE2F) and eventually conjugated
by E3 enzymes, such as RBX1 and RBX2 [12,13]. Among neddylation cascade proteins,
UBE2M is known as one of the neddylation ligase complexes, such as cullin-RING ligases
(CRLs), RBX1 and ROC1, for poly-ubiquitin conjugation [14] and targets degradation of
UBE2F [15–17] and p27 (Kip1) [18]. In addition, UBE2M acts as a stress-inducible dual gene
for neddylation and ubiquitylation [19] and promotes proliferation and migration in HCCs
via activation of β catenin and cyclin D1 [20], along with overexpression in several cancers,
including HCCs [21], H1299 lung cancer [22] and osteosarcoma [23].

p53 is well known as a tumor suppressor [24–26] by inducing cell-cycle arrest and
apoptosis in several cancers [27,28]. Accumulating evidence reveals that MDM2 ubiquiti-
nates p53 as E3 ubiquitin ligase, since MDM2 binds to p53′s N-terminal site and blocks
its transcriptional activity [29,30] through a negative feedback loop between them [31].
Furthermore, emerging evidence shows that ribosomal protein L11 for ribosome biogenesis
regulates the MDM2–p53 signaling pathway [32,33]. Interestingly, Macias et al. claimed
that inhibition of ribosomal biogenesis activates p53 via ribosomal protein-mediated sup-
pression of MDM2 E3 ligase [34], while Sun et al. reported that ribosomal proteins L5, L11
and L23 activate p53 by reducing the MDM2–p53 feedback circuit [19].

Though UBE2M is known to act as an oncogene for neddylation and ubiquitylation
and is associated with the activation of β catenin and cyclin D1 [20], the oncogenic mech-
anisms are not fully understood. Hence, in the present study, the underlying molecular
mechanisms of UBE2M were explored in association with p53/MDM2 and ribosomal
protein L11.

2. Materials and Methods
2.1. Cell Culture

Human hepatocellular carcinoma cell lines such as HepG2, Hep3B and Huh7, PLC/PRF5
cells and human colorectal cancer HCT116 cells were obtained from ATCC (Manassas,
VA, USA). HepG2 cells were cultured in Modified Eagle Medium (MEM, catalog NO. LM
007-54, WelGENE, Gyeongsangbuk-do, Korea). Hep3B cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, catalog NO. LM 001-05, WelGENE, Gyeongsangbuk-do).
Huh7, PLC/PRF5 and HCT116 cells were cultured in Roswell Park Memorial Institute 1640
(RPMI, catalog NO. LM 011-01, WelGENE). All cells were cultured in the aforementioned
medium supplemented with 10% heat-inactivated fatal bovine serum (FBS, WelGENE) and
1% antibiotic solution (100 units/mL penicillin and 100 µg/mL streptomycin, WelGENE)
at 37 ◦C 5% CO2.

2.2. Tissue Microarray and Immunohistochemistry

HCC patient tissue microarray plates with 80 cases of hepatocellular carcinoma were
purchased from US Biomax (HLivH160CS01, MD, USA) for immunohistochemistry (IHC)
staining with Discovery XT (Roche, Basel, Discovery XT (Roche, Basel, Switzerland ). Each
plate includes tumor and matched normal adjacent tumor tissues. The tissues were fixed
with 4% paraformaldehyde, dehydrated, embedded in paraffin and sectioned at 4 µm.
Sections were deparaffinized, rehydrated and incubated with 3% H2O2. After antigen
repair and being blocked, the slides were incubated with mouse monoclonal antibody
against UBE2M (1:200) (Cat.No. 109507, Abcam, Waltham, MA, USA) and p53 (Cat. No.
sc-126, Santacruz, Rio Grande, TX, USA) at 4 ◦C overnight. Subsequently, the slides were
incubated with the secondary antibody at room temperature for 30 minutes and then
incubated with streptavidin peroxidase complex. Staining was performed using a 3,3-
diaminobenzidine (DAB) substrate kit for peroxidase reaction and counterstained with
hematoxylin. Finally, the slides were analyzed with a light microscope.
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2.3. RNA Interference and Plasmid Transfection

The cells were seeded onto culture plates overnight and transfected with the mixtures
of p53 siRNA or UBE2M siRNA or negative control siRNA purchased from Bioneer (Dae-
jeon, ROK) adjusted at 40 nM by using an INTERFERin transfection reagent (Polyplus,
Illkirch, Illkirch, France) according to the manufacturer’s protocol. The transfected cells
were incubated for 60–72 h for the next experiment. In addition, RGS/His-UBE2M, Flag-
p53, MDM2 and pcDNA 3.0 plasmids, purchased from Addgene (Cambridge, MA, USA),
were transfected into the cells by using the Turbofect transfection reagent (Thermo Fisher
Scientific, Waltham, MA, USA) and then incubated for 24–48 h for further study. UBE2M
siRNA-#1 (sense strand, CUG AUG AGG GCU UCU ACA A=tt and antisense strand, UUG
UAG AAG CCC UCA UCA G=tt) and UBE2M siRNA-#2 (sense strand, GAA AUA GGG
UUG GCG CAU A=tt and antisense strand, UAU GCG CCA ACC CUA UUU C=tt) were
purchased from Bioneer (Daejeon, ROK).

2.4. Next Generation Sequence (NGS) Analysis

RNAs from UBE2M depleted HepG2 cells were isolated and the quality was checked
by e-biogen corporation (Seoul, Korea). Samples were progressed using the QuantSeq
3′ mRNA-Seq service of the NGS sequence analysis (NextSeq 500, Illumina). mRNA
expression profiling and analysis were performed by the EX-DEGA program (e-biogen).
Clustering heat map analysis was performed by the MeV software (version 4.9.0). NGS raw
data were deposited in the NCBI’s BioProject database (accession number, PRJNA722599).

2.5. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

RNAs isolated from HepG2 cells transfected with siCTL and UBE2M siRNA were
lysed by QIAZOL (Qiagen, Hilden, Germany) according to the manufacturer’s protocol.
A total of 2 µg of the RNA samples was synthesized to complementary DNA with Oligo
dT (Bioneer, Daejeon, ROK), dNTP (Takara, Shiga, Japan) and M-MLV reverse transcrip-
tase (Enzynomics, Daejeon, Korea) following the manufacturer (Enzynomics)’s protocol.
Primers were purchased synthesized by Bioneer (Daejeon, Korea). The primers for p53, Bax,
PUMA, UBE2M and GAPDH were as follows: p53, 5′-AGGACAGGCACAACACGCACC-
3′ and 5′-TAACAGTTCCTGCATGGGCGGC-3′; Bax, 5′-TGCCACTCGGAAAAAGACCT-3′

and 5′-CTGCAGAGGATGATTGCCG-3′; PUMA, 5′-CCTGGAGGGTCCTGTACAATCT-3′

and 5′-GCACCTAATTGGGCTCCATCT-3′; UBE2M, 5′-AGTTGAGGAGGTCGTCTG-3′

and 5′-AGAAGAAGGAGGAGGATC-3′; GAPDH, 5′-GACGGTGCCATGGAATTTGC-3′

and 5′-ATGGGGAAGGTGAAGGTCGG-3′.

2.6. Western Blotting

Cells transfected with siCTL and UBE2M siRNA were lysed in NP40 buffer containing
50 mM Tris/HCL (pH7.5), 0.5% NonidetP-40, 1 mM EDTA, 120 mM NaCl, 1 mM dithiothre-
itol, 0.2 mM phenylmethylsufonylfluoride with protease inhibitors cocktails (Roche, Basel,
Switzeland) and phosphatase inhibitors (Merck kGaA, Darmstadt, Germany). The lysates
were quantified by the DC Protein Assay Kit II (Bio-Rad, Hercules, CA, USA). The protein
samples were electrophoresed on 8–15% SDS-polyacrylamide gels and transferred to nitro-
cellulose membranes. Membranes were blocked with TBST-diluted 5% skim milk for 1 h
at room temperature or TBST-diluted 5% BSA for 4 h at 4 ◦C. Then they were incubated
with primary antibodies of PARP (Cat. No. 9542, Cell Signaling Technology, Danvers, MA,
USA), cleaved caspase-3 (Cat.No. 9664, Cell Signaling Technology), p53 (Cat. No. sc-126,
Santacruz, Rio Grande, TX, USA), MDM2 (Cat. No. sc-965, Santacruz), RPL5 (Cat. No.
14568, Cell Signaling Technology), RPL11 (Cat. No. 16277-1-AP, Proteintech, Rosemeont, IL,
USA), UBE2M (Cat. No. sc-390064, Santacruz) and β-actin (Cat. No. A2228, Merck KGaA)
diluted in 5% BSA in TBST overnight at 4 ◦C, washed three times for 10 min with TBST
and incubated with HRP-conjugated secondary antibodies (Cell Signaling Technology) for
2 h. Expression was visualized by using an ECL Immunoblotting detection reagent (GE
Healthcare, Chicago, IL, USA). File S1. Uncropped western blots.
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2.7. Fractionation of Nuclear and Cytoplasmic Extract

Nuclear extraction was conducted using an NE- PER Nuclear Cytoplasmic Extrac-
tion Reagent kit (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. In brief, the transfected HepG2 cell pellets were suspended in cytoplasmic
extraction reagent I by vortexing and incubated on ice for 10 min; then, a second cyto-
plasmic extraction reagent II was added. After the cells were centrifuged, the supernatant
fraction (cytoplasmic extract) was transferred to a prechilled tube. The insoluble pellet
fraction containing crude nuclei was resuspended in a nuclear extraction reagent. The final
supernatant, constituting the nuclear extract, was used for the subsequent experiments.

2.8. Cycloheximide Assay

HepG2 cells transfected with siCTL and UBE2M siRNA for 72 h were exposed to
50 µg/mL of cycloheximide (CHX, Merck KGaA, Darmstadt, Germany) for the indicated
concentrations and time points and Western blotting was performed [35].

2.9. Immunoprecipitation

HepG2 cells transfected with siCTL and UBE2M siRNA in absence or presence of
MG132 (Merck KGaA) were lysed according to Western blotting protocols and quantitated.
A total of 2 µg of antibodies for UBE2M (Cat. No. sc-390064, Santacruz) and MDM2 (Cat.
No. sc-965, Santacruz) or ribosomal protein 11 or p53 was added to 500 µg of lysate and
incubated at 4 ◦C in the rotator overnight. A volume of 30 µL of Protein G beads (Santacruz)
was added and rotated at 4 ◦C for 4 h. Lysates were washed three times with a lysis buffer.
The bound proteins were immunoblotted as indicated above. Protein amounts of input
were 10% of immunoprecipitated samples.

2.10. Ubiquitylation Assay

Hep3B or H1299 cells transfected with siRNAs (siCTL or UBE2M siRNA) and plas-
mids (pcDNA3.0, Flag-p53, MDM2, HA-Ub and/or RGS/His-UBE2M) following addition
of 20 µM proteasome inhibitor MG132 for 2 h in H1299 p53 mutant cells were lysed and im-
munoprecipitated with anti-HA antibody and protein G-agarose beads and immunoblotted
with anti-Flag, UBE2M and β-actin antibody.

2.11. Immunofluorescence

HepG2 cells transfected with control or UBE2M siRNA were fixed with 4% paraformalde-
hyde for 20 min at room temperature and permeabilized with 0.1% Triton X-100 for 2 min
on ice. The cells were labeled with primary antibodies of UBE2M and MDM2 diluted
in 1% BSA/PBS overnight at 4 ◦C; then, they were exposed to secondary Alexa fluor
(Invitrogen) diluted with 1% BSA/PBS for 2 h at room temperature. The samples were
mounted with mounting medium containing DAPI and were visualized using an Olympus
LUOVIEWFV10i (Olympus, Tokyo, Japan) confocal microscope and Delta Vision imag-
ing system.

2.12. Establishment of UBE2M shRNA HCC Cell Lines

To establish HepG2 cell lines stably expressing UBE2M shRNA, UBE2M shRNA recom-
binant vectors and transfection mixtures (Turbofect, Thermo Fisher Scientific) were trans-
fected into HepG2 cells. The transfected cells were grown in the medium supplemented
with puromycin at 4µg/mL for approximately 14 days to eliminate the untransfected cells.
Then, the macroscopic clones were picked out and continuously passaged in the medium
supplemented with puromycin (0.5 ng/mL–1.5 ng/mL). UBE2M protein expression was
checked in HepG2 cells transfected with control shRNA and UBE2M shRNA by Western
blotting for the following animal study.
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2.13. In Vivo Xenograft Model

According to Animal Use Protocol (IACU number: KHUASP-19-208) approved by
Kyung Hee University IACU Committee, an animal study was performed. A total of
10 Balb/c male athymic nude mice were randomly assigned to two groups (5 mice per
group). UBE2M shRNA HepG2 cells or intact HepG2 cells were subcutaneously injected
into the flank of Balb/c male athymic nude mouse (5 weeks old; Narabio, Korea) at the
concentration of 5 × 106 cells/200 µL. Tumor size was monitored for 39 days. All mice
were sacrificed on day 39 after implantation and necropsy was carried out. In addition,
IHC and Western blotting were conducted with tumors isolated from the mice.

2.14. Statistical Analysis

Data are expressed as means ± SD from at least three independent experiments. A
Student’s t-test for two-group comparison and a one way analysis of variance (ANOVA)
followed by a Tukey’s post-hoc test were conducted for multi-group comparison using the
GraphPad Prism software (Version 5.0, San Diego, CA, USA). Significant differences were
considered if the p value was less than 0.05.

3. Results
3.1. UBE2M Is Overexpressed in HCCs with Poor Prognosis: Its Depletion Exerts
Antiproliferative and Apoptotic Effect in HCCs

UBE2M was overexpressed in human hepatocellular carcinoma (HCC), such as HepG2,
Hep3B, Huh7 cells and PLC/PRF5 cells, but not in normal hepatocytes by Western blotting
(Figure 1A) and tissues array (Figure 1D). One HepG2 cell line is tp53 WT cell type and the
other cell line is tp53 deletion (Hep3B) and mutant types (Huh7 and PLC/PRF5). TCGA
also revealed UBE2M was overexpressed at mRNA level in HCCs with poor survival rates
(Figure S1A,B). In addition, UBE2M depletion reduced viability (Figure 1B) and the number
of colonies for long term proliferation (Figure 1C) and induced cell-cycle arrest (data not
shown) in HepG2, Hep3B and Huh7 cells. Transfection efficiency was confirmed in a
time course transfection in HepG2 cells transfected by UBE2M siRNA plasmid by Western
blotting (Figure S1A). Furthermore, UBE2M knockdown induced cleavages of PARP and
caspase 3 in HepG2, Hep3B and Huh7 cells (Figure 1E), attenuated the expression of Snail
and activated E-cadherin in HeG2 cells (Figure 1F).

3.2. p53/MDM2 and RPL Related Genes Were More Associated in UBE2M-Depleted HCCs

An NGS sequence analysis was conducted in UBE2M-depleted HepG2 cells. Herein,
several genes were differentially expressed with upregulation (red) or downregulation
(blue) (Figure 2A). In addition, the gene ontology analysis classified affected genes and
signaling pathways into extracellular matrix, DNA repair, cell proliferation, cell migration,
cell cycle, apoptosis and angiogenesis (Figure 2B). Of note, TP53-related genes (56.99%),
MDM2-related genes (52.68%) and RPL11-related genes (27.37%) were critically involved in
UBE2M-depleted HepG2 cells (Figure 2C). Consistently, upregulation of TP53, BAX, PUMA
was validated in UBE2M-depleted HepG2 cells by qRT-PCR (Figure 2D). Interestingly,
the protein level of p53 upregulation (Figure 3) was higher than the mRNA level of p53,
indicating the post-translational effect by UBE2M depletion. In addition, UBE2M depletion
increased E-cadherin along with upregulation of apoptosis-related proteins such as p53,
Bax and PUMA at mRNA level. In addition, c-Myc, one of the downregulated genes by
NGS sequence was validated in HepG2 cells by Western blotting (Figure S1B).
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Figure 1. UBE2M overexpression in HCC cell lines and patient tissues, and cytotoxic and anti-proliferative effect of
UBE2M depletion. (A) Endogenous expression level of UBE2M in hepatocellular carcinoma cell lines by Western blotting.
(B) Effect of UBE2M depletion on the viability of HepG2, Hep3B and Huh7 cells. Cells were transfected with control and/or
UBE2M siRNA-#1/siRNA-#2 and its cell viability was evaluated by MTT assay. Data represent means ± S.D from three
independent experiments. (C) Effect of UBE2M depletion on the number of colonies in HepG2, Hep3B and Huh7 cells
transfected with control and/or siRNA. Cells were cultured for 2 weeks in 12 well culture plate and stained. The number of
colonies was counted. (D) UBE2M expression level in 80 patients’ liver cancer tissues and paired adjacent tissues using
immunohistochemistry. 40×magnification. Data represent means ± S.D from three independent experiments. ** p < 0.01,
*** p < 0.001 vs. untreated control. (E) Effect of UBE2M depletion on PARP cleavage in HepG2, Hep3B and Huh7 cells
transfected with control and/or UBE2M siRNA. Cells were lysed and immunoblotted with antibodies of PARP, cleaved
caspase-3, UBE2M and β-actin. (F) Effect of UBE2M depletion on Snail, E-cadherin in HepG2 cells.
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Figure 2. Differentially expressed gene profile is mainly associated with p53-related signaling and
UBE2M depletion induces cell-cycle arrest and apoptosis in HCCs. (A) Heat map of genes enriched in
UBE2M-depleted HepG2 cells. Blue and red represent increased and decreased expression of genes,
respectively. (B) Gene ontology analysis for related signaling pathways. Green and red represent
increased and decreased expression of genes, respectively. (C) Gene analysis for TP53-, UBE2M-,
RPL11-, MDM2-related genes in a pie chart. (D) Effect of UBE2M depletion on TP53, Bax and PUMA
in HepG2 cells by qRT-PCR. RNAs isolated from HepG2 cells transfected with control and/or UBE2M
siRNA were lysed and subjected to qRT-PCR. * p < 0.05, ** < 0.01, *** p < 0.001 vs. untreated control.
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Figure 3. UBE2M depletion activates p53 and maintains its stability in HCCs. (A) Effect of UBE2M
depletion on p53 in HepG2 cells. HepG2 cells were transfected with control siRNA and UBE2M
siRNA or p53 siRNA for 72 h and were subjected to Western blotting with antibodies of p53, UBE2M
and β-actin. (B) Effect of UBE2M depletion on p53 in Hep3B cells. Hep3B cells were transfected
by control siRNA, UBE2M siRNA, pcDNA3.0 and p53 plasmids and were subjected to Western
blotting with antibodies of p53, UBE2M and β-actin. (C) Effect of p53 depletion on UBE2M in HepG2
cells. (D) Effect of UBE2M depletion and/or p53 knockdown on p53 in HepG2 cells. (E) Effect
of UBE2M overexpression on p53 in Hep3B cells. Hep3B cells were transfected with pcDNA3.0
RGS/His UBE2M and p53 plasmids and then were subjected to Western blotting with antibodies
of p53, UBE2M and β-actin. (F) Effect of UBE2M overexpression on p53 in HepG2 cells exposed to
doxorubicin. HepG2 cells were transfected with control siRNA, UBE2M siRNA, pcDNA3.0 and p53
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plasmids with or without p53 activator Doxorubicin (0.1 µM) treatment and then were subjected
to Western blotting with antibodies of p53, UBE2M and β-actin. (G) Effect of UBE2M depletion on
p53 in HepG2 cells exposed to doxorubicin. (H) Effect of UBE2M overexpression on p53 stability
in HepG2 cells in the presence of cycloheximide. HepG2 cells transfected with control siRNA and
RGS/His UBE2M for 72 h were treated with cycloheximide (CHX) for 30, 60 and 90 min and were
subjected to Western blotting with antibodies of p53, UBE2M and β-actin. Three independent assays
were conducted in triplicate. (I) Effect of UBE2M depletion on p53 stability in HCT116p53+/+ cells
in the presence of cycloheximide. HCT116p53+/+ cells transfected with control and UBE2M shRNA
for 72 h were treated with CHX for 30, 60 and 90 min before harvesting cells and were subjected
to Western blotting with antibodies of p53, UBE2M and β-actin. Three independent assays were
conducted in triplicate. * p < 0.05 vs. siCTL. ** p < 0.01 vs. pcDNA3.0.

3.3. UBE2M Depletion Activates p53 and Maintains Its Stability in HCCs

Consistently with NGS sequence analysis data, UBE2M depletion upregulated p53 at
protein levels in p53 wild type HepG2 cells transfected using UBE2M siRNA (Figure 3A).
Likewise, UBE2M depletion upregulated p53 in Hep3B cells transfected with p53 and/or
UBE2M siRNA (Figure 3B). On the contrary, p53 depletion upregulated UBE2M in HepG2
cells (Figure 3C,D). Conversely, UBE2M overexpression attenuated p53 activation in p53-
null type Hep3B cells (Figure 3E) and in HepG2 cells (Figure 3F) by using RGS/His
UBE2M plasmids. Furthermore, UBE2M depletion enhanced p53 activation induced by
doxorubicin, compared to doxorubicin alone, in HepG2 cells transfected with UBE2M
shRNA (Figure 3G). Next, we tested whether or not UBE2M depletion maintained p53
expression levels by evaluating the half-life of p53 in the presence of DNA synthesis
inhibitor cycloheximide in HepG2 and HCT116p53+/+ cells. As shown in Figure 3H,I,
UBE2M depletion maintained p53 stability in the presence of cycloheximide compared to
untreated control in HepG2 and HCT116p53+/+ cells (Figure 3H,I).

3.4. Ectopic Expression of UBE2M Enhances Degradation of Exogenous P53 Mediated by MDM2
in HepG2 Cells

Interestingly, UBE2M is located mainly in the cytosol, while p53 exists in the cytosol
and nucleus by fractionation of cytoplasmic and nuclear extracts (Figure 4A). Thus, to
test whether UBE2M regulates p53 ubiquitination, an ubiquitination assay was conducted
in HepG2 cells transfected with Flag-p53, HA-MDM2, HA-Ub and RGS/His-UBE2M, or
UBE2M siRNA followed by MG132 treatment. Herein, the ectopic expression of UBE2M en-
hanced the ubiquitination of exogenous p53 mediated by MDM2 in HepG2 cells (Figure 4B).
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Figure 4. Ectopic expression of UBE2M enhances degradation of exogenous p53 mediated by MDM2 in HepG2 cells.
(A) Location of UBE2M and p53 in HepG2 cells by fractionation assay. Cytosol and nuclear fractions were isolated and
subjected to Western blotting with antibodies of p53, UBE2M and β-actin. (B) Effect of UBE2M overexpression on p53
ubiquitination in Hep3B cells. Hep3B cells were co-transfected by plasmids (pcDNA3.0, Flag-p53, MDM2, HA-Ub and
RGS/His-UBE2M) and treated with 20 µM MG132 2 h before collecting protein lysates. The lysates were lysed and
immunoprecipitated with anti-HA antibody and protein G-agarose beads and immunoblotted with antibodies of Flag,
UBE2M and β-actin.

3.5. UBE2M Binds to MDM2, but Regulates p53 via Their Crosstalk in HepG2 Cells

To further examine how UBE2M binds to p53 or MDM2, immunoprecipitation (IP)
and immunofluorescence assays were conducted in HepG2 cells. Here, IP reveals that en-
dogenous UBE2M binds to MDM2, but not to p53, in HepG2 cells (Figure 5A). Consistently,
UBE2M overexpression enhanced MDM2 expression in HepG2 cells (Figure 5B). Further-
more, the colocalization between UBE2M and MDM2 was observed at an endogenous and
exogenous level by immunofluorescence (Figure 5C,D).
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Figure 5. UBE2M binds to MDM2, but regulates p53 via their crosstalk in HepG2 cells. (A) UBE2M binds to MDM2, but
not to p53, in HepG2 cells. Immunoprecipitation was conducted in HepG2 cells to identify the endogenous interaction
between UBE2M and p53, or MDM2 in the presence of MG132. (B) UBE2M activates MDM2 in HepG2 cells. HepG2 cells
transfected with pcDNA3.0, RGS/His-UBE2M and MDM2 plasmids were lysed and immunoblotted with anti-MDM2,
UBE2M and β-actin antibody. (C) The colocalization between MDM2 and UBE2M in HepG2 cells at endogenous level
by immunofluorescence with ALEXA 488, 596 and DAPI staining. (D) The colocalization between MDM2 and UBE2M at
exogenous level in HepG2 cells transfected with pcDNA3.0, RGS/His-UBE2M and MDM2 plasmids by immunofluorescence
with ALEXA488, 596 and DAPI staining. × 200.

3.6. UBE2M Depletion Activates p53 and Ribosomal Protein L11 in HepG2 Cells

It is well known that ribosomal proteins including L5, L11, L22 and S14 interact with
MDM2 to block p53 ubiquitination mediated by MDM2 [33,36,37]. To determine whether
UBE2M affected p53 expression through the ribosomal protein L11, Western blotting and
immunoprecipitation were conducted in HepG2 cells. Here, L11 knockdown disturbed p53
activation induced by UBE2M depletion, though UBE2M depletion activated p53 and L11
in HepG2 cells (Figure 6A). In contrast, depletion of L5 was not able to block p53 activation.
Furthermore, IP revealed that UBE2M binds to L11 in HepG2 cells (Figure 6B). It has been
reported that ribosomal proteins bind MDM2 and inhibit p53 degradation.



Cancers 2021, 13, 4901 12 of 16

Figure 6. Ribosomal protein L11 is required for p53 activation by UBE2M depletion in HepG2 cells. (A) UBE2M depletion
activates p53 in the presence of L11. HepG2 cells were co-transfected with control siRNA, UBE2M siRNA and L11 siRNA
and were subjected to Western blotting with antibodies of p53, L11, UBE2M and β actin. Total siRNA amount of its
transfection mixture was adjusted to 80 nM per one well in 6-well plates. (B) UBE2M binds to L11 in HepG2 cells by
immunoprecipitation. HepG2 transfected cells with pcDNA3.0, RGS/His-UBE2M and Flag-L11 plasmids were lysed
and immunoblotted.

3.7. UBE2M Depletion Retards the Growth of HepG2 Cells Implanted in Balb/c Male Athymic
Nude Mouse along with Elevated p53 and Decreased UBE2M Expression by IHC

An animal study was conducted with Balb/c male athymic nude mice bearing UBE2M
shRNA-transfected HepG2 cells to confirm the aforementioned in vitro study. As shown
in Figure 7A, UBE2M was successfully depleted in HepG2 cells. In addition, tumor
sizes measured by caliper were significantly reduced in the mice group bearing UBE2M-
depleted HepG2 cells compared to untreated control group by monitoring for 39 days
(Figure 7B), which was confirmed by evaluation of isolated tumors from mice (Figure 7C,D).
Furthermore, immunohistochemistry showed that p53 was upregulated while UBE2M was
downregulated in tumor sections from the mice implanted by UBE2M d-pleted HepG2
cells compared to untreated control group (Figure 7E).
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Figure 7. UBE2M knockdown retards the growth of HepG2 cells implanted in Balb/c. (A) HepG2 cells transfected with
UBE2M shRNA were stabilized and selectively proliferated by puromycin; UBE2M expression level was confirmed by
immunoblotting. (B) The cells were subcutaneously injected in the flank of Balb/c nude mouse. The tumor size was
monitored and measured with the length and width of the tumor for 39 days with a caliper. (C,D) Thirty-nine days
after injection of UBE2M shRNA transfected HepG2 cells, mice and isolated tumors were photographed. (E) The tumors
were fixed and paraffinized for making blocks and then IHC was conducted with antibodies of p53 and UBE2M. ×40
magnification. (F) The schematic diagram of UBE2M signaling associated with MDM2, p53 and RPL11. *** p < 0.001 vs.
HepG2 shCTL.
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4. Discussion

The underlying molecular mechanism of UBE2M, so called UBC12, for neddylation
cascade [19] remains unclear so far, though UBE2M was reported to be overexpressed in
hepatocellular carcinoma (HCC) [21] and H1299 lung cancer [22]. In the current study, the
molecular mechanism of UBE2M was explored in human hepatocellular carcinoma tissues
and cell lines in association with p53/MDM2 and ribosomal protein L11.

UBE2M was overexpressed in HCCs compared to adjacent uncancerous tissues by
human tissue array and TCGA analysis, implying the oncogenic potential of UBE2M.
Consistently, UBE2M depletion suppressed viability and proliferation in HepG2, Huh7
and Hep3B cells by MTT assay and colony formation assay. In addition, UBE2M depletion
cleaved PARP and caspase 3 in HepG2 and Hep3B cells, attenuated the protein expression
of EMT molecule Snail and increased E-cadherin, along with upregulation of apoptosis-
related proteins such as p53, Bax and PUMA at mRNA level, implying anti-proliferative
and apoptotic effects by UBE2M depletion in HCCs.

It is well documented that p53, as an important tumor suppressor, regulates cell-
cycle arrest, DNA repair and apoptosis in the cells and also is closely associated with
p21, p27, Bax, PUMA and NOXA during the apoptosis process [36,37]. Interestingly,
UBE2M depletion activated p53 in HepG2 and HCT116p53+/+ cells, demonstrating p53-
mediated apoptosis by UBE2M depletion. Similarly, Scott et al. reported that UBE2M
knockdown enhances DNA breakages and cellular sensitivity to DNA damaging agents
by regulation of CDT1, p21 and claspin [38]. In addition, Zhang et al. [36] reported that
UBE2M enhances proliferation and migration in PLC/PRF/5, BEL-7402, SMCC-7721 and
L02 cells via activation of β-catenin and cyclin D1.

Interestingly, UBE2M depletion maintained p53 stability in the presence of cyclohex-
imide compared to untreated control in HepG2 and HCT116p53+/+ cells, while UBE2M
overexpression reduced p53 activation in HepG2 and Hep3B cells. Conversely, p53 knock-
down enhanced UBE2M activation in HepG2 cells, though UBE2M is located mainly in the
cytosol, while p53 exists in the cytosol and nucleus. However, considering that UBE2M
does not bind to p53 in HepG2 cells by immunoprecipitation, the interaction between p53
and UBE2M can be executed via a crosstalk between p53 and UBE2M.

Accumulating evidence reveals that MDM2, the negative regulator of p53, induces
p53 degradation and inactivates its tumor suppressing activity through the MDM2–p53
negative feedback loop [39]. Here, UBE2M binds to MDM2 in HepG2 cells by IP; further,
the ectopic expression of UBE2M increased MDM2 in HepG2 cells, while the colocalization
between MDM2 and UBE2M is observed by immunofluorescence at endogenous and exoge-
nous levels in HepG2 cells. Furthermore, the ectopic expression of UBE2M enhanced the
ubiquitination of exogenous p53 mediated by MDM2, while UBE2M depletion reduced p53
degradation induced by MDM2, demonstrating that UBE2M regulates p53 ubiquitination
by binding to MDM2.

Previous evidence reveals that ribosomal proteins are critically involved in the MDM2–
p53 signaling pathway [32,40]. Hence, suppression of ribosomal biogenesis activates p53
via inhibition of MDM2 E3 ligase [34,41]; further, ribosomal proteins L5, L11 and L23
activate p53 by reducing the MDM2–p53 feedback loop [19,33]. In addition, ribosomal
proteins such as RPL5, RPL11 and RPL23 as MDM2 binding partners are known to block
the E3 ubiquitin ligase function of MDM2 to promote p53 accumulation [42], indicating
the possibility of competitive binding of L11 and MDM2 to UBE2M and ubiquitination
or stability of L11 by UBE2M, which should be explored in the future. Herein, UBE2M
depletion upregulated ribosomal protein L11 for MDM2 inactivation, while p53 activation
was not induced in the absence of RPL11 in HepG2 cells, implying RPL11 is essential in
p53 activation.

Additionally, UBE2M depletion reduced HepG2 tumor sizes, increased the expression
of p53 and decreased that of UBE2M in tumor tissues isolated from Balb/c male athymic
nude mice compared to untreated control, strongly demonstrating the oncogenic potential
of UBE2M in association with p53-related signaling.
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5. Conclusions

Overall, our findings provide a novel insight that UBE2M acts as an oncogene via
colocalization or binding with MDM2 or RPL11, despite its working with p53 via crosstalk,
not binding, while UBE2M depletion exerts anti-proliferative and apoptotic effect in vitro
and in vivo as a target molecule for liver cancer therapy (Figure 7F).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13194901/s1, Figure S1: Transfection efficiency of UBE2M siRNA and its effect on
c-Myc and UBE2M in Hep G2 cells. File S1: uncropped films are shown in a UBE2M raw data file.
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