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Collective migration occurs throughout the animal kingdom, and demands
both the interpretation of navigational cues and the perception of other indi-
viduals within the group. Navigational cues orient individuals towards a
destination, while it has been demonstrated that communication between indi-
viduals enhances navigation through a reduction in orientation error. We
develop a mathematical model of collective navigation that synthesizes naviga-
tional cues and perception of other individuals. Crucially, this approach
incorporates uncertainty inherent to cue interpretation and perception in the
decision making process, which can arise due to noisy environments. We
demonstrate that collective navigation is more efficient than individual naviga-
tion, provided a threshold number of other individuals are perceptible. This
benefit is even more pronounced in low navigation information environments.
In navigation ‘blindspots’, where no information is available, navigation is
enhanced through a relay that connects individuals in information-
poor regions to individuals in information-rich regions. As an expository
case study, we apply our framework to minke whale migration in the northeast
Atlantic Ocean, and quantify the decrease in navigation ability due to
anthropogenic noise pollution.
1. Introduction
Many animals routinely migrate long distances; spectacular examples include
the pole-to-pole flights of Arctic terns and the transoceanic migrations of
many whale species [1,2]. Topography, the geomagnetic field, celestial infor-
mation, and chemical signals can all serve to orient animals en-route [3–5].
Navigational cues may be interpreted in combination, or an animal may
switch from a cue suitable for long-distance migration to a cue suitable for pre-
cise navigation when close to the destination [6,7]. Frequently, migrations are
conducted as a group and there is significant interest in the extent to which
the ‘wisdom of the crowd’ improves navigation performance. Improvement
may arise from group heterogeneity, where knowledgeable individuals take
on a leadership role, but is also hypothesized to occur in a homogeneous popu-
lation through the ‘many wrongs’ principal of navigation. Here, pooling
information across the group reduces individual-level uncertainty via averaging
[8–11]. As an example, homing pigeons display improved homing behaviour
when travelling in a small flock, compared to when flying solo [12].

Collective navigation demands communication with, or perception of, other
group members. These interactions in turn influence an individual’s behavioural
response [13,14]. The complexity and range of interaction will vary significantly
with an animal’s sensory machinery, along with the environment through
which the animals are moving. For example, sound transmission through water
permits whales to communicate with each other through ‘whalesong’ and other
vocalizations, up to estimated distances of hundreds of kilometres [7,15]. Even
on land, calls may travel several kilometres between elephants [16]. As such, a
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superficially dispersed animal population may be migrating as
a group through communication across long distances.

Navigation also requires a robust evaluation of orienteer-
ing cues; the quality of orienteering information is unlikely to
be uniform across the travel route. In animal populations
with established social networks, such as whale societies,
information from a dominant member may be considered
more valuable than information from other members
[17,18], suggesting that the navigation may be easier in the
presence of knowledgeable individuals. Alternatively, as the
distance between the navigating individual and its target
decreases, cues may become stronger, as for audible infor-
mation, or weaker, as for detecting geomagnetic field
differences. Journeys may require passage through blindspots,
regions of space with diminished quality of navigational
information. Blindspots may form naturally, for example
due to adverse weather conditions, or through anthropologi-
cal activity. Recently, significant attention has been devoted
to the state of the marine ‘soundscape’ [19]. Human oceanic
activity has substantially increased over the last century,
with extreme noise sources and raised ambient noise levels
a result of shipping, offshore construction, and naval oper-
ations [20,21]. This anthropogenic noise pollution has had a
broad impact on the ocean-dwelling organisms that rely on
auditory information [19]. For example, various cetaceans
adjust the volume and frequency of their calls to account
for marine noise [22–24], a behaviour known as the Lombard
effect. However, this only provides partial compensation and
the adjusted calls may encode less information. It has been
estimated that species including minke whales (Balaenoptera
acutorostrata) and humpback whales (Megaptera novaeangliae)
could lose approximately 80% of their communication
distance in the presence of increased human activity [22,23].

Numerous mathematical models have been proposed to
describe populationmovements in response to external naviga-
tion cues [25–28]. Theoretical models of communication-based
collective navigation are often individual-based random walk
models [29,30], where the behaviour of each individual is
explicitly defined; though continuum models have also been
proposed [8]. A common strategy has been to abstract inter-
actions between individuals into a generic set of attraction,
repulsion and alignment interactions [10,31–35]. Interactions
occur up to a maximum interaction range, or a defined
number of neighbours [11]. Codling et al. employ this
approach and demonstrate that group-based navigation is
more efficient than individual navigation [10], provided
that the environment is not highly turbulent. However, a wide-
spread assumption in previous models of collective navigation
is that an individual uniformly perceives the behaviour of
certain other individuals within the population. While this
may be reasonable if the population is tightly clustered, it is
less clear that this assumption holds for more dispersed popu-
lations. For example, in the presence of marine noise, the
quality and strength of perceived information may decrease
markedly with distance [7]. Alternatively, for visual cues, the
asymmetry of visual fields can restrict the directions from
which a cue may be obtained, leading the spatial or topologi-
cal structure of the population to impact on cue perception
[36–38]. Whether a similar effect occurs for an auditory cue
is less clear due to the physics of sound transmission through
water. Another common assumption is that alignment inter-
actions only rely on the (circular) mean of all observed
headings to determine an optimal heading. Such an approach
neglects all information regarding the variance in the observed
headings. Consider a set of observed headings that are tightly
clustered around the resultant mean heading compared to a
set of observed headings, with the same resultant mean, but
that are widely spread across all possible headings. It is plaus-
ible that the individual in the latter case would have less
confidence in the resultant mean heading, compared to the
first case. However, this reflection of decision-making under
uncertainty is typically not present in mathematical models.
Certain approaches to modelling animal decision making
between discrete options have been proposed previously
[39–41]. By contrast, we seek to translate the uncertainty in
the set of observed headings into uncertainty regarding a
potential heading. It is currently unclear how the uncertainty
in communication or perception may affect the ability of the
population to undergo navigation due to the corresponding
uncertainty in heading selection.

We develop a randomwalk model of communication-based
collective navigation that incorporates uncertainty in the pro-
cess of acquiring external guidance information. The random
walk is biased according to a combination of observations of
the heading of other individuals, balanced against the naviga-
tion information inherent to an individual. We examine the
navigation performance of individuals governed by this
model in a range of idealized information fields that represent
the natural variability of navigation information. We demon-
strate that communication results in a significant increase in
navigation performance, provided that an individual can
observe sufficiently many other individuals to overcome the
uncertainty in communication. This increase in performance
is most pronounced in the presence of information blindspots.
To illustrate the utility of the framework, we consider a case
study of minke whale migration through the northeast Atlantic
Ocean, and examine how increased ambient noise due to
drilling and other anthropogenic sources may inhibit migration.
2. Methods
Consider an individual labelled i located in a two-dimensional
plane at position xi(t) and navigating towards a target at xtarget.
We model the individual’s movement path as a velocity jump
random walk [42], an alternation between fixed velocity runs
and reorientations. The duration of each run is sampled from an
exponential distribution, parametrized by a turning rate parameter
μ, which dictates the frequency at which an individual reorients.
For simplicity, we impose quasi-instantaneous reorientation
events, a constant turning rate and a fixed speed, s; these assump-
tions can be relaxed when tailored to a specific case study. For
clarity of presentation, we presume a scaling such that s = 1.
Velocities here are therefore unit vectors equivalent to an
individual’s heading, and the formulae can be trivially modified
for the case s≠ 1. An individual with a heading represented by
angle θi, and corresponding velocity vi, moves according to

dxi
dt

¼ vi:

Navigation is encoded through the selection of a new heading at
reorientation. We assume that this selection depends both on the
inherent information available to an individual based on its current
location, and on the group information obtained through communi-
cation with (or the perception of) other individuals (figure 1).
Model complexity is minimized by neglecting both repulsion and
attraction, and we note that their effects have been considered in
previous models [10]. We also assume that the post-reorientation
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Figure 1. (a–e) Different types of information fields. The information field can either (a) be constant, (b) increase or (c) decrease as an individual approaches the
target location, (d ) contain a region of negligible information or (e) be randomly distributed. ( f–i) Schematic highlighting the differences between ( f ) individual
navigation and (g–i) collective navigation. For individual navigation, differences in navigation ability arise due to differences in the local inherent information. For
collective navigation, differences in navigation ability may arise from (g) observing other individuals heading in similar directions, (h) observing other individuals in
higher information regions, or (i) observing more individuals. We illustrate how this increase in navigation performance occurs by presenting ( j,k) the von Mises
distributions (magenta) inferred from sets of observed headings that ( j ) are clustered to various degrees around a central heading or (k) include different numbers
of observations. Distributions that are concentrated around the peak indicate decreased navigation uncertainty, as an individual is more likely to move in the
direction of the target. Colours in the histograms indicate navigation ability, as in ( f–i).
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heading is independent of the pre-reorientation heading. New
headings are sampled from a von Mises distribution [43],

vMðujk, fÞ ¼ 1
2pI0ðkÞ e

k cosðu�fÞ,

where I0(κ) denotes the modified Bessel function of order zero. The
von Mises distribution is parametrized by a location parameter, ϕ,
and a concentration parameter, κ. The location parameter reflects
the most likely heading and an increasing concentration parameter
increases the certainty of it being selected.

2.1. Inherent information
Inherent information refers to the knowledge obtained when
an individual samples navigation cues at its current position.
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The type of cue, an organism’s sensory processes, and
the environment could all impact on the strength of this infor-
mation. We assume inherent information is incorporated
according to the von Mises distribution, where the concentration
parameter κ is given by VðxiðtÞÞ. Therefore, VðxiðtÞÞ defines the
strength of the inherent information field for an individual
currently located at xi(t). We assume that the location parameter
is given by arg(xtarget− xi(t)); that is, the distribution resulting
from inherent information is centred around the direction
of the target location. We consider a range of inherent infor-
mation fields, as presented in figure 1, which are defined
mathematically as
bl
ishing.org/journal/rsif
J.R.S
VðxÞ ¼

V0 ðConstant informationÞ,
Vmin þ 0:5ðVmax �VminÞ tanhðvfjx� xtargetj � ggÞ þ 1

� � ðIncreasing informationÞ,
Vmin þ 0:5ðVmax �VminÞ tanhð�vfjx� xtargetj � ggÞ þ 1

� � ðDecreasing informationÞ,
Ix�cV0 ðInformation voidÞ,
j � Uniformð0, 2V0Þ ðRandom informationÞ,
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where V0 is the background information value for the constant
information field. For the increasing and decreasing information
fields, Vmin and Vmax are the minimum and maximum infor-
mation values, respectively; γ is the distance from the target of
the midpoint information value; and ω is the information slope
parameter. For the void information field, c is the set of locations
inside an information void, and I is an indicator function, equal
to one if an individual is located outside of the information void,
and zero otherwise.

2.2. Group information
Under collective navigation, the individual’s inherent infor-
mation can be enhanced by other individuals attempting to
travel toward the same target. This information transfer can
occur non-locally through mechanisms that involve auditory,
visual or other forms of communication. Consider an individual
that perceives n other individuals with velocities vj, j∈ [1, n].
Each observation can be regarded as a sample from a von
Mises distribution. This distribution will have similar parameters
to the von Mises distribution sampled by individual i, presuming
the maximum communication distance is not large compared to
the length over which the background information changes. As
such, we can construct the maximum-likelihood estimates
(MLEs) of ϕ and κ for the von Mises distribution governing the
heading of the observed individuals. Of course, we are not
suggesting that the individual is actually calculating the MLEs;
rather, it is a convenient way of converting observations into a
measure of average behaviour and certainty regarding that aver-
age behaviour. The MLE for the location parameter f̂ is simply
the argument of the sum of the observations [44]:

f̂ ¼ arg
X
j

vj

0
@

1
A:

As individuals select a heading that is informed by the headings
of other individuals this represents an alignment-type inter-
action, where individuals each seek to travel in the same
direction. Other possible interactions include attraction or repul-
sion [10,45], where the individual moves towards or away from
the centre of the observed neighbours. Attraction-type inter-
actions may be particularly relevant in the final stages of
migration, where an individual could signal its navigational suc-
cess to the remainder of the population upon reaching the
destination. However, as alignment-type interactions are relevant
throughout the long migration process, we restrict our focus to
these interactions at present. Furthermore, including additional
model complexity runs the risk of confounding or obscuring
the relationship between uncertainty in observed headings and
navigation performance.

It is plausible that information regarding an observed indi-
vidual’s heading becomes diminished due to the distance the
information travels before reaching the decision-making individ-
ual. This can happen, as an example, due to ambient noise
disturbing an auditory signal. To account for this, a weighting
kernel, K(r), can be used to describe the relative weighting
placed on a signal as a function of distance between individuals,
and hence the MLE for the location parameter will be

f̂ ¼ arg
X
j

K kxiðtÞ � xjðtÞk
� �

vj

0
@

1
A:

The MLE for the concentration parameter, k̂, requires the follow-
ing inverse problem to be solved, either via an approximation or
through numerical techniques [44],

1
n

X
j

vj

������
������ ¼ I1ðk̂Þ

I0ðk̂Þ ,

where Imðk̂Þ denotes the modified Bessel function of order m.
If all observations are in a similar direction, then the MLE of
the concentration parameter will be large, which implies that
the individual has a high level of confidence in the location par-
ameter. We can similarly include a weighting kernel to describe
the relative weighting of information, which results in the MLE
for the concentration parameter arising from

kPj KðkxiðtÞ � xjðtÞkÞvjkP
j KðkxiðtÞ � xjðtÞkÞ ¼ I1ðk̂Þ

I0ðk̂Þ :

Here, we will restrict our choice of weighting kernel to the
Heaviside function

KðrÞ ¼ Hðrmax � rÞ:
This implies that an individual places equal weight on obser-
vations of all individuals within a radius, rmax, but ignores all
other individuals. We refer to this radius as the perceptual
range, the maximum distance over which a signal or cue can be
perceived, for example mimicking the maximum perception dis-
tance relevant to communication through auditory and visual
signals. Other natural choices for K(r) could include an exponen-
tial or power-law decay with distance, see for example [46].
Perceptual error could be directly imposed, as per previous
studies [10], via the addition of a noise term to each observed
heading. The strength of this noise term may be constant, or
depend on a variable such as distance. Here, we focus on uncer-
tainty that arises organically due to the discrepancies present in
the set of observed headings.
2.3. Combining inherent and group information
The question remains regarding how to combine observed head-
ings acquired non-locally from the group with the inherent
information available to an individual. Here, we simply assume



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210383

5
that the individual weights the observed headings against its
inherent information

f̂ ¼ arg ð1� aÞ
P

j KðkxiðtÞ � xjðtÞkÞvjP
j KðkxiðtÞ � xjðtÞkÞ

" #
þ av̂i

 !
, ð2:1Þ

where α is the relative strength that an individual places on its
inherent information with respect to heading and v̂i is the heading
sampled from the distribution corresponding to the individual’s
inherent information. If α = 0, the individual neglects inherent
information and follows the crowd. If α = 1, the individual relies
solely on inherent information. If α = 1/2, the individual places
equal weight on inherent and group information. If α = 1/(n + 1)
then the individual places equal weight on each observed individ-
ual, including itself. Another possibility is to allow α to vary
according to, for example, the social relationships between indi-
viduals [17], such as for knowledgeable whale matriarchs, or the
number of observed neighbours. However, for simplicity, here
we restrict ourselves to constant α values for the entire population.

A similar weighting approach can be taken with the MLE
estimate of the concentration parameter:

ð1� bÞ Pj KðkxiðtÞ � xjðtÞkÞvj
� �

þ bv̂i
��� ������ ���

ð1� bÞPj KðkxiðtÞ � xjðtÞkÞ þ b
¼ I1ðk̂Þ

I0ðk̂Þ , ð2:2Þ

where β is the relative strength that an individual places on its
inherent information with respect to concentration. The par-
ameters α and β can be considered as the relative strength of
social connections between the individual and its observed neigh-
bours [17]. An investigation into the influence of the choice of α
and β indicates that an approximately equal weighting between
inherent and group information results in optimal navigation
performance across a broad spectrum of information fields
(electronic supplementary material).

2.4. Concentration parameter estimation
As detailed in equation (2.2), the MLE for the concentration par-
ameter can be calculated from n observations obtained from a
von Mises distribution [43]. In [47], it is noted that this estimate
is biased for either small κ or n values, both of which are likely to
occur in group navigation. The authors proposed a correction
which provides a less-biased mean, but exploring its distribution
(compared to the uncorrected estimate) reveals that the reduction
in bias is partly achieved through mapping the MLE of a large
number of samples to zero (electronic supplementary material).
While reducing the bias of the MLE for the concentration par-
ameter is important, this reduction therefore occurs at the
expense of a severely distorted distribution.

We therefore propose an alternative approach, where we
repeatedly generate samples for fixed n and κ (i.e. a set of n
headings obtained from the von Mises distribution with a con-
centration parameter κ) and determine the (uncorrected) k̂

value for each sample. We repeat this process for a wide range
of n and κ values and construct the distribution of κ values
that give rise to a specific k̂ value for a fixed n value, which
can be considered as the likelihood function, Pðkjk̂, nÞ. We pre-
calculate a look-up table of Pðkjk̂, nÞ for 1≤ n≤ 25 and
0 � k̂ � 25, which addresses the issues associated with both
insufficient observations and small κ values. In the model, an
individual is informed by n observations and calculates k̂ via
equation (2.2). We then sample from the likelihood function
Pðkjk̂, nÞ to provide an estimate of the concentration parameter
of the von Mises distribution of the observed data. A comparison
with the distributions from the uncorrected and corrected maxi-
mum-likelihood estimate reveals that the likelihood function
approach reduces the bias present without significantly inflating
the number of estimates of the concentration parameter that are
zero (electronic supplementary material, figure S1).
2.5. Model simulation
Initially, we distribute 100 individuals within a square of size 40,
uniformlyat random.The centre of this square is located at adistance
of 300 from the target location. Initial headings are sampled accord-
ing to the local inherent information. Individuals undergomotion at
a fixed velocity until a reorientation event occurs. During a
reorientation event, individuals undertake a three step process:

— First, an individual samples a heading from a von Mises
distribution where the distribution parameters are informed
by the inherent information;

— Second, an individual infers von Mises distribution parameters
from a weighted combination of its sampled heading and the
observed headings of the neighbours within its perceptual
range via equation (2.1) and (2.2); and

— Third, the individual samples a heading from this inferred von
Mises distribution and undergoes motion in the newly
sampled direction. Note that the second and third step only
occur if there are other individuals within the perceptual
range; otherwise, the originally sampled heading is retained.

When an individual arrives within a distance of 10 from the
target location it is considered to have successfully navigated to
the target, and is removed from the system. Unless stated
otherwisewe assume an implicit rescaling such that s = μ = 1. Con-
sequently, the minimum mean migration time is approximately 290
time units, which occurs if all individuals move in a straight line
towards the target. Therefore, over the course of this journey
each individual will, on average, re-evaluate its environment for
navigation information several hundred times. For each simu-
lation, we track the number of individuals yet to reach the target
location, the average number of neighbourswithin an individual’s
perceptual range, and the average distance to the target of the
individuals yet to reach the target location. All simulations are
performed inMatlab R2020b, with the CircStat Toolbox employed
for the necessary circular statistics [48].
3. Results and Discussion
We first investigate navigation in a constant information field
for a suite of perceptual ranges, and present the results in
figure 2. A perceptual range of zero corresponds to an indi-
vidual navigating via inherent information only. Notably,
we do not observe a monotonically increasing relationship
between perceptual range and navigation ability, similar to
the results observed by Codling et al. [10]. Rather, small per-
ceptual ranges reduce navigation performance (compared
to purely local navigation) and an improvement only occurs
above a certain threshold. Examining the average number
of neighbours offers insight into the root of this phenomenon.
Perceptual ranges of five yield fewer than five neighbours
throughout the simulated migration. This implies that relying
on relatively few observations reduces navigation ability due
to the uncertainty present in that small set of observations. If
we consider the heading selection mechanism in the model,
navigation using only inherent information corresponds to
a single sample from a von Mises distribution centred
around the heading of the target site, for a specified concen-
tration parameter. By contrast, when group information is
incorporated, navigation corresponds to a sample from an
inferred von Mises distribution, constructed from a weighted
combination of the aforementioned target heading sample
and the headings of observed neighbours. The inferred distri-
bution is not necessarily centred around the heading of the
target, and for few observations the increase in the
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concentration parameter above background is insufficient to
compensate for the increased variance in the location par-
ameter. The decrease in performance is ameliorated by the
presence of additional individuals within the perceptual
range, as extra observations provide both a more reliable esti-
mate of the heading of the target location and a further
increase in the concentration parameter, ultimately improving
navigation performance. We observe in figure 2a that a per-
ceptual range of 10, corresponding to between 10 and 20
neighbours, results in navigation performance that is more
efficient than local navigation. The benefit of additional
neighbours appears to plateau around 30 neighbours, as per-
ceptual ranges of 20, 50 and 500 (effectively perceiving the
entire population) demonstrate a similar navigation ability.
We observe this phenomena across a suite of background
information levels and perceptual ranges (electronic sup-
plementary material, figure S2). The non-monotonic
relationship between navigation performance and perceptual
range has been observed previously [10]. However, in such
models, where uncertainty is a predetermined parameter,
the relationship becomesmonotonic for sufficiently low uncer-
tainty [10]. This is in contrast to our model, where uncertainty
arises organically from the set of observed headings, and the
non-monotonic relationship is present for all investigated
levels of background information.

As a further test, we consider a set of simulations in which
the number of individuals, N, and rmax are both altered such
that Nr2max is kept constant. This ensures that approximately
the same number of observed neighbours are within the per-
ceptual range throughout each simulation. The resulting
simulations (electronic supplementary material, figure S4)
show that the proportion of remaining individuals remains
similar for each perceptual range considered, corroborating
our hypothesis that the number of observed neighbours is
the critical measure that informs navigation ability.

We next investigate navigation across the random, increas-
ing and decreasing background information fields, illustrated
in figure 1. We calculate the time taken for 90% of the popu-
lation to reach the target location for these fields, as well
as for three constant information fields, and summarize the
findings in figure 3 (for detailed statistics, see electronic sup-
plementary material, figures S2 and S3). Unsurprisingly,
increasing the background level of information improves navi-
gation performance. Navigation behaviour for the random
information field is similar to that observed for the constant
information field with the same mean information level,
suggesting that local fluctuations in background information
do not significantly impact navigation ability compared to
the mean background information. The expected non-
monotonic relationship between perceptual range and naviga-
tion ability is present in all cases. This relationship is less
distinct for the decreasing information field and the higher
constant information field, as the higher background
information allows the population to remain together.
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By contrast, there is a stronger relationship between the per-
ceptual range and the navigation ability for the increasing
information field and the lower constant information field,
due to the reduced background information, and correspond-
ing population dispersal.
83
3.1. Void information fields
We now turn our attention to void information fields, which
describe a migration route that involves passage through one
or more regions with negligible navigation information. We
consider two forms of void information field: chasm fields,
which contain a single void of fixed width that must be tra-
versed en-route to the target, and patchy fields, which
contain multiple voids of variable size and shape. We first
consider the chasm information field, and present the naviga-
tion behaviour in figure 4. Notably, navigating using inherent
information only becomes ineffective. Considering the dis-
tance between the centre of the population and the target
location (figure 4d ) we observe that navigation is effective
until reaching the region of zero information. At this point,
unbiased random motion is required to navigate through
the zero information region. Upon reaching the target-side
of the void, an individual once more receives non-negligible
information concerning the location heading.

By contrast, individuals that incorporate group infor-
mation can observe individuals that may be outside of the
zero information region, conferring a non-zero level of infor-
mation regarding the heading of the target location.
Intuitively, increasing the perceptual range increases the navi-
gation ability of individuals. For a void of width 50,
navigation ability does not dramatically improve for percep-
tual ranges larger than 20, corresponding to a range where an
individual almost always observes neighbours outside the
void. Note that even where an individual is itself unable to
observe a neighbour located outside of the zero information
region, the neighbours that it does observe could themselves
be observing such individuals. Thus, improved navigation
follows via a relay of information from individuals outside
to individuals deep inside the void.

To shed further light on this phenomenon, we calculate
the effective concentration parameter and the number of
neighbours as a function of distance from the target location
for three different perceptual ranges and three sizes of infor-
mation void, and present the results in figure 5. The effective
concentration parameter at each distance to the target is
obtained from fitting a von Mises distribution to the differ-
ences between individual headings (at that distance to the
target) and the target heading. As expected, the effective con-
centration parameter decreases inside the void, and this
decrease is ameliorated by larger perceptual ranges. For
larger voids, a prolonged decrease in the effective concen-
tration parameter is observed. Notably, this decrease is
asymmetric around the void midpoint. This asymmetry
appears to arise through a short-lived persistence in naviga-
tion performance in the random walk as the individuals
initially move into the void. Eventually, nearly all individuals
find themselves within the void and group navigation pro-
vides a reduced but, crucially, non-negligible benefit.
Subsequently, individual motion approaches an unbiased
random walk and the group becomes disperse. As some indi-
viduals emerge on the target-side of the void, information
begins to flow through to the individuals still within the
void, causing the effective concentration to increase as indi-
viduals approach the target-side of the void. Larger
perceptual ranges cause this increase to occur earlier, again
demonstrating the benefit of an increased perceptual range
with respect to navigation performance.

We next consider patchy void information fields. For the
random information field in figure 3, we treat randomness
as a uniform random variable, sampled each time an individ-
ual undergoes reorientation. This can be interpreted as
randomness at a fine scale, specifically at the length scale of
the run between reorientations. It is equally plausible,
though, to consider randomly generated information fields
that exhibit local correlation between information levels.
That is, if an individual is in a low information area due to
external factors, such as noise pollution, it is likely that the
surrounding area is also a low information area. We generate
such random information fields using a modified form of
fractional Brownian noise; details are given in the electronic
supplementary material. Three representative fields are pre-
sented in figure 6, where each field is generated following
the same procedure but differences arise due to the number
of nodes in the grid used to generate the noise. An increase
in the number of nodes corresponds to finer structure present
in the information field. For example, the information field in
figure 6a uses 16 times as many nodes in each direction as in
figure 6i, and exhibits much finer spatial structure.

For the three patchy information fields, with different
scales of spatial structure, we calculate the navigation behav-
iour and present the results in figure 6. Under the finest scale
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of spatial structure, which is closest to the original random
information field, we again see the trend of increased
navigation ability above a threshold number of observed
neighbours. For coarser spatial structure, however, local
navigation becomes less effective than the smallest perceptual
range. For such information fields individuals can become
trapped in low information areas, and therefore rely on
random motion to return to high information areas. The
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risk of becoming trapped decreases with an increased percep-
tual range, as an individual can observe the movement of
neighbours in high information areas. For realistic environ-
ments, where regions of low information may be present
due to a range of external factors, this highlights the benefit
of employing group navigation.
10383
4. Case study
To illustrate our approach, we consider migration through real
world environments subject to different levels of anthropo-
genic noise. Specifically, we consider movements of minke
whales (Balaenoptera acutorostrata) through portions of the
northeast Atlantic Ocean, surrounding the British Isles.
Minke whales are the most frequently observed whale in
these waters, found west of Ireland, off the north and east of
Scotland and up to Iceland, Norway and beyond [49–51].
Sightings become less frequent in the southern North Sea,
although seasonal aggregations have been observed in the
Dogger Bank area near Denmark [52]. Notably, minke
whales sightings remain largely confined to the April to Octo-
ber period and it is assumed that the population migrates
south to winter in the mid-Atlantic [49,53]. We will consider
two case studies of minke whale migration: first, a south to
north migration through the North Sea from feeding grounds;
second, migration through the East Atlantic Ocean, from the
southwest of Ireland to the west of Norway.

While minke whales are typically seen singly, or in pods of
two or three, their vocalizations have been estimated to permit
communication with conspecifics more than 100 km away [23].
Yet this calculation assumes a relatively ‘pristine’ ocean
soundscape, while modern marine environments are subject
to significant anthropogenic activities that act to amplify ambi-
ent noise levels, such as shipping, wind farms, and oil
exploration and drilling [20,21]. Minke whale behaviour is
strongly altered by ocean noise, for example through source
avoidance [54–56] or raising call intensity [23]. The latter ‘Lom-
bard effect’ partially compensates for the noise, yet an
approximately 80% loss of their communication range has
been estimated when ambient noise is raised 20 dB [23].

Motivated by the above, we construct an approximation
of the noise levels present in the North Sea, in particular by
exploiting the availability of offshore well location data
(data obtained from the UK Oil and Gas Authority [57]).
Specifically, the soundscape is formed through a sum of
Gaussian noise profiles centred at each site. This is of
course a simplification of the noise levels in the North Sea,
as each offshore well may or may not be currently in oper-
ation, and we also do not include further significant noise
sources, such as those due to shipping [58]. Consequently,
this case study is primarily for illustrative purposes. Individ-
ual behaviour is modelled as detailed previously. However,
to account for the presence of coastlines, jumps in the
random walk that would result in an individual crossing
onto land are aborted. Coastlines are constructed according
to the Global Self-consistent, Hierarchical, High-resolution,
Geography Database [59]. Under an ambient noise level of
65 dB, it is estimated that minke whales are able to communi-
cate up to 114 km [23] and it has been observed that minke
whales travel at a speed of approximately 8 km h−1 [60]. In
the absence of data, we make the assumption that minke
whales undergo reorientation, on average, every 30min.

In the first case study, we consider the change in minke
whale navigation from a purported feeding ground in the
North Sea [52] to a target location in the East Atlantic
Ocean either in the presence of the anthropogenic noise in
the North Sea, or in a pristine soundscape. The pristine
soundscape corresponds to a constant level of background
information available to the individuals. The information
field arising from the offshore activity, as well as the naviga-
tion results, are presented in figure 7. We observe that the
migration occurs approximately 15% slower due to the pres-
ence of the noise pollution. This may impose a significant cost
on the whales, who must expend additional energy to suc-
cessfully navigate towards their target, reducing the energy
stored for annual migration and breeding. Furthermore, the
noise pollution results in the group structure becoming dis-
persed. Close-knit group structure can be beneficial in
terms of defence from predation [61], foraging [62], and, as
we have demonstrated, for efficient navigation.

In the second case study, we consider potential increases in
offshore noise pollution through the East Atlantic Ocean. We
examine four different levels of noise pollution: the baseline
case of approximately consistent noise; small-scale noise pol-
lution, where 20% of the migration route contains significant
noise pollution; medium-scale noise pollution, where 40% of
the migration route contains significant noise pollution; and
large-scale noise pollution, where the entire migration route
is enveloped by significant noise pollution. Sample trajectories
under each noise pollution condition, as well as the navigation
behaviour, are presented in figure 8. Again, we observe that an
increase in the total amount of noise corresponds to a decrease
in navigation performance. Interestingly, the sample trajec-
tories indicate that the whales somewhat avoid the areas of
noise pollution, despite the model not containing any specific
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noise source avoidance behaviour. This is likely due to the
decrease in target-oriented motion in the areas of noise pol-
lution, resulting in random walks that cause the whales to
leave the noisy area. Once outside of the area of noise pol-
lution, the inherent information available to the whales
increases and effective navigation toward the target location
can take place. This highlights the need for areas with pristine
soundscapes, where it remains possible to communicate and
acquire inherent information effectively.
5. Conclusion
Migratory behaviour, conducted as a group across long dis-
tances, is a routine phenomena exhibited by many animal
species [1]. The consistency of migration relies on the ability
of animals to detect appropriate orienteering cues and/or to
perceive group members that are migrating towards the
same target. Both cue detection and perception can be inhib-
ited by natural or anthropological phenomena, such as noise
pollution. It is unclear how collective migration is impacted
by this uncertainty in detection and communication. We
have developed a novel mathematical model of collective
migration and navigation that incorporates decision making
under uncertainty. We employ this model to investigate how
different information fields impact navigation performance,
and illustrate the model via a case study application, specifi-
cally a disruption to minke whale migration due to
anthropogenic noise pollution in the northeast Atlantic Ocean.

We observe a non-monotonic relationship between percep-
tual range and navigation performance for various information
fields, in which increasing the maximum perceptual range from
zero at first reduces, but subsequently improves, navigation
performance, similar to previous studies [10]. Using group
information raises certainty via increasing the concentration
parameter, but at the expense of deviating the location par-
ameter from the target heading. When the number of
observed neighbours is low, the latter outweighs the former
and navigation worsens. More observations tilts the balance
the other way, and the intuitive improvement due to group
navigation is observed. This is in contrast to previous studies,
where the relationship between perceptual range and naviga-
tion performance is non-monotonic above a threshold
prespecified level of uncertainty, but monotonic below the
threshold [10]. Our results suggest that the number of
neighbours, rather than perceptual range, is the critical determi-
nant as to whether group information improves navigation.
Furthermore, the critical perceptual range will depend on the
degree to which the population remains clustered. Our
model, though, has applied the ‘metric distance’ approach to
communication, i.e. permitting interactions with any number
of individuals up to some fixed distance apart. This is a
common assumption in models [11] and is consistent with,
for example, visual or auditory systems, where there is an
upper limit on the perceptual range. It is less certain, however,
whether an individual can process more than a certain number
of neighbours; the ‘topological distance’ model postulates that
an individual reacts to a fixed number of nearest neighbours,
regardless of proximity [63]. This is more relevant for animals
that are densely clustered, such as in starling flocks, where an
individual could feasibly observe many other individuals
within its perceptual range. Whether this alternative approach
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robustly (i.e. regardless of the form of navigational field and
degree of clustering) generates improved navigation above a
critical fixed interaction number remains to be explored.

Lengthy migrations towards a target can be divided into a
set of stages [6]: a long-distance phase, a homing phase and a
pinpointing phase. Often, distinct navigational cues will be
used in the distinct phases [6]. For example, the mechanisms
used by marine turtles to home on remote nesting beaches is
believed to involve the geomagnetic field at longer distances,
and olfactory or visual information at shorter ranges [64–66].
Within such a context, void information fields can be viewed
as an information gap, where the navigator must cross some
space of low information to bridge the regions where long and
short distance cues are effective. Group navigation becomes
particularly advantageous here, where for large-scale infor-
mation voids any non-zero level of group information
improves navigation. An observation acquired from a mini-
mally more knowledgeable neighbour is sufficient to provide
some target-oriented drift. Benefits of group navigation extend
to very short perceptual ranges, that is, where the perceptual
range is a full order of magnitude below the dimensions of the
void region. Information reaches the centre of the void through
a relay, so that an individual deep inside thevoidwill still receive
some information even when all of its observed neighbours are
inside the void. This can occur as just one of those neighbours’
neighbours may be in a region of high inherent information.

Navigation can be disrupted by a decrease in inherent
information (i.e. reduced quality of the external navigating
cue) and/or a decrease in group information. As expected,
the loss of either information source reduces navigation per-
formance. Notably, though, a distinct response is observed
according to the general level of inherent information: a loss
of inherent information is more disruptive when the back-
ground navigation information is high, while a loss of group
information has a more severe impact when the background
navigation information is low (electronic supplementary
material, figure S8). This reinforces the notion that group navi-
gation is particularly advantageous within weaker information
environments and stems from the degree to which the popu-
lation spreads: low (high) information environments leads to
greater (lower) spreading and the average number of neigh-
bours in the perceptual range is lower (higher). It is perhaps
logical to suppose, therefore, that populations will have
evolved different strategies for reducing the impact of different
types of navigational disruption. This could occur, for example,
by spreading out to the limits of their perceptual range when
passing through low information regions and maintaining a
tight/compact form when the perceptual range is inhibited.
Against such a strategy, spreading out could render the popu-
lation vulnerable to unpredictable communication range loss,
e.g. sudden noise sources. One plausible adaptive response to
a noisy environment is to adjust the rate of heading selection.
It has been observed that three-spined sticklebacks (Gasterosteus
aculeatus) update their velocities more frequently in response to
a perceived threat [45]. As such, one extension of our model is
to relax the assumption of a constant turning rate, and to allow
it to vary with, for example, noise levels. It is known that cer-
tain animals, such as night-migratory Eurasian blackcaps
(Sylvia atricapilla), undertake random motion in the absence
of an expected navigation cue [67]. However, another possible
adaptive response to a noisy environment or an abrupt loss of
navigation information is for the individual to continue on a
similar heading [68]. That is, an individual makes smaller
changes in heading due to an imposed correlation between
the new heading and the previous heading [68,69]. It would
be instructive to compare migration paths for an individual
that switches to a correlated random walk model when enter-
ing an information void, with those of our model, where an
individual continues an unbiased, uncorrelated random walk;
however, we leave this for future work. We note that our cur-
rent model does not allow the population to control their
separation through attraction/repulsion behaviour, and a natu-
ral extension is to adapt the model to include such behaviour
[10]. Admitting control of group structure can facilitate investi-
gations of whether particular group shapes are advantageous,
such as an elongated shape to allow information transfer across
voids. ‘Leader-type’ individuals are also likely to be important
for group structure, for example by adopting a specific spatial
position with respect to the group to maximize information
transfer. Such individuals could be incorporated by imposing
larger α and β values for observed headings corresponding to
‘leader-type’ individuals, signifying that such headings are
more important than other headings.

We have restricted our attention to static information fields,
that is, levels of inherent information that only vary in space.
Temporal variation could occur due to, for example, weather
conditions or intermittent human activity. The degree to
which dynamic variation impacts on journeys will, naturally,
depend on the duration of the disruption: the return of little
penguins (Eudyptula minor) from daily foraging is delayed by
heavy fog, possibly due to their reliance on visual navigating
cues [70]. The impact of longer lasting dynamic variability
could, to a degree, be inferred from the existing results.
Slowly shifting cloud cover could be represented by evolving
patchy void environments, and group navigation is always
beneficial in such scenarios. Dynamic variability could also
arise from the behaviour of individuals that have reached the
target. The arbitrary modelling decision here has been to
remove such individuals from the system, and hence those
individuals no longer influence navigation. It is also possible
that individuals actively communicate on arrival, providing
information about the target location. Such behaviour has
been suggested in humpback whale populations, where indi-
viduals sing upon reaching winter grounds, which may
attract other humpbacks to the area [71]. This behaviour can
be incorporated in our modelling framework by imposing an
attraction-type interaction, rather than an alignment-type inter-
action, for individuals that have arrived at the target location.

Anthropogenic activity has substantially increased ocean
noise levels over the past century [19,20]. As a case study, we
have explored noise-impacted minke whale migration through
the northeast Atlantic Ocean. Hypothesizing that minke whales
use vocal communication to share navigation information, we
have shown that increasing noise pollution decreases naviga-
tion performance, thereby demanding longer travel times.
Migration is costly, depleting an animal’s energy reserve with-
out any guarantee of replenishment en-route, and hence any
increased expenditure is disadvantageous to population fitness.
Without an explicit representation of noise source avoidance,
pathways are diverted from high noise areas as the animal
searches for a route with adequate navigation information.
Nevertheless, it remains important to stress that this study
has been primarily expository in nature, and several further
extensions demand consideration. First, as highlighted above,
we have ignored the consequences of other behavioural inter-
actions, for example an individual changing direction and



royalsocietypublishing.org/journal/rsif
J.

12
speed to avoid a noise source, or regulating intergroup spacing.
Second, we have ignored ocean currents, which could act to
assist or hinder navigation and impact on sound propagation.
Third, our incorporation of noise impacts has been rather sim-
plistic: we neglect other potential sources, such as shipping,
and we do not explicitly include the physics of noise propa-
gation within the ocean. These caveats aside, the framework
is highly adaptable, can be easily translated to other geographi-
cal locations, and can be extended in a modular fashion to
include data inputs such as ocean currents, bathymetry and
sound profiles.
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