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Abstract: Lithium-ion capacitors (LICs) are attracting increasing attention because of their potential
to bridge the electrochemical performance gap between batteries and supercapacitors. However, the
commercial application of current LICs is still impeded by their inferior energy density, which is
mainly due to the low capacity of the cathode. Therefore, tremendous efforts have been made in
developing novel cathode materials with high capacity and excellent rate capability. Graphene-based
nanomaterials have been recognized as one of the most promising cathodes for LICs due to their
unique properties, and exciting progress has been achieved. Herein, in this review, the recent
advances of graphene-based cathode materials for LICs are systematically summarized. Espe-
cially, the synthesis method, structure characterization and electrochemical performance of various
graphene-based cathodes are comprehensively discussed and compared. Furthermore, their merits
and limitations are also emphasized. Finally, a summary and outlook are presented to highlight some
challenges of graphene-based cathode materials in the future applications of LICs.

Keywords: lithium-ion capacitors; graphene; graphene-based nanomaterials; capacitor-type elec-
trodes; cathode materials

1. Introduction

With the increasing global energy consumption, the growing concerns of the deple-
tion of fossil fuels, the corresponding climate change and environmental pollution have
arisen [1–3]. Thus, clean and renewable energy sources, including solar, wind and tide
powers, have become the priority and the most promising choice [4–6]. However, the
highly effective utilization of all these energy sources is seriously hindered by their inter-
mittent production and uneven geographical distribution [7]. High-performance energy
storage materials and devices with characteristics of high energy and power densities,
low cost and long-term stability have become a worldwide research hot topic for both
academia and industry [8–12]. In addition, the rapid development of consumer electron-
ics and electric vehicles also calls for high-performance energy storage devices [13–15].
Consequently, various electrochemical energy storage systems, including the conventional
lead-acid battery (LABs) and Ni-metal hydride batteries (NiMHBs), lithium-ion batteries
(LIBs), electric double-layer capacitors (EDLCs) and the hybrid device, have been inves-
tigated and applied in these booming fields, and their electrochemical performances are
summarized in Table 1.
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Table 1. The electrochemical performances of various energy storage systems.

Energy Storage
Systems Anode//Cathode Electrolyte Voltage (V) a Energy Density

(Wh kg−1) b
Power Density

(W kg−1) c
Cycling

Life

LABs Pb//PbO2
H2SO4 aqueous

solution 2 30–50 <1000 <800

NiMHBs Metal
hydride//Ni(OH)2

KOH aqueous solution 1.2 40–60 ~1000 <1000

LIBs
Graphite//Lithium-
based compounds

d

LiPF6 in organic
solution 3.6–4.35 150–300 <1000 <5000

EDLCs AC//AC (CH3CH2)4NBF4 in
acetonitrile 2.7–3.0 5–10 >10,000 >100,000

LICs

Battery-type
anode//Capacitor-

type
cathode

Lithium salts in organic
solution 3.0–4.5 20–100 1000–10,000 >10,000

Note, a: maximum working voltage; b and c: based on the mass of full cell; d: LiFePO4, LiCoO2, LiMn2O4 or LiNixCoyMnzO2 (x + y + z = 1).

Obviously, conventional LABs and NiMHBs suffer from relatively low energy density,
which is mainly ascribed to the low capacity of the electrode materials and small working
voltage limited by the decomposition of aqueous electrolyte. Moreover, the poor power
output ability and short cycling life further restrain their applications. Compared with
traditional energy storage devices, there is no doubt that LIBs and EDLCs are the two most
important systems nowadays and have more competitive advantages [11,16–18]. Owing to
their different energy storage mechanisms, LIBs and EDLCs demonstrate sharply different
electrochemical properties. As demonstrated in Figure 1a, LIBs store or release energy via
lithium ions’ intercalation into/de-intercalation from the bulk electrode materials with the
removal and addition of electrons through the external circuit [19]. This is the reason why
LIBs are also called “rocking chair batteries”. Hence, LIBs usually deliver much higher
energy density than other systems because of the bulk Faradaic reaction [20,21]. On the
other hand, EDLCs, which employ two identical porous carbon-based electrodes as the
anode and cathode (Figure 1b), have the features of excellent power density and long
cycle life [22]. The outstanding performances are due to the electrostatic, non-Faradaic and
physical double-layer charge-discharge mechanism, which stores/releases energy through
extremely rapid adsorption/desorption of electrolyte ions at the electrode/electrolyte
interface [23,24]. However, both LIBs and EDLCs still face insurmountable challenges,
inhibiting their wide applications in fields where high energy and power as well as ex-
cellent cycling life are all required [25–29]. For example, the high energy barrier of redox
reaction, sluggish Li+ diffusion rate in the bulk electrode and low electrical conductivity
of the cathode lead to inferior power density, while the continuous and usually uncon-
trollable decomposition of electrolytes and the serious deterioration of material structure
result in a poor cycle life for LIBs [19,30–32]. As for EDLCs, their low working voltage
(typically lower than 3.0 V) and limited capacity due to the physically electrostatic ad-
sorption/desorption of electrolyte ions on the surface of electrode materials bring about
unsatisfactory energy density [33,34]. Therefore, it is highly urgent to develop advanced
energy storage devices that could combine the advantages of LIBs and EDLCs to fulfill the
ever-increasing requirements.

Energy density and power density are two key parameters for advanced energy
storage systems. Generally, the energy density (E) and average power density (Pa) of a
device could be calculated based on Equations (1) and (2), respectively [19,35,36]:

E =
∫

Vdq (1)

Pa = E/t (2)
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where V is the maximum working voltage, q is the specific capacity and t is the discharge
time. Clearly, the energy and power densities are largely determined by the capacity and the
operation voltage of the device. For the case of EDLCs and hybrid devices, in particular, the
energy density and power density could also be expressed by Equations (3) and (4) [36,37]:

E = 1/2 CV2 (3)

Pmax = V2/(4mR) (4)

where Pmax, C, m and R are the maximum power density, gravimetric specific capacitance
(mainly based on the mass of the anode and cathode), mass of the electrode materials
and equivalent series resistance, respectively. As a result, developing high-capacity elec-
trode materials, expanding the operation voltage and reducing the overall impedance are
typically applied to obtain high-energy and high-power energy storage systems.

Based on the above discussion, current commercial energy storage systems have their
individual drawbacks, and it is still a great challenge to develop a device that could combine
the advantages of batteries and EDLCs. Fortunately, lithium-ion capacitors (LICs, also
known as lithium-ion hybrid supercapacitors) are emerging as one of the most promising
candidates to bridge the performance gap between LIBs and EDLCs by integrating high
energy density, high power output, large working voltage and long cycling life into one
device [12,38]. Typically, LICs are composed of one battery-type electrode as the anode to
provide high energy, and one capacitor-type electrode as the cathode to ensure high power
and cycling stability [39,40]. Much different from LIBs and EDLCs, LICs show a hybrid
energy storage mechanism. As displayed in Figure 1c, during the charge process, anions
(i.e., PF6

−) are adsorbed onto the surface of the capacitor-type electrode with the increase in
the cathode potential while the lithium ions from the electrolyte simultaneously intercalate
into the battery-type electrode with the decrease in the anode potential [41]. For the
discharge process, the anions and the Li+ ions leave the cathode and anode, respectively,
and return to the electrolyte to release the stored energy. Furthermore, as the cathode and
anode work in different potential regions, a much higher working voltage can be obtained
for LICs than EDLCs, and thus the energy density can be improved [42]. Overall, LICs have
a hybrid charge storage mechanism based on the novel device configuration. The high
energy and power densities and long cycling life contributed by the combined merits of
the battery-type anode from LIBs and capacitor-type cathode from EDLCs make them an
attractive alternative for next-generation energy storage devices.

Since the first protype was proposed by Amatucci et al. using activated carbon (AC)
as a cathode and Li4Ti5O12 (LTO) as a battery-type anode [43], the studies of electrolytes,
electrode materials and pre-lithiation technology for LICs have obtained great progress,
especially for the anode and cathode materials’ design [44–47]. Considering that the energy
and power densities are proportional to the square of the operational voltage, lithium
salt-containing organic electrolytes are commonly applied to provide a wide working
voltage window [45]. On the other hand, there are also works that adopt aqueous solution
as an electrolyte considering the advantages of low cost, environmental friendliness and
ease of handling [48,49]. However, they suffer from inferior energy density due to the low
working voltage. As for the cathode materials, similar to the requirements of electrodes
for EDLCs, the ideal cathode materials should have characteristics of a large specific sur-
face area (SSA), high electrical conductivity and satisfied chemical and electrochemical
stability. These materials are mainly porous carbons, including AC, carbon nanotubes
(CNTs), biomass-derived carbons and graphene-based materials, etc. [35,50,51]. In gen-
eral, commercial AC and biomass-derived porous carbon suffer from low SSA and low
conductivity, while CNTs tend to form agglomeration because of their high aspect ratio
and strong π–π interaction. By contrast, the high SSA, excellent conductivity, adjustable
porosity and rich surface chemistry of graphene and graphene-based composites grant
them high capacity and outstanding power output, making them the most competitive
capacitor-type electrodes for LICs. Unlike the cathodes limited to porous carbonaceous ma-
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terials, a variety of materials are available to be chosen for the anodes [46,52,53]. In general,
anode materials can be divided into three categories based on the different lithium storage
mechanisms: intercalation-type materials (e.g., carbonaceous materials, Ti-/Nb-based mate-
rials) [22,54–59], conversion-type materials (e.g., metal oxide, phosphide or sulfide) [60–66]
and alloying-type materials (e.g., Si-/Sn-based materials) [67–70]. Nevertheless, anode
materials face the challenges of sluggish redox reaction (due to their poor conductivity and
low lithium ion diffusion rate) and structural instability (due to the volume change dur-
ing the charge/discharge process). Consequently, nanostructure engineering and coating
with highly conductive carbon materials are typically applied to overcome these draw-
backs [71,72]. Moreover, the imbalances in specific capacity, kinetics and structural stability
between the anode and cathode result in unsatisfactory energy and power densities and
poor long-term stability, seriously limiting their applications [32,73]. Generally, the energy
density of the reported LICs falls in the range of 100–200 Wh kg−1 (based on the mass
of active materials), corresponding to 20–100 Wh kg−1 based on the mass of the full de-
vice [74]. Obviously, this value is still far less than that of LIBs. It should be pointed out
that the limited capacity of the cathode is the primary factor for the unsatisfied overall
energy density of LICs. Moreover, well-matched specific capacity between the cathode and
anode could also largely improve the overall energy density of LICs. Consequently, it is
very imperative to explore high-capacity cathode materials.

Figure 1. The schematic of the charge/discharge mechanisms of typical (a) LIBs, (b) EDLCs and (c) LICs. ((a) Reprinted
with permission from Ref. [19]. Copyright 2013 American Chemical Society. (b) Reprinted with permission from Ref. [22].
Copyright 2014 Wiley-VCH. (c) Reprinted with permission from Ref. [41]. Copyright 2015 Elsevier.).

Graphene, as a novel two-dimensional (2D) nanocarbon material, has many outstand-
ing characteristics such as high theoretical SSA, astonishing electrical conductivity, tunable
porosity and rich surface chemistry [36]. It should be noted that graphene has comparable
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or even superior properties to other nanocarbon-based materials, making it an excellent
candidate either as a high-performance active material or as an attractive flexible support to
load other materials for applications in LIBs, SCs and hybrid devices [75–78]. In particular,
graphene-based nanomaterials have been verified as desired capacitor-type cathodes for
LICs [37,79]. According to the theoretical calculation, the specific capacitance of graphene
can reach as high as 550 F g−1 based on the fully used SSA, significantly higher than
that of commercial AC and other porous carbon materials [80]. Moreover, the abundant
edges, in-plane defects and large number of exposed surface atoms endow graphene with
more electrochemical active sites for ion sorption/desorption [81]. Thus, graphene and its
composites demonstrate great appeal as capacitor-type electrodes with high capacity in
LICs. As demonstrated in Figure 2, graphene or reduced graphene oxide can be directly
used as active materials by rationally regulating the structure and surface chemistry. Si-
multaneously, they can also serve as excellent substrates or building blocks to form 3D
porous composites, leading to improved electrical conductivity and/or SSA of the obtained
composites. Exciting achievements of graphene-based cathodes in LICs have been made,
strongly demonstrating their potential in enhancing the performance of capacitor-type
cathodes [36,37]. Accordingly, some reviews about graphene-based anode materials for
LICs have been reported [42,79,81,82]. However, reviews that comprehensively cover the
development of graphene-based capacitor-type electrode materials are still absent. In this
review, recent progresses of graphene-based cathode materials for LICs are systematically
summarized, and the roles of graphene are specially emphasized, i.e., high-capacity active
materials, conductive supports and building blocks. Furthermore, a summary and outlook
are tentatively presented and the remaining challenges in LICs are also discussed.

Figure 2. Typical graphene-based cathode materials for LICs and their advantages and the
remaining challenges.
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2. Reduced Graphene Oxide as a Cathode Material
2.1. Reduced Graphene Oxide

In the early stage, researchers usually applied reduced graphene oxide (rGO) as
the capacitor-type active material for LICs because of its feasible fabrication procedure,
controllable size and thickness and ease of handling [83]. In addition, the tunable surface
functional groups provide extra capacitance via fast redox reaction [84]. For instance,
Lee et al. reported an urea-reduced GO (URGO) cathode for LICs by treating GO with
urea [85]. URGO shows a specific capacity of 35 mAh g−1, which is about a 35% increase
compared with conventional AC. Based on the mechanism analysis, the carbonyl groups in
the amide groups are responsible for the enhanced capacity through binding with Li+ based
on the enolization process (N-C=O + Li+ + e−←→N-C-O-Li), which has also been observed
in Li-organic batteries [86,87]. The as-fabricated LICs paired with the URGO cathode with
a pre-lithiation graphite anode show an energy density of approximately 106 Wh kg−1 and
power density of 4200 W kg−1 based on the mass of active materials, which is not only
much higher than that of supercapacitors, but also superior to hydrazine-reduced GO and
AC-based devices. Another group assembled LICs with trigol-reduced GO (TRGO) as the
cathode and LTO as the anode, and the LTO//TRGO LICs delivered a maximum energy
density of 45 Wh kg−1 with a stable cycling performance of 5000 times [88]. The improved
energy density can be ascribed to the high reversible capacity (58 mAh g−1) of the as-
synthesized TRGO, which is almost twice that of AC. Dubal et al. reported all nanocarbon
LICs using partially reduced graphene oxide (PRGO) as the cathode and N-doped carbon
nanopipes (N-CNPipes) as the anode [89]. The as-prepared PRGO shows a highly porous
structure with abundant wrinkles on the surface (Figure 3a). It should be noted that PRGO
can be easily obtained in large scale just by annealing GO powder at 120 °C. Furthermore,
it demonstrates high specific capacity (171 mAh g−1 at 0.17 A g−1) and excellent rate
capacity (92.3 mAh g−1 at 8.71 A g−1), making it a superior cathode for LICs (Figure 3b).
The super performance of PRGO was attributed to the highly porous, interconnected
networks and the partial reduction of graphene oxide. These novel structures contribute
to the high electrical conductivity while maintaining a substantial amount of C=O redox
groups. The as-fabricated all carbon-based LICs exhibit long and stable cycling, high
energy density of 262 Wh kg−1 at 450 W kg−1 and high power density of 9000 W kg−1 at
78 Wh kg−1 (Figure 3c). Nevertheless, the above-reported LICs directly adopted chemically
reduced GO as cathodes usually suffer from limited specific capacity because of their
low SSA, which results from severe agglomeration/restacking of rGO nanosheets [80].
Hence, effective strategies are needed to improve the performance of rGO-based capacitor-
type electrodes.

2.2. Three-Dimensional Reduced Graphene Oxide

The agglomeration of rGO can be largely suppressed by forming three-dimensional
(3D) porous hydrogels or foams through self-assembly technology. Monolithic rGO
hydrogel [90], porous graphene macroform (PGM) [91] and graphene grass [92] have
been reported via a hydrothermal reduction combined with the freeze-drying process.
The as-prepared samples have a 3D porous network structure, which can provide multidi-
mensional transport pathways for electrons and electrolytes and minimize the transport
distances between bulk electrodes and electrolytes [90,93]. This enables them to have
high capacity and excellent power output, making them highly attractive cathode ma-
terials for LICs. Taking the formation of PGM for example, GO was partially reduced
during hydrothermal treatment and self-assembled into graphene hydrogel through ran-
dom cross-linking between flexible graphene sheets [91]. After removing the solvent by
the freeze-drying process, the as-prepared PGM demonstrates a cylindrical morphology
without obvious shrinkage (inset of Figure 3d). As displayed in Figure 3d, PGM has a
continuous 3D porous framework with abundant micropores, mesopores and macropores,
which could be verified from the N2 adsorption isotherm and pore size distribution (PSD)
curves (Figure 3e,f). By paring with a LTO/C anode, the PGM-based LICs show an accept-
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able energy density of 72 Wh kg−1, which still keeps 40 Wh kg−1 at a power density of
8.3 kW kg−1.

Figure 3. (a) FESEM of PRGO (inset shows TEM image); (b) Rate capability of PRGO; (c) Ragone plot for N-CNPipes//PRGO
LIC and other devices. (Reprinted with permission from Ref. [89]. Copyright 2018 Elsevier.) (d) SEM image (The inset is the
corresponding picture of the PGM), (e) N2 sorption isotherm, and (f) the pore size distribution curves of PGM. (Reprinted
with permission from Ref. [91]. Copyright 2015 Elsevier.).

In general, reduced GO has been adopted as a capacitor-type electrode for LICs in
early studies due to its facile preparation. For easy comparison, the properties of reduced
graphene oxide cathodes and the LICs based on them are demonstrated in Table 2. Overall,
rGO-based cathode materials usually display relatively low specific capacity due to the
low SSA and thus unsatisfactory energy density. Although rGO-based 3D porous cathode
materials deliver improved capacity compared with the pristine rGO because of their
highly porous structure, the energy density of the fabricated LICs is still far from the
commercial application. Furthermore, the insufficient reduction of rGO results in low
electrical conductivity and inferior power density. These drawbacks may be overcome
by developing pure graphene-based cathodes with well-defined porous structure, which
are also considered to be promising alternatives to reduced GO due to their inherently
high conductivity and large SSA. In addition, introducing highly conductive fillers (i.e.,
CNTs) to obtain 3D porous composites is also considered to be a promising alternative to
reduced GO.

Table 2. Properties of reduced graphene oxide cathode and the performances of LICs.

Cathode//Anode Electrode
Preparation

Capacity of
Cathode

(mAh g−1)
Electrolyte Cell Voltage

(V)

Maximum
Energy Density

(Wh kg−1)

Maximum
Power Density

(kW kg−1)

Cycling
Stability Ref.

URGO//graphite Reduced by
urea 35 1 M LiPF6

in EC/DEC 2.2–3.8 106 4.2 ~100% at 1000 [85]

TRGO//LTO Reduced by
trigol 58 1 M LiPF6

in EC/DEC 1–3 45 3.3 ~100% at 5000 [88]

EG-GO//Li Hydrothermal
reduction 172

1 M LiPF6
in

EC/DEC/DMC
2–4.5 240 53.5 ~100% at 3000 [84]

Graphene
grass//TNO

Hydrothermal
reduction 63.2 1 M LiPF6 in

EC/DMC 0–3 74 7.5 81.2% at 3000 [92]

PRGO//N-
CNPipes

Thermal
annealing 171 1 M LiPF6 in

EC/PC 0.01–4 262 9.0 91% at 4000 [89]
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Table 2. Cont.

Cathode//Anode Electrode
Preparation

Capacity of
Cathode

(mAh g−1)
Electrolyte Cell Voltage

(V)

Maximum
Energy Density

(Wh kg−1)

Maximum
Power Density

(kW kg−1)

Cycling
Stability Ref.

Graphene
hydrogel//TiO2

NBA

Hydrothermal
reduction 52 1 M LiPF6 in

EC/DMC 0–3.8 82 19 73% at 600 [90]

PGM//LTO/C Hydrothermal
reduction 66 LiPF6 1–3 72 8.3 65% at 1000 [91]

3. Pure Porous Graphene as a Cathode Material

As descried above, reduced GO-based cathodes often deliver relatively low capacity
and poor rate performance, which can be mainly ascribed to the inferior electrical conduc-
tivity and low SSA. To overcome these disadvantages, one of the effective strategies is to
prepare pure graphene-based porous materials, which can keep the inherently excellent
properties of large SSA and high conductivity.

3.1. Porous Graphene Prepared with Template

Typically, the methodology combining chemical vapor deposition (CVD) and hard
template is applied to prepare porous graphene materials with high conductivity and large
SSA [94,95]. For example, Ma et al. designed S,N-codoped mesoporous graphene (SNMG)
based on the CVD method using heavy MgO flakes as a solid template [96]. As displayed
in Figure 4a, graphene firstly grew on the surface and pores of MgO thin lamellas by CH4
catalytic deposition in a fluidized-bed reactor, and then the templates were removed by
acid washing to obtain few-layered mesoporous graphene (MG), followed by annealing
with thiourea to form the final products. The as-prepared SNMG exhibits a highly porous
structure with pore size in the range of 2–10 nm, which is clearly demonstrated in the TEM
image (Figure 4b) and PSD (Figure 4c). The interconnected and controllable mesopores
combined with sulfur and nitrogen co-doping endow the SNMG cathode with outstanding
rate capability. A reversible capacity of 112 mAh g−1 can be achieved at a current density
of 0.5 A g−1 and still retain 92 mAh g−1 at 5 A g−1, which is much better than that of
MG and AC (Figure 4d). In addition, SNMG shows excellent cycling stability with no
obvious capacity decay after 2500 cycles (Figure 4e). As expected, the as-fabricated LICs
exhibit exciting electrochemical performance with maximum energy and power densities
of 86.2 Wh kg−1 and 7443 W kg−1 when paired with an LTO anode. Later, the same group
also constructed micron-sized porous graphene belts (PGBs) using MgO belts as templates
by the CVD approach [97]. Thanks to the unique one-dimensional belt-like architecture,
the restacking or aggregation of PGBs is effectively impeded. In addition, the high ratio of
length to diameter, high conductivity, large SSA and good structural stability contribute
to the superior capacitive behavior of the as-obtained PGBs. Porous graphene prepared
by CVD usually has a high-quality structure and relatively less defects compared with
GO-derived materials. Therefore, the obtained cathode materials deliver excellent rate
performance and superior cycling stability.
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Figure 4. (a) Schematic of the preparation process of SNMG; (b) TEM image and (c) PSD of SNMG;
(d) Rate capability of SNMG, MG and AC; (e) Cycling stability of SNMG and AC. (Reprinted with
permission from Ref. [96]. Copyright 2018 Wiley-VCH.).

3.2. Porous Graphene Prepared by Chemical Activation

Chemical activation is an effective and feasible strategy to produce porous carbon
materials with high SSA and large pore volume, which is commonly used in the preparation
of commercial AC [98]. The activation process with KOH as an activation agent is proposed
to follow the below reactions [99]:

6KOH + C→ 2K + 3H2 + 2K2CO3 (5)

K2CO3 → K2O + CO2 (6)

K2CO3 + 2C→ 2K + 3CO (7)
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K2O + C→ 2K + CO (8)

CO2 + C→ 2CO (9)

The activation procedure starts from the reaction of KOH with carbon and then the
decomposition of K2CO3 and/or reactions of K2CO3/K2O/CO2 with carbon, creating a
porous carbon material. Ruoff et al. reported “activated microwave expanded graphite
oxide” (a-MEGO) by irradiating GO in a microwave oven in combination with chemical
activation (Figure 5a) [100]. As exhibited in Figure 5b–d, a-MEGO possesses a dense pore
structure with a continuous 3D network of highly curved and predominantly atom-thick
walls. The extraordinarily high SSA (3100 m2 g−1) coupled with a continuous 3D network
of extremely small size pores (ranging from <1 nm to 10 nm) endowed a-MEGO with
a high specific capacity (125 mAh g−1) [101]. Specifically, the graphite//a-MEGO LIC
yielded an energy density of 147.8 and 53.2 Wh kg−1 at an operating potential of 4 V
based on the active materials and the packaged full cell, respectively. Inspired by the
pioneering work of Ruoff’s group, pure graphene-based porous materials with high SSA
and large pore volume were prepared by the chemical activation of reduced GO foam or
hydrogel and used as capacitor-type electrodes for LICs [102,103]. For example, porous
graphene (PG) reported by Yang et al. showed a highly crumpled and porous structure after
hydrothermal reaction and KOH treatment (Figure 5e) [103]. Specifically, PG has a surface
area of 2103 m2 g−1 and pore volume of 1.8 cm3 g−1 with PSD centered at about 5 nm
(Figure 5f). Consequently, the interpenetrated pores and excellent conductivity endowed
PG with outstanding electrochemical performance, such as excellent rate capability and
good long-term stability (Figure 5g–h).

Figure 5. (a) Schematic of preparation of a-MEGO. (b) High-resolution SEM, (c) annular dark field
STEM and (d) high-resolution TEM images of a-MEGO. (Reprinted with permission from Ref. [100].
Copyright 2011 American Association for the Advancement of Science.) (e) High-resolution TEM
images and (f) pore size distribution curve of PG; (g) Rate capability and (h) cycling stability of PG.
(Reprinted with permission from Ref. [103]. Copyright 2020 Elsevier.).
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3.3. Porous Graphene Prepared by Other Methods

Catalytic carbon gasification is another method to prepare porous carbon materials.
For example, Jeong et al. fabricated holey graphene (HG) with abundant in-plane pores
using this method [104]. The synthesis process of HG is displayed in Figure 6a. Firstly,
catalytic metal oxide (SnO2) nanoparticles were uniformly deposited onto the graphene
oxide sheets via an aqueous-solution-based regular deposition process. Then, the SnO2/GO
suspension was spray-dried to obtain a spherical composite, which was heated to induce
the selective decomposition of the graphene adjacent to the SnO2 nanoparticles. It is
noteworthy that the temperature should be carefully adjusted to be lower than the carbon
combustion temperature in the catalytic carbon gasification process. Finally, the spherical
SnO2/rGO was refluxed in HI to etch the catalysts and to reduce GO. The as-prepared
HG has a spherical morphology and porous structure with rich in-plane holes of about
5 nm corresponding to the metal oxide size (Figure 6b). The N2 adsorption/desorption
isotherm of HG indicates the existence of micropores and smaller mesopores (Figure 6c).
This result can be further verified by the pore size distribution curve (inset of Figure 6c),
which demonstrates that HG has micropores of 1nm and some mesopores of 2–6 nm.
Due to its highly porous structure, HG shows much higher capacity than that of crumpled
rGO prepared from GO by heat treatment (Figure 6d). As expected, LICs constructed
using HG as a cathode and LTO/HG as an anode delivered a maximum energy density
of 117.3 Wh kg−1, which still remains at 43.1 Wh kg−1 even at an extremely high power
density of 19.7 kh kg−1 (Figure 6e). The outstanding electrochemical performance can be
attributed to the good match of capacity and rate between the capacitor-type cathode and
the battery-type anode.

Figure 6. (a) Schematic of spherical HG preparation using catalytic carbon gasification; (b) TEM image and (c) N2

adsorption/desorption isotherm (inset) and pore size distribution of spherical HG; (d) Rate capabilities for spherical HG
and crumpled rGO; (e) Ragone plots for the LICs composed of spherical HG and spherical LTO/HG composite. (Reprinted
with permission from Ref. [104]. Copyright 2019 Elsevier.).

In summary, benefitting from the 3D continuous porous structure and inherently
high conductivity of graphene, pure graphene-based porous materials could deliver high
capacity and superb rate capability and thus achieve high energy and power densities
and cycling stability when used as a cathode in LICs, as summarized in Table 3. However,
they suffer from the drawback of high cost and face the challenge of large-scale production.
Hence, it is of great significance to develop cost-effective graphene-based porous materials
with novel strategies, such as by forming composites with other low-cost materials.
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Table 3. Properties of pure graphene-based cathode and the performances of LICs based on them.

Cathode//Anode Electrode
Preparation

Capacity of
Cathode

(mAh g−1)
Electrolyte Cell Voltage

(V)
Maximum Energy
Density (Wh kg−1)

Maximum Power
Density (kW kg−1)

Cycling
Stability Ref.

SNMG//LTO CVD 112 1 M LiPF6 in
EC/DEC 0–4 86.2 7.4 87% at 2000 [96]

PGBs//LTO CVD 92 1 M LiPF6 in
EC/DEC 0–4 120 8.04 83.7% at

2000 [97]

CG Template-guided 212.3 F g−1 1 M LiPF6 in
EC/DEC/DMC 1–4 121 18 87% at 2000 [105]

HG Catalytic carbon
gasification 97.2 1 M LiPF6 in

EC/DEC 1.5–3 117.3 19.7 81.7% at
2000 [104]

a-
MEGO//graphite

Chemical
activation 125 1 M LiPF6 in

EC/DEC 2–4 147.8 / / [101]

a-NGA//LTO Chemical
activation 76 1 M LiPF6 in

EC/DEC/DMC 1–3 70 8.0 64% at
10,000 [98]

AGF Chemical
activation 93 F g−1 1 M LiPF6 in

EC/DEC 0–3 53 2.09 89% at 3000 [102]

PG Chemical
activation 69 1 M LiPF6 in

EC/DEC/DMC 0.01–4.2 135.6 21 65% at 3000 [103]

NGF-0//NGF-2
Magnesiothermic

combustion
synthesis

82 1 M LiPF6 in
EC/DEC/DMC 1–4 151 49 87% at

10,000 [106]

4. Graphene-Based 3D Composites as Cathode Materials

Benefitting from the layered structure, graphenes are good 2D building blocks for
constructing 3D porous composites [107]. Elaborately designed 3D graphene-based com-
posites have a well-interconnected porous microstructure, high elasticity and mechanical
strength, excellent chemical and electrochemical stability and high conductivity, making
them superior candidates as cathodes for LICs [108,109]. In addition, the high cost of
graphene largely inhibits its commercial applications, prompting researchers to fabricate
graphene-based porous composites with other materials [110].

4.1. Grahene@Porous Carbon-Based 3D Composites
4.1.1. Grahene@Non-Doped Porous Carbon 3D Composites

Chen’s group designed a simple, low-cost and green but very efficient approach to
prepare 3D graphene-based porous materials (3DGraphene) with GO sheets and biomass
or polymers (such as phenolic resin, sucrose and polyvinyl alcohol) using standard in-
dustry steps of in situ hydrothermal polymerization/carbonization and KOH activation
(Figure 7a) [24]. The graphene sheets derived from GO could effectively block the stacking
of the AC precursor generated from the matrix carbon sources during the hydrothermal
reaction, and thus thinner and smaller AC particles are formed with more pores in the
next chemical activation step. The activated products with the optimized ratio show a
sponge-like morphology, highly porous structure and consist of mainly defected/wrinkled
single-layer graphene sheets in the dimensional size of a few nanometers (Figure 7b–d).
All the 3DGraphene materials have an ultrahigh SSA of over 3000 m2 g−1 and excellent
bulk conductivity (up to 303 S m−1) because of the introduction of graphene. Taking the
sucrose-based 3DGraphene, for example, it achieves an ultrahigh SSA of 3355 m2 g−1

with a well-controlled pore size of primarily 2–6 nm for the samples of optimized ratio
(Figure 7e,f), making it an ideal capacitor-type material for LICs. By integrating it with an
Fe3O4/graphene anode, the as-prepared LICs demonstrate a maximum energy density and
power density of 204 Wh kg−1 at 4600 W kg−1, respectively, which is much higher than the
3DGraphene//3DGraphene symmetric supercapacitor (Figure 7g) [74]. Later, the same
group also reported high-performance LICs by paring 3DGraphene with graphene-inserted
LTO [111], flash-reduced graphene oxide [41] or graphene-modified phenolic resin-derived
carbon [112], all of which displayed high energy and power densities and excellent cycling
stability. These outstanding results are attributed to the graphene-based 3D porous car-
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bon materials and the synergistic effect of the cathode and anode. The electrochemical
performance has been significantly improved due to the introduction of graphene.

Figure 7. (a) Schematic of synthesizing porous 3D graphene-based materials; (b) SEM and (c,d) TEM images of 3DGraphene.
(Reprinted with permission from Ref. [24]. Copyright 2013 Springer) (e) N2 adsorption–desorption isotherms and
(f) pore size distribution of sucrose-based 3DGraphene and pure sucrose-based AC as contrast; (g) Ragone plots of
the Fe3O4/G//3DGraphene LICs and 3DGraphene//3DGraphene supercapacitors. (Reprinted with permission from
Ref. [74]. Copyright 2013 Royal Society of Chemistry.).

4.1.2. Graphene@Doped Porous Carbon 3D Composites

Although the capacity of porous graphene-based cathodes is largely improved com-
pared with AC, there is still a long way to go to meet the ever-growing demand of ma-
terials with high capacity. Several simple but effective methods have been adopted to
further increase the capacity of capacitor-type electrodes, such as designing novel struc-
tures and/or doping with heteroatoms [113–115]. Li et al. reported a sandwich-like
graphene@hierarchical meso-/micro-porous carbon (G@HMMC) with functional oxy-
gen containing groups through a facile carbonization and chemical activation procedure
(Figure 8a) [116]. As displayed by the SEM and TEM images in Figure 8b,c, G@HMMC
is composed of wrinkled multilayer nanosheets with a sandwich-like porous structure
and the 2D structure of graphene is well retained after activation. The hierarchical porous
structure of G@HMMC is consistent with the PSD characterization, which is mainly meso-
/micropores (Figure 8d). For the optimized sample (G@HMMC850), the highest SSA of
2674.6 m2 g−1 and the largest pore volume of 1.67 cm3 g−1 were obtained (Figure 8e).
Coupling with a moderate oxygen content that could provide extra capacity by fast
redox reaction and increase the wettability with electrolytes, G@HMMC850 delivers a
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high specific capacity of 112 mAh g−1 at 0.2 A g−1 and remains around 90 mAh g−1 at
8.0 A g−1, making it an advanced capacitor-type material (Figure 8f). As expected, LICs
using G@HMMC850 as a cathode achieve an ultrahigh energy density of 233.3 Wh kg−1

at 450.4 W kg−1, which still keeps 143.8 Wh kg−1 at an extremely high power density
of 15.7 kW kg−1 (Figure 8g). The high performance can be ascribed to the hierarchical
meso-/microporous structure and the oxygen-containing groups of the graphene-based
sandwich-like 3D material, which provides sufficient active sites for adsorption/reactions
and facilitates fast electron and ion transportation. Additionally, other graphene-based 3D
porous composites using phenolic resin- or pitch-based precursors are prepared to serve as
capacitor-type electrodes [112,117].

Figure 8. (a) Schematic of fabrication process of G@HMMC; (b) SEM and (c) TEM images of G@HMMC850; (d) PSD, (e) the
pore volume, O contained on surface, and IG/ID values and (f) rate performances of G@HMMC materials; (g) Ragone plot
of G@HMMC-based LIC compared with other works. (Reprinted with permission from Ref. [116]. Copyright 2018 Elsevier.).

Additionally, N-doped graphene-based porous composites are considered to be
promising candidates because of their excellent conductivity and increased capacitance
contributed by the electrical double layer and redox reactions [118]. For example, Fan et al.
prepared nitrogen-doped graphene-based aerogel composites (NGA) through a sol–gel
polymerization of resorcinol, formaldehyde and melamine in the presence of GO, and then
activation with KOH [98]. After carbonization and activation, the obtained NGA showed
a loosely packed morphology with a much thinner laminar structure than non-doped
samples due to the nitrogen dopant, but they still retained the 3D interconnecting network.
This structure provides NGA with much easier electrolyte ion diffusion while keeping high
electrical conductivity, making it an excellent rate capacitor-type electrode. As expected,
the assembled LICs with NGA as the cathode and LTO as the anode provided maximum
energy and power densities of 70 Wh kg−1 and 8 kW kg−1, respectively.

Polyaniline, as one of the most attractive nitrogen-rich polymers, is typically used as a
nitrogen dopant precursor for preparing N-doped carbons due to the advantages of simple
synthesis, good conductivity and a high content of nitrogen [119]. Wang et al. designed
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a high-voltage LIC with all-graphene-based materials prepared by tuning the synthetic
chemistry [120]. As presented in Figure 9a, the N-doped capacitor-type cathode (A-N-GS)
was fabricated through the polymerization of aniline in the presence of GO and then
chemically activated by KOH. The battery-type anode (N-GS) was prepared with a similar
method except for the activation treatment. An activated graphene sheet (A-GS) without N
doping was also prepared and compared with A-N-GS. The as-obtained A-N-GS exhibited
a 3D porous structure and sheet-like morphology with a lot of wrinkles on the surface
(Figure 9b). A lot of micropores can be observed, which were caused by the combined effect
of polyaniline decomposition and KOH activation (Figure 9c). Benefiting from the hierar-
chically porous structure with continuously interconnected channels, highly conductive
networks and heteroatom doping, the A-N-GS demonstrates a capacity of 116 mAh g−1

at 0.1 A g−1 and still retains 56.8 mAh g−1 at 5 A g−1, which is a much higher capacity
than that of A-GS and N-GS (Figure 9d). Consequently, LICs constructed with an A-N-GS
cathode and an N-GS anode achieved a high energy density of 187.9 Wh kg−1 and power
density of 11.25 kW kg−1, considerably superior to those of symmetrical devices based
on A-N-GS//A-N-GS (Figure 9e). Furthermore, the A-N-GS//N-GS LIC demonstrated
excellent long-term cycling stability with a capacity retention of 93.5% after 3000 cycles
at 2 A g−1 (Figure 9f). Based on the above reports, the capacity and rate capability of the
capacitor-type cathode could be effectively improved by heteroatom doping because of the
rich porosity, increased conductivity, better electrolyte wettability and extra capacitance
provided by fast redox reaction.

Figure 9. (a) Schematic illustration of the synthesis of A-N-GS, A-GS and N-GS; (b) SEM and (c) TEM
images of A-N-GS; (d) Rate performance of A-N-GS, A-GS and N-GS; (e) Ragone plots of A-N-
GS//N-GS and A-N-GS//A-N-GS LICs; (f) Cycle performance of A-N-GS//N-GS LICs. (Reprinted
with permission from Ref. [120]. Copyright 2019 Royal Society of Chemistry.).

4.2. Graphene/Nanostructured Material 3D Composites

In the previous reports, conductive extra spacers (such as CNTs, ACs or conduc-
tive polymers, etc.) were usually introduced to prevent the restack of graphene-based
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materials by forming 3D composites, which leads to high SSA and/or electrical conductiv-
ity, and thus excellent specific capacitance and rate capability could be obtained [80,121].
Similar strategies have been adopted to prepare high-performance capacitor-type elec-
trodes for LICs [122–125]. In such cases, the serious aggregation or restacking of graphene
could be suppressed so that the effective SSA could be enhanced. On the other hand, the
spacers could also provide additional capacity through ion adsorption/desorption. For
example, Wang et al. synthesized a durable and self-supporting graphene foam (GF) by
microwave reduction of a polyvinyl pyrrolidone-stabilized GO/carboxylic CNT composite
(Figure 10a) [126]. As displayed in Figure 10b, a reticulum-like porous structure of the
as-prepared GF was generated after the rapid reduction. More importantly, CNTs serving
as the spacer not only effectively prevent the restacking of reduced GO but also form a 3D
conductive network. Benefiting from the highly porous structure and excellent electrical
conductivity of GF, the assembled LICs with a porous LTO on CNT film as an anode
exhibited an energy density of 101.8 Wh kg−1 (at a power density of 436.1 W kg−1) and
a capacitance retention of 84.8% after 5000 cycles. Sun et al. fabricated a single carbon
nanotube (SWCNT) and graphene composite (SG) by inserting the SWCNT into the space
between the graphene nanosheets [127]. As shown in the SEM and TEM images of the
SG composite (Figure 10c,d), SWCNTs were successfully inserted and homogeneously
distributed between the graphene layers, which resulted in a highly 3D porous struc-
ture and an improved overall electrical conductivity. Therefore, the SG composite can
effectively prevent the restacking of graphene and provide sufficient active sites for ion
adsorption/desorption, making it a favorable capacitor-type electrode for LICs.

Figure 10. (a) The schematic illustration of preparation of GF and (b) SEM image of GF. (Reprinted with permission from
Ref. [126]. Copyright 2020 Elsevier.) (c) SEM and (d) TEM images of SG. (Reprinted with permission from Ref. [127].
Copyright 2017 Royal Society of Chemistry.).

In addition, conductive polymers such as polyaniline (PANI) can also be applied as
spacers to inhibit the restacking of graphene sheets considering their unique merits of
high conductivity, excellent flexibility and high capacity derived from fast redox reaction.
Ock et al. proposed a high-capacity and high-rate PANI@rGO and used it as a capacitor-
type electrode [128]. PANI@rGO was synthesized through depositing aniline on the surface
of GO sheets and then forming a chain-integrated rGO-based composite after in situ poly-
merization and cross-linking of PANI (Figure 11a). The obtained PANI@rGO has a layered
morphology and multi-porous structure with PANI forming an interconnected network on
the rGO sheets by π–π conjugation (Figure 11b). As demonstrated in the HRTEM images,
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the pores of rGO are mainly micropores and mesopores generated by removing the oxygen-
containing groups during the reduction process (Figure 11b). Based on its outstanding
characteristics, PANI@rGO showed a capacity of about one time higher than that of rGO
at all current densities (Figure 11c). The improved capacity and rate performance could
be ascribed to a non-Faradaic reaction with extremely rapid adsorption/desorption of
electrolyte ions at the electrode/electrolyte interface as well as the extra capacity provided
by the fast redox reactions. By integrating the PANI@rGO with a rGO-coated MoO2 an-
ode, the full LIC cell exhibited an ultralong cycling life with 96% capacity retention after
10,000 cycles at 5 A g−1 (Figure 11d). Moreover, the as-fabricated LIC showed a maximum
energy density of 241.7 Wh kg−1, which still maintained 117.8 Wh kg−1 at an extremely
high power density of 28.75 kW kg−1 (Figure 11e). The enhancement of electrochemical
performance can be roughly ascribed to the improved electrical conductivity and high SSA
because of the introduction of extra spacers to prevent the aggregation of graphene.

Figure 11. (a) Schematic illustration of in situ polymerized polyaniline chain web cathode units integrated into rGO
sheets to form the PANI@rGO cathode; (b) Schematic images of ion storing of PANI@rGO cathode and π–π conjugation
between the PANI chain and rGO sheet and HRTEM images of region I (conjugated PANI, temperature mode), region II
(mesopores), region III (micropores); (c) Rate capabilities of PANI@rGO and rGO; (d) Cycling stability and (e) Ragone plot
of MoO2@rGO//PANI@rGO LICs. (Reprinted with permission from Ref. [128]. Copyright 2020 Wiley-VCH.).

4.3. High-Density Graphene-Based 3D Composites

Commonly, carbon-based cathode materials suffer from low packing/tap density
because of their highly porous structure, and this is more serious for nanostructured
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carbon materials (e.g., graphene or CNTs), which always leads to inferior volumetric
energy density [129]. Therefore, developing materials with high packing/tap density
is of great significance for fabricating high energy density LICs. For instance, Huang
et al. demonstrated a novel nitrogen-enriched mesoporous carbon nanosphere/graphene
(N-GMCS) composite with high packing density [130]. The preparation process of N-GMCS
includes the following steps (Figure 12a). Initially, mesoporous carbon nanospheres were
formed on the graphene oxide substrate through in situ polymerization of phenolic resin
under a hydrothermal reaction and subsequent carbonization. After the intermediate
product was further activated by KOH and doped with abundant nitrogen functionality by
NH3 treatment, the final product was obtained. N-GMCS possesses a hierarchical porous
structure, 3D conductive network as well as high packing density (0.6 g cm−3), making it
a promising capacitor-type electrode for high-energy devices. As expected, LICs with N-
GMCS as the cathode delivered maximum energy and power densities of 80 Wh kg−1 and
352 kW kg−1, respectively (corresponding to 66.7 Wh L−1 and 292 kW L−1) (Figure 12b).

Figure 12. (a) Schematic of the synthesis of the NGMCS nanocomposite; (b) TEM image of the N-GMCS nanocomposite.
(Reprinted with permission from Ref. [130]. Copyright 2015 Elsevier.) (c) Schematic of the AC/G composite monolith
fabrication process; SEM images of (d) the capillary drying-induced dense AC/G monolith and (e) the freeze-drying-
induced AC/G hydrogel; (f) The SSA and electrode density variations of the AC/G composites with the percentage of
AC; (g) The relationship between the gravimetric/volumetric capacity and the percentage of AC in the AC/G composites;
(h) Comparison of the capacity retention of pure AC and AC/G-57 electrodes at various current densities; Ragone plot of
the AC/G-57//graphite LIC compared with the AC//graphite LIC based on (i) mass and (j) volume. (Reprinted with
permission from Ref. [131]. Copyright 2019 Elsevier.).

Recently, Yang and coworkers designed a highly dense but porous activated car-
bon/graphene (AC/G) composite as the capacitor-type cathode for high gravimetric/
volumetric energy density LICs [131]. The typical preparation of AC/G composites in-
volves a process of hydrothermal reaction, capillary drying and high-temperature annealing
(Figure 12c). As clearly demonstrated in the SEM images and photographs in Figure 12d,
the volume of AC/G hydrogel and the voids between AC microparticles are significantly re-
duced to obtain a dense AC/G monolith after the capillary drying process, illustrating that
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a compact microstructure is formed. By contrast, the AC/G-FD monolith prepared through
the freeze-drying process keeps almost the same size and appearance as the intermediate
hydrogel with a loose morphology (Figure 12e), which strongly shows the advantages
of capillary drying in preparing high-density electrodes. The highly dense but porous
characteristic of AC/G composites can be verified by the results of SSA and electrode
density (Figure 12f). For example, AC/G-57 has an SSA of 1402 m2 g−1 and its electrode
density is still as high as 0.71 g cm−3, which is around 173% of that of AC. Hence, although
AC/G-57 shows relatively lower gravimetric specific capacity compared with pristine AC,
it has the largest volumetric specific capacity of 45 mAh cm−3, which is 137% of AC and
147% of HPGM, respectively (Figure 12g). Furthermore, AC/G-57 shows a higher capacity
than that of AC, especially at high current density, which can be attributed to the fast
and effective ion and electron conductive network formed by the 3D graphene skeleton
(Figure 12h). Consequently, LICs with AC/G-57 as the cathode show superior electrochem-
ical performance compared to pristine AC-based LICs in both gravimetric and volumetric
energy densities (Figure 12i,j). A similar strategy has been applied to prepare other 3D
graphene-based composites as capacitor-type electrodes for advanced LICs. Liu et al.
fabricated a high tap density graphene material from a few-layer graphene/GO composite
for LICs via a simple blast drying [132]. The obtained cathode shows an apparent volume
shrinkage and has an extremely high tap density of 0.7 kg L−1. More importantly, the mass
loading of the electrode can reach as high as 13.5 mg cm−2, resulting in a reversible capacity
of 136.4 mAh g−1 at 0.1 A g−1 and maintaining about 63% at 200 C. There is no doubt that
high volumetric energy density is equally as important as the gravimetric energy density,
which is one of the critical factors influencing the commercial applications of LICs. Hence,
developing graphene-based cathodes with high tap density is of great importance and
compact 3D graphene-based materials should be elaborately designed.

Based on the above discussion, graphene-based 3D composites show obvious advan-
tages compared with reduced GO and pristine porous graphene, as summarized in Table 4.
Reduced GO usually has unsatisfactory energy and power densities resulting from their rel-
atively low SSA and poor electrical conductivity because of serious aggregation/restacking
of graphene nanosheets and the unrecovered conductive network, while pristine porous
graphene suffers from high cost and/or complicated synthesis procedures. Hence, forming
composites with other highly conductive materials to prepare graphene-based 3D porous
materials is a facile but cost-effective strategy. Future research should focus on designing
materials with well-controlled porosity, tunable microstructure and morphology and high
packing density.

Table 4. Properties of cathodes using graphene-based 3D composites and the performances of LICs.

Cathode//Anode Electrode
Preparation

Capacity of
Cathode

(mAh g−1)
Electrolyte

Cell
Voltage

(V)

Maximum
Energy

Density (Wh
kg−1)

Maximum
Power Density

(kW kg−1)

Cycling
Stability Ref.

PC-75//MnO@C Chemical
activation 50 1 M LiPF6 in

EC/EMC/DMC 0.1–4 117.6 10.25 76% at
3000 [117]

N-GMCS//graphite Chemical
activation / 1 M LiPF6 in

EC/DEC 2.2–4.2 66.7 Wh L−1 292 kW L−1 93.1 at
3000 [130]

3DGraphene//
Fe3O4/G

Chemical
activation / 1 M LiPF6 in

EC/DEC/DMC 1–4 204 4.6 70% at
1000 [74]

3D PANI/GNSs//3D
MoO3/GNSs

Chemical
activation 67.8 1 M LiPF6 in

EC/DEC 0–3.8 128.3 13.5 90% at
3000 [119]

GF//CNT@pLTO Microwave oven
irradiation 151.9 F g−1 1 M LiPF6 in

EC/DMC 0–3.5 108.1 12.3 84.8% at
5000 [126]

rGO-CNT//lithiated
rGO-CNT

Electrostaticspray
deposition 72 1 M LiPF6 in

EC/EMC 0.01–4.3 114.5 2.57 68.5% at
2000 [123]

SG//Li-SG Reduced by
hydrazine 137 F g−1 1 M LiPF6 in

EC/DMC 0–4 222 / 58% at
5000 [127]

OAC/rGO//Si/C Ball
milling 140 1 M LiPF6 in

DMC/FEC 2–4.5 141 10.3 78.9% at
1000 [124]
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Table 4. Cont.

Cathode//Anode Electrode
Preparation

Capacity of
Cathode

(mAh g−1)
Electrolyte

Cell
Voltage

(V)

Maximum
Energy

Density (Wh
kg−1)

Maximum
Power Density

(kW kg−1)

Cycling
Stability Ref.

PANI@rGO//
MoO2@rGO

In situ
polymerization / 1 M LiPF6 in

EC/DEC 1.25–4.5 241.7 28.75 96% at
10000 [128]

G@HMMC//graphite Chemical
activation 112 1 M LiPF6 in

EC/DEC/DMC 2–4.5 233.3 15.6 90.6% at
3000 [116]

AC/G//graphite
Hydrothermal

Process and
thermal treatment

45 mAh
cm−3

1 M LiPF6 in
EC/EMC/DMC 2–4.5 98 Wh L−1 19 kW L−1 98.9% at

3000 [131]

G/AC//G/SC
Self-propagating
high-temperature

synthesis
113.7F g−1 1 M LiPF6 in

EC/DEC/DMC 1–4 151 18.9 93.8% at
10,000 [133]

5. Summary and Outlook

LICs possess the merits of a high energy density, high power density, large operation
voltage, wide working temperature range and long cycling stability, and thus are consid-
ered to be one of the ideal energy storage devices to overcome the disadvantages of batteries
and supercapacitors. Although LICs have the potential to bridge the gap between batteries
and supercapacitors, their electrochemical performance still fails to reach the requirements
of commercial applications. Especially, the unsatisfactory energy density of state-of-the-art
LICs is one of the main obstacles preventing their applications, which is mainly due to the
low capacity of the capacitor-type electrode and the kinetics and capacity imbalances be-
tween the cathode and anode. For instance, traditional capacitor-type materials such as AC
suffer from inferior specific capacity and poor rate performance because of a relatively low
SSA and electrical conductivity. Hence, developing high-capacity capacitor-type materials
is significantly important to obtain high-energy LICs. Thanks to their unique 2D structure,
high electrical conductivity, large SSA, tunable surface chemistry and excellent chemical
and electrochemical stability, graphene-based cathode materials have demonstrated re-
markable achievements in LICs. In this review, a systematic summary of graphene-based
capacitor-type materials has been presented. It could be easy to conclude from the above
results that graphenes, either as active materials or as building blocks to form composites
with other materials, have shown great potential in capacitor-type cathode candidates
for LICs.

Nevertheless, the performance of the current graphene-based capacitor-type elec-
trodes is still far from the practical requirements. Moreover, other remaining challenges
related to battery-type anodes, the production of graphene-based materials, volumetric
performance, electrolytes, performance imbalance between the anode and cathode and
pre-lithiation technologies should be given more attention, too. Thus, the following sev-
eral aspects should be considered to overcome the present challenges and to realize the
commercialization of LICs:

(1) High-capacity capacitor-type materials are urgently needed. To match the high capac-
ity of battery-type anodes, developing cathode materials with improved capacity is
the top priority. The cathode stores energy through a physical adsorption/desorption
process at the electrolyte/electrode interface, which leads to a fast charge/discharge
rate. On the other hand, the non-Faradaic energy storage mechanism also results in
low capacity because it is critically influenced by the SSA. A high SSA could provide
more active sites for ion adsorption and, to a certain extent, the capacity is raised with
the increase in the SSA. However, it should be pointed out that not all the surface can
be accessible by the electrolyte ions [134]. Therefore, the morphology, pore size and
surface chemistry of graphene-based cathode materials should be carefully regulated
to increase the effective surface area and in turn enhance their capacity. In addition,
heteroatom doping and porosity engineering should also receive enough attention
to obtain high-capacity and high-rate capacitor-type cathodes. Doping can not only
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provide extra capacity by fast redox reactions but enhance the electrical conductivity,
while rational and tunable porosity is beneficial for the electrolyte ions’ diffusion,
together resulting in excellent rate capability.

(2) The preparation of graphene-based cathode materials at low cost is one of the critical
factors for large-scale applications. Although pure graphene-based porous materials
can serve as outstanding capacitor-type electrodes due to their high electrical con-
ductivity and large SSA, the high cost impedes their further commercial utilization.
Forming composites with other materials is a facile but feasible method to solve this
problem, such as biomass or polymer/graphene hydrogel-derived graphene-based
3D porous materials initially proposed by Chen’s group [24]. In such cases, the overall
cost of the cathode materials can be largely reduced but the high conductivity and
porous structure can be kept.

(3) Developing battery-type materials with a high rate and long-term stability is another
big challenge but imperative issue. High-capacity anodes ensure the high energy of
the full cell. However, the high energy density of state-of-the-art LICs could only
be realized at the cost of low power output because of the sluggish redox reaction
and/or inferior electrical conductivity of battery-type anodes. Hence, designing
nanostructured materials with tunable porosity and compositing with highly conduc-
tive materials are always applied to achieve high-rate anodes. These strategies could
help to reduce the capacity and kinetics imbalances between the cathode and anode,
leading to improved energy and power densities [12]. With the booming of lithium
metal batteries, Li metal anodes have also been applied as the battery-type electrode
to develop high-energy LICs [131,135]. In this circumstance, elaborate surface coating
or electrolyte regulation is needed to suppress lithium dendrite growth to avoid safety
accidents [136,137].

(4) The volumetric performance of graphene-based materials should receive more atten-
tion for commercial applications. Graphene-based cathode materials have shown
enhanced gravimetric capacity compared with commercial AC. However, their large
SSA and highly porous structure result in a low taping density and consequently low
volumetric energy density, which is a big obstacle for practical utilization. In addition,
more binders and solvents are needed in the electrode fabrication process because
of the highly porous nanostructured carbon materials, increasing the manufacturing
cost and decreasing the energy density. Thus, the porosity and taping density should
be well balanced. To achieve high volumetric energy density at a low cost, future re-
search can focus on forming graphene-based 3D composites by using capillary drying
or rapid drying processes [131,132].

(5) Advanced electrolytes with a wide working voltage and high safety are also needed.
Currently, typical LICs commonly adopt organic electrolytes to achieve a high op-
eration voltage. However, they suffer from safety issues associated with volatility,
flammability and toxicity. Hence, other novel electrolytes have been explored. For ex-
ample, ionic liquids are regarded as a promising alternative to the organic electrolyte
owing to their large working voltage, high conductivity and excellent thermal sta-
bility without risk of catching fire [134,138]. Recently, “Water-in-Salt” electrolytes
have drawn tremendous interest as they inherit the safety advantage of aqueous
electrolytes while keeping the high working voltage of organic electrolytes [139–142].

(6) The decomposition of electrolytes should not be ignored. Generally, electrolyte
decomposition on the cathode and anode takes place during the charge/discharge
process, especially at a high working voltage, resulting in gas emission, impedance
increase and low energy conversion efficiency. At the anode side, this phenomenon
can be largely restrained by forming a stable solid–electrolyte interface (SEI) during
the first several cycles. However, an effective strategy to suppress the electrolyte
decomposition at the cathode side is still absent [143]. Fortunately, Li et al. proposed
a preliminary electrochemical coating process to form a well-formed protective layer
on a graphene-based cathode [144]. The protective layer could block the electron flow
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from the cathode to the electrolyte and thus terminate the decomposition. This may
be a possible and promising solution to obtain high-voltage and long-durability
LICs. Furthermore, some in situ and ex situ characterization technologies could be
applied to investigate the decomposition mechanism of electrolytes, the degradation
and/or evolution of the electrode surface and electrode/electrolyte interface and the
composition of decomposed products [145–147]. It is expected that these in situ and
ex situ tools will help us to understand the beneath decomposition mechanism and
find an effective protection method.

(7) Besides the above discussion, other critical issues should also be solved before
industrial-level production and widespread applications. First of all, feasible pre-
lithiation technology should be developed because the anode, especially nanostruc-
tured materials with a large SSA and rich porosity, would consume a large amount
of lithium ions when forming a stable SEI [148,149]. Well-controlled pre-lithiation
could largely improve the structural stability of the electrode, enhance the reversible
capacity and working voltage of the full cell and reduce the resistance, which thus
increases the energy and power densities and cycling life. However, current pre-
lithiation technologies such as internal or external short circuit [150,151] or using
lithium-containing compounds [152–154] are either unsafe, time-consuming or inef-
ficient. Hence, high-efficiency pre-lithiation methods are highly needed. Benefiting
from well-developed LIBs and SCs, the design strategies, assembly technology and
components (conductive additives, binders and shell) could be easily transferred
to LICs [133]. More importantly, special attention should be given to thermal man-
agement, which is exceptionally critical for the safe and efficient operation of LICs,
especially at high and low temperatures [155].

(8) Additionally, considering the limited and uneven distribution of lithium resources,
other metal-ion capacitors are drawing increasing attention and have recently be-
come the research hotspot. In particular, monovalent ion systems (i.e., sodium-ion
capacitors and potassium-ion capacitors) are the most promising alternatives to LICs
because they have a similar cell configuration and energy storage mechanism as well
as abundant resources [156,157]. However, like LICs, Na/K-ion capacitors also suffer
from safety problems derived from the use of organic electrolytes and the formation of
highly reactive metal dendrites. Recently, multivalent ion systems are drawing more
interest due to the merits of providing twice or triple the amount of electrons per unit
of active materials as well as being less sensitive to air and water, rendering them low-
cost, high-energy and safe devices [158,159]. These novel systems are still in the early
stage and more efforts should be devoted to preparing advanced electrode materials,
developing suitable electrolytes and investigating the energy storage mechanism.

In conclusion, LICs have witnessed tremendous progress during the last decade, es-
pecially in electrode materials. Their development steps are speeding up and large-scale
application will be realized in the near future. Without a doubt, graphene-based nano-
materials could play a vital role in achieving high performance due to their outstanding
electrochemical properties.
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