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Generative pretraining from large-scale
transcriptomes for single-cell deciphering

Hongru Shen,1,5 Jilei Liu,1,5 Jiani Hu,1,5 Xilin Shen,1 Chao Zhang,2 Dan Wu,1 Mengyao Feng,1 Meng Yang,1

Yang Li,1 Yichen Yang,1 Wei Wang,3 Qiang Zhang,4 Jilong Yang,2 Kexin Chen,3,* and Xiangchun Li1,6,*

SUMMARY

Exponential accumulation of single-cell transcriptomes poses great challenge for
efficient assimilation. Here, we present an approach entitled generative pretrain-
ing from transcriptomes (tGPT) for learning feature representation of transcrip-
tomes. tGPT is conceptually simple in that it autoregressive models the ranking
of a gene in the context of its preceding neighbors. We developed tGPT with
22.3 million single-cell transcriptomes and used four single-cell datasets to eval-
utate its performance on single-cell analysis tasks. In addition, we examine its ap-
plications on bulk tissues. The single-cell clusters and cell lineage trajectories
derived from tGPT are highly aligned with known cell labels and states. The
feature patterns of tumor bulk tissues learned by tGPT are associated with a
wide range of genomic alteration events, prognosis, and treatment outcome of
immunotherapy. tGPT represents a new analytical paradigm for integrating and
decipheringmassive amounts of transcriptome data and it will facilitate the inter-
pretation and clinical translation of single-cell transcriptomes.

INTRODUCTION

Rapid advancement in single-cell RNA sequencing leads to dramatic drop in sequencing cost and allows for

millions of single-cell transcriptomes tobedigitized in a single experiment simultaneously. Thewhole human

body is estimated to have 30 trillion cells. Single-cell transcriptome sequencing provided an unprecedented

resolution to distinguish different cell type clusters, depict hierarchical cell arrangement and decipher tran-

sitional cell states. To achieve this goal, multiple single-cell atlasing projects have been established interna-

tionally, including Human Cell Atlas (HCA),1 Single Cell Expression Atlas (SCEA),2 COVID-19 Atlas,3 Tabula

Muris Atlas4 andMouse Cell Atlas.5 The HCA project1 aims to digitize all cells and create a referencemap of

the human body through community-driven initiative that researchers all around the world can contribute.

SCEA2 compiles and annotates publicly available single-cell transcriptomes across multiple species and

different studies. The COVID-19 Atlas3 aims at elucidating molecular mechanism and therapeutic target

of COVID-19 by generating single-cell atlas of SARS-CoV-2 infection in COVID-19 patients. The Tabula

Muris4 and MCA5 atlases constitute the single-cell reference maps of mouse with millions of cells obtained

from different organs. These atlasing projects pose tremendous challenge in the integration of diverse tran-

scriptomes fromdifferent projects. However, single-cell transcriptomes are generatedbydifferent platforms

and experimental protocols. They are sparse, noise and prone to batch effect.6,7 Therefore, an analytical

method to efficiently integrate ten millions of cells are urgently needed.

Over the past few years, deep learning approaches have led to seismic changes in image recognition and

natural language understanding. The success of deep learning could largely attribute to the availability of

big data, advancement in computational infrastructure, expressivity and scalability of the computational

model. The deep learning model could adeptly handle super large-scale high dimensional data and assim-

ilate real-world information. Owing to the exponential accumulation of millions of cell transcriptomes,

elucidation of the reference map of single-cell transcriptomes with deep learning becomes an attractive

application. Deep learning methods such as scVI,8 SAUCIE9 and INSCT10 have been developed for the

analysis of single-cell transcriptomes.

The progress of artificial intelligence is undergoing a paradigm shift in computer vision and natural lan-

guage processing. Deep neural networks based on transformer are becoming the de facto approach in

wide variety of scenarios such as vision, language and reasoning.11 Transformer-based models pretrained
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on broad data at scale continues to achieve state-of-the-art progress in image classification12,13 and lan-

guage understanding.14–16 The success of these pretrained models can be attributed to their high expres-

sivity and scalability enabled by transformer to assimilate feature representation from massive amount of

unlabeled data. However, the investigation of single-cell transcriptome pretraining at scale has not been

well studied.

In this study, we present a deep learning approach entitled tGPT toward integration of unlimited number of

cells. tGPT is built on transformer that has been widely used in natural language understanding and image

recognition. The transformer is an essential component and key success of foundation models because of

its high expressivity and scalability.11 tGPT takes as input the expression rankings of top-expressing genes

rather than the actual expression levels. Rank-based methods for gene expression have been demon-

strated to be insensitive to batch effects and data normalization.17–20 tGPT is conceptually simple and

empirically efficient. It models the occurrence of a gene in the context of its preceding neighbors’ rankings.

We developed tGPT with 22.3 million cells and systematically evaluated tGPT on four heterogeneous data-

sets for sensitivity to batch-effect, delineation of clustering performance and inference of developmental

lineages. We applied tGPT to bulk cancer tissue sequencing samples and found that features obtained

from tGPT are significantly associated with diverse genomic alteration events, patients’ prognosis and

treatment outcome of immunotherapy. tGPT represents a new analytical paradigm to integrate and deci-

pher large-scale single-cell transcriptomes. It will facilitate the integration and clinical translation of large

volume of single-cell transcriptome data.

RESULTS

An overview of tGPT and its downstream applications

The analytical framework of tGPT (Figure 1) consists of three components: Development of tGPT, applica-

tions of tGPT for single-cell clustering, inference of developmental lineage, and interrogation of feature

representation of bulk tissues in relation to genomic alterations, prognosis and treatment response of

immunotherapy.

tGPT is formatted as an autoregressive languagemodel in that the output from the previous step is used as

input to the next step. The input to tGPT is a sequence of gene symbols that are ranked by their expression

levels. The purpose is to predict the index of the next gene in the dictionary in the context of all previous

genes. The dictionary consists of 20706 protein-coding genes. tGPT is trained as an unsupervised genera-

tive pretraining task.16 Specifically, for a given cell, let G = fG1;G2;.Gng denote the gene symbols that are

sorted in a descending order according to their expression levels. We use the standard languagemodeling

objective LðGÞ = Pi log PðGi jGi� k ;.;Gi� 1; qÞ to maximize the likelihood. Here, k is the width of context

window and q are the parameters of tGPT that is used to model the conditional probability. The neural

network consists of 8 transformer decoder blocks21 with 1024 hidden units and 16 attention heads.

Quantitative evaluations of tGPT on clustering

We systematically evaluated the clustering performance of tGPT on four heterogeneous single-cell data-

sets of different sizes (50-586k cells) from different species and two bulk tissue sequencing datasets

(Tables S1 and S2). These four single-cell datasets include Human Cell Atlas Census of Immune Cells22

(HCA, n = 282,558), Human Cell Landscape23 (HCL, n = 586,135), Tabula Muris4 (n = 54,862) and Macaque

Retina24 (n = 124,965) dataset (See STAR Methods for description). The two bulk tissue datasets are Geno-

type-Tissue Expression25 (GTEx, n = 11,688) derived from 30 organs and The Cancer Genome Atlas26

(TCGA, n = 9,318) consisted of 33 cancer types.

We observed that tGPT is insensitive to batch effect as benchmarked against with the other methods

that support batch-correction such as ComBat,27 MNN,28 Harmony,29 Seurat,30,31 BBKNN,32 Scanorama,33

Pegasus,34 scVI,8 scArches,35 iMAP36 and DESC37 as measured on the HCA dataset. tGPT achieved a

comparable kBET acceptance rate38 of 0.87 among the aforementioned batch-correction methods

(Figure S1L). The UMAP plots of these batch-correction methods and their clustering metrics and

grid-search results are provided in Figures S1A–S1K, 2, and 3, respectively.

The clustering performance of tGPT is robust with respect to the numbers of top-expression genes being

used.We found that the performance of tGPT pretrained on the ranking of top 62 and 126 genes were com-

parable across these six datasets (Figure S4). In addition, we observed that clustering performance on
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features extracted from different transformer layers [Layer-1, ., Layer-8] are comparable and better than

features extracted from the embedding layer across all these six datasets (Figure S4). For each method, we

reported the best performance via grid-search to identify optimal values of two parameters that are most

relevant to clustering (see STAR Methods). The results from grid-search were provided in Figures S5–S10

and Data S1. Quantitatively, tGPT achieved an Normalized Mutual information (NMI) ranged from 0.75 on

Figure 1. A flowchart illustrating the framework of tGPT and its downstream applications

It consists of three components: development of tGPT, applications of tGPT for single-cell and bulk tissue transcriptomes.
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HCA to 0.90 on GTEx, Adjusted Rand Index (ARI) from 0.53 on HCL to 0.84 on Tabula Muris and Fowlkes-

Mallows Index (FMI) from 0.55 on HCL to 0.85 on Tabula Muris (Figure 2A). The clustering performance

achieved by tGPT are comparable to the other methods such as Scanpy,39 Pegasus34 and scVI8

(Figures 2A and S11–S13). Grid-search results of these methods were provided in Figure S14. Running

time of these methods were provided in Table S3.

Across these datasets, tGPT was capable of grouping cells with the same or similar types (Figures 2B–2G).

On the HCA dataset, tGPT was able to identify cells at different developmental phases. For example, it can

delineate B cells of different types such as naive B cells, precursor B (pre-B) cells and progenitor B (pro-B)

cells and homologous cells, such as conventional DCs (cDCs) and plasmacytoid DCs (pDC), CD14+ and

CD16+ monocytes. Less represented cell types such as megakaryocytes (0.32%) and MSCs (0.10%) were

also captured by tGPT (Figure 2B). On theHCL dataset, tGPTwas able to distinguish between immune cells

Figure 2. The clustering performance of tGPT on four single-cell and two bulk tissue datasets

(A) Radar charts depicting clustering metrics of tGPT, Pegaus, scVI and Scanpy across these six datasets.

(B–G) UMAP visualization of feature representations learned by tGPT on the HCA (B), HCL (C), Tabula Muris (D), Macque Retina (E), GTEx (F) and TCGA

(G).NMI, Normalized Mutual information; ARI, Adjusted Rand Index; FMI, Fowlkes-Mallows Index.
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and nonimmune cells as well as different cell types from fetus and adult such as fetal enterocytes and adult

enterocytes (Figures 2C and S12). On the Tabula Muris dataset, tGPT was also able to delineate 55 distinct

cell types originated from 20 mouse organs (Figures 2D and S13). On theMacaque Retina dataset, distinc-

tive cell clusters from foveal and peripheral regions of fascicularis retina defined by tGPT are well matched

with cell types defined in the original literature24 (Figure 2E). On the GTEx dataset, tGPT is able to identify

different tissues originated from lineage of organs (NMI = 0.90), and samples with similar histological struc-

ture are close together such as colon, small intestine and stomach (Figure 2F). On the TCGA dataset,

different cancer types are well separated (NMI = 0.77). Cancer types with the same tissue of origin tend

to clump together in the feature representation spaces captured by tGPT. For example, adenocarcinomas

and squamous cell carcinomas are closely related in the UMAP plots, respectively. Different cancer sub-

types originated from the same tissues are well separated such as lung cancer subtypes (e.g., LUAD and

LUSC; Figure 2G), kidney cancer subtypes (e.g., KIRC, KIRP and KICH; Figure 2G) and breast cancer sub-

types (e.g., Luminal A, Luminal B, HER+ and Basal cell carcinoma; Figure S15). In addition, tGPT achieved

Bilingual Evaluation Understudy (BLEU) scores R0.69 four datasets examined in this study (Table S4). This

suggested that tGPT obtained good quality in gene ranking generation.

Distinct features learned by tGPT are connected to cell types

We observed that the head entropy and importance of different cell types from the HCA dataset (See STAR

Methods) are distinctive from each other. Cells of similar lineages or functions such as T-lineage cells exhibited

similar entropy patterns (Figure 3A). The head importance is varying considerably for different cell types, how-

ever, cells of similar types are alike as compared with the other cell types (Figure 3B). For each cell type, we

calculated the contribution of each gene on the cell final feature representation (See STARMethods). Celltype

specific genes have higher attribution scores (Figure 3C). For example, NKG7, FGFBP2, PRF1, GNLY, GZMA

andGZMB are highly represented in cytotoxic T cells and NK cells (Figure S16A). PPBP and PF4 are also highly

represented inmegakaryocytes (Figure S16B). B-lineage cells have high attribution scores for bothCD79A and

CD79B.Attribution scores ofMS4A1 andMZB1 are relative higher in memory B cells and plasma cells, respec-

tively (Figure S16C).Theattribution scoreofCST3 is higher amongCD14+monocytes,CD16+monocytes, cDCs

andpDCs. In addition, each specific cell types can bedefinedby specific genes with high attribution scores, for

Figure 3. Distinct features of different cell types from the HCA dataset learned by tGPT

(A) Heatmap representation of attention head entropy for different cell types, and hierarchical clustering plot clustered these attention heads.

(B) Heatmap representation of attention head importance for different cell types.

(C) Dot plot illustrating the attribution scores for cell type specific genes, gray cell types annotated the clusters of marker genes.
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instance plasmacytoid dendritic cells (pDCs, IRF7), conventional dendritic cells (cDC, FCER1A), CD14+ mono-

cytes (CD14) and CD14+ monocytes (FCGR3A) (Figure S16D).

Inference of developmental lineage

We used the feature representations learned by tGPT to construct cell pseudo-temporal trajectories on HCA

and HCL datasets (See STAR Methods). On the HCA dataset, the developmental trajectories originated from

stem cells and differentiated toward multiple biologically functional cell branches (Figure 4A): HSCs to

erythroid cells40 or DCs andmonocytes (Figure 4B); naive T cells to cytotoxic T cells and NK cells41 (Figure 4C);

pro-B cells to pre-B cells, then followed by matured naive B cells, and finally bifurcated into memory B cells or

plasma cells42 (Figure 4D). In addition, we observed that the cell state signatures are aligned with cell develop-

mental lineages (See STARMethods). For instance, HSCs and pro-B cells are manifested by apparent progen-

itor signaling (Figure 4E). Naive andmature T cells are featuredbydistinguishable patterns (Figures 4F and4G).

On the HCL dataset, the developmental tree depicted three differential trajectories of fetal mesenchymal

progenitor cells into different mature cell types (Figure 4H) with fetal cells at the center of the landscape.

The fetal mesenchymal progenitor cells are differentiated into biologically functional fibroblasts (Figure 4I),

enterocytes (Figure 4J), astrocytes and oligodendrocytes (Figure 4K).

Clinical significance of tGPT in bulk sequencing sample

Here, we demonstrated that tGPT is able to capture clinically significant patterns. On the TCGA dataset, we

found that the importance scores are varying considerably for different attention heads amongdifferent layers.

The importance score patterns can cluster different cancer types into distinct groups in that cancer of the same

tissue-of-origin are closely relatedwhereas cancers of different origins are well separated (See STARMethods,

Figure 5A). For example, skin cutaneous melanoma (SKCM) and uveal melanoma (UVM), glioblastoma multi-

forme (GBM) and brain lower grade glioma (LGG) are respectively located in the same clustering branches. In

addition, we examined the association between attention head entropy and molecular alteration events (See

STAR Methods). There are several attention heads exhibited significant association with tumor mutation

burden (TMB) in the TCGA pan-cancer cohort and specifically in bladder urothelial carcinoma (BLCA),

LUAD and LUSC (Figure 5B). We observed that attention heads also showed significant association with

TP53mutations at the pan-cancer level and across 9 cancer types (Figure 5C). There are also attention heads

exhibited significant association with homologous recombination deficiency (HRD) and genome doubling

(Figures 5D and 5E) at the pan-cancer level. The association of attention heads with HRD and genome

doubling are statistically significant across 4 and 14 cancer types, respectively. Meanwhile, the attention heads

exhibited prognostic significance at pan-cancer level (Figure 5E) and across 7 cancer types (Figure S17).

In addition, we examined the attention head patterns in relation to immunotherapy in an immune checkpoint

block (ICB) clinical trial of urothelial carcinoma consisted of 298 patients: 25 patients with CR, 43 with PR,

63 with SD and 63 with PD (See STARMethods). We found that importance and entropy scores are distinguish-

able amongst patients with different therapeutic outcome (Figures 5G and 5H).Weobserved gradually varying

entropy values from SD to PR to CR by taking the PD baseline (Figure 5I) and significant difference among

5 attention heads in patients with CR/PR versus SD/PD (Figure 5J). We quantified expression signatures

such as tumor evasion and T cell immune infiltration attended by different attention heads (See STAR

Methods). By taking PD as baseline, we observed a gradually decreasing patterns of tumor evasion and

increasing patterns of T cell immune infiltration from SD to PR to CR (Figures 5K and 5L). The attention heads

also exhibited prognostic significance in this clinical trial (Figures 5M and 5N).

DISCUSSION

Efficient integration of accumulating large-scale single-cell transcriptomes is urgently needed. Here, we

introduced a conceptually simple approach toward the integration of unlimited number of single-cell

Figure 4. Diffusion pseudo-time analysis on the HCA and HCL datasets

(A) The diffusion map of HCA dataset.

(B) Hematopoietic stem cells (HSCs) to erythroid cells or dendritic cells (DCs) and monocytes.

(C) Naive T cells to cytotoxic T cells and nature killer (NK) cells.

(D) Pro-B cells to plasma cells.

(E–G) Cell state signatures for progenitor signaling, naive signaling and cytotoxic signaling.

(H–K) The diffusion map of HCL dataset and its main branches. Token score is the norm of the learned token features extracted from tGPT.
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Figure 5. The association of features learned by tGPT versus genomic alteration events and clinical phenotype

(A) Heatmap representation of attention head importance score across different cancer types on the TCGA dataset.

(B–F) Association of attention head entropy versus tumor mutation burden (B), TP53 mutation (C), homologous recombination deficiency (D), genome

doubling (E) and overall survival (F) on the TCGA cohort.

(G and H) Heatmap representation of attention head importance and entropy on the urothelial carcinoma stratified by RECIST response. CR, complete

response; PR, partial response; SD, stable disease; PD, progress disease.
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transcriptomes and examined its potential clinical translational relevance. The paradigm underpinning

tGPT in essence is to predict the occurrence of a given gene with its previous context. We developed

tGPT on a super large-scale single-cell transcriptome dataset that consists of 22.3 million cells and system-

atically evaluated its representation learning ability on different single-cell analysis tasks. We noted that

tGPT was insensitive to batch effect and achieved competitive performance as compared with benchmark

tools. The purpose of this study is to verify the validity of this new paradigm in deciphering large-scale tran-

scriptome data, especially at the level of single-cell atlas. In addition, we showed that the pretrained tGPT

model can be applied to bulk tissue sequencing samples to extract a variety of features exhibiting signif-

icant association with genomic alterations and response to immunotherapy treatment.

Artificial intelligence is undergoing a paradigm shift and the pretraining models based on transformer are

becoming de facto standard in natural language processing and computer vision, achieving state-of-the-

art across a wide range of tasks such as natural language understanding, image classification, video and

audio recognition.11 Representative pretrainingmodels include BERT14 andGPT.15 The advantage of these

pretraining models lie in its ability to assimilate real-world information from super large-scale unlabeled

and high-dimensional data. This advantage brings an attractive solution for deciphering single-cell tran-

scriptomes as millions of cells have been sequenced, which exemplified by 22.3 million cells collected in

our study. This number is expected to increase exponentially in years ahead. There is no analytical tool

that is designed and evaluated on such large volume of data. The high expressivity and scalability of trans-

former enable tGPT to learn rich representation from transcriptomes in a self-supervised manner. The high

clustering performance in single-cell cluster delineation is probably attributable to better feature represen-

tation learned by tGPT. In addition, feature representation from tGPT is insensitive to batch effect as the

acceptance rate of kBET derived from tGPT is evenly distributed among the other tools that explicitly

used batch information for batch-correction. This is probably because of the use of rankings of top express-

ing genes rather than actual expression levels by tGPT. tGPT is quite different from the other integration

tools30,31,39 as the later use the actual expression levels of highly variable genes (HVGs) and the batch in-

formation. The independence of tGPT on batch information makes it attractive for integration of super

large-scale transcriptomes because the batch information is not always available and often neglected by

researchers.

The clustering performance in delineating single-cell clusters is robust with respect to the number of top ex-

pressing genes used and feature representation extracted from different tGPT transformer layers. The clus-

teringmetrics obtained from 62 top-expressing genes are comparable to the use of 126 top-expressing genes

(Figure S4). This suggested that the rankings of 62 top-expressing genes are sufficient for cell cluster definition.

The idea underpinning tGPT is to predict the occurrence of a gene in the context of the occurrences of its pre-

ceding neighbors. Thistype of pretraining is not directly related to cell clustering. This does not guarantee that

feature representation from the last transformer layer could give rise to better clustering as comparedwith rep-

resentation from its preceding layers. In our evaluation, the clustermetrics obtained fromdifferent transformer

layers are comparable and consistently better than the embedding layer (Figure S4). In addition, we observed

that cell-type specific genes have high attribution scores albeit only the rankings are used during pretraining.

This finding can partially explain why features derived from tGPT could lead to high performance in cell clus-

tering. Although this study also uses gene rankings as we did in our previous study,43 they are theoretically

different. tGPT builds on autoregressive language modeling16 whereas the model developed in our previous

study usedmasked languagemodeling.14More importantly, weexplored the feature patterns learnedby tGPT

in bulk tissues, which were not investigated in our previous work.

A new finding emerged from our study is that the pretrained tGPTmodel can be applied to bulk tissues. On

the GTEx dataset, the feature representations of different organs extracted from tGPT can divide samples

into distinct clusters, aligning with organs. On the TCGA dataset, we observed that different cancer types

are well separated and cancers of the same origins are more closely related, which is consistent with

Figure 5. Continued

(I) The varying entropy patterns from SD to PR to CR with PD as baseline.

(J) Exemplified violin plots depicting attention head entropy in SD/PD versus CR/PR.

(K) The varying of patterns of tumor evasion signature from SD to PR to CR with PD as baseline.

(L) The varying of patterns of T cell infiltration signature from SD to PR to CR with PD as baseline.

(M) Association between attention head entropy and overall survival on the urothelial carcinoma dataset.

(N) Exemplified survival curves stratified by attention head entropy.
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previous report.44 In addition, the feature patterns of TCGA samples exhibited consistent and significant

association with genomic alterations. This indicated that rankings of top-expressing genes carry informa-

tion about alterations in tumor tissues. Meanwhile, the feature patterns derived from tGPT are distinctive

among patients with different treatment outcomes for immunotherapy. Token together, our finding would

facilitate translational research enabled by super large-scale transcriptomes.

We focused twomain directions of tGPT for futuredevelopment. First, tGPT canbeused togenerate large-scale

referencemappingwith the availability of large-scale disease referencedatasets andphenotypes. Second, tGPT

can be further investigated for clinical application such as treatment guiding and prognostic prediction.

Conclusion

In summary, we systematically verified a new, simple and effective analytical paradigm for integration of

super large-scale transcriptomes and its implications in clinical translation.

Limitations of the study

First, tGPT uses only the top-expressing genes; therefore, it may miss the information that is specifically

represented within the low-expressing genes. Second, tGPT uses gene expression rankings but not actual

expression levels. Thus, the fold changes among genes are neglected and this can affect biological inter-

pretation. Third, the language modeling objective function used by tGPT is to predict the gene rankings,

which is not directly related to biological issues. Therefore, further study is required to investigate associ-

ations between prediction of gene rankings and biological functions.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and materials should be directed to andwill be fulfilled by

the lead contact, Xiangchun Li (lixiangchun2014@foxmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All the gene expression matrices were downloaded from public databases. The source list of these data-

sets was provided in the key resources table and Table S1. Source code is available at https://github.

com/deeplearningplus/tGPT.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We collected the transcriptomes of 22.3 million single-cells (Table S1), 9318 bulk tissue transcriptomes of

TCGA cohort from the supplemental data of pan-cancer immune landscape study,26 11,688 bulk tissue

transcriptomes from GTExdatabase25 and 298 bulk tissue transcriptomes from the clinical trial study on

immunotherapy for urothelial carcinoma.45 We discarded mitochondrial genes, ribosomal genes and

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-

4a08-a234-480eca21ce79?catalog=dcp1

Census of Immune Cells

Raw and analyzed data https://www.ncbi.nlm.nih.gov/geo/download/?acc=

GSE134355&format=file

GSE134355

Raw and analyzed data https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118546;

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118852

GSE118480

Raw and analyzed data https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE96583 GSE96583

Software and algorithms

Scanpy (v1.6.0) (Wolf et al., 2018)39 https://github.com/theislab/scanpy

Pegasus (v1.4.3) (Bo Li el at., 2020) https://github.com/lilab-bcb/pegasus

scVI(v0.6.8) (Lopez et al., 2018)8 https://github.com/theislab/scvelo

MNN (v1.8.0) (Laleh Haghverdi et al.,2018)28 https://github.com/MarioniLab/MNN2017

Combat (v1.8.0) (Jean-Philippe Fortin et al.,2017) https://github.com/Jfortin1/ComBatHarmonization

Harmony (v0.1.6) (Ilya Korsunsky et al., 2019)29 https://github.com/immunogenomics/harmony

Seurat (v3.1.5) (Butler et al., 2018)30 https://satijalab.org/seurat

Scanorama (v1.7.1) (Brian Hie el al.,2019)33 https://github.com/brianhie/scanorama

DESC (v2.1.1) (Xiangjie Li et at., 2020)37 https://eleozzr.github.io/desc/

iMAP (v1.0.0) (Dongfang Wang et at., 2021)36 https://github.com/Svvord/iMAP

scArches (v 1.7.0) (Mohammad Lotfollahi et al., 2021)35 https://github.com/theislab/scarches

BBKNN (v 1.7.1) (Krzysztof Pola�nski et al., 2020)32 https://github.com/Teichlab/bbknn

tGPT (Hongru Shen et al., 2023) https://github.com/deeplearningplus/tGPT
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non-protein coding genes for the single-cell data. Four single-cell and two bulk tissue sequencing datasets

are used in downstream evaluation of tGPT. Annotated cell labels provided by the original studies are used

as the ground truth label (Table S2).

Human Cell Atlas Census of Immune Cells (HCA)

Bone marrow cells (n = 282,588) from 64 healthy donors in Human Cell Atlas (HCA) project. The data are

subjected to 10x sequencing protocol22 and contained 18 cell types such as hematopoietic stem cells

(HSCs), mesenchymal stem cells (MSCs), erythrocytes, megakaryocytes and different kinds of immune cells.

Human cell Landscape (HCL)

HCL dataset includes 586,135 human cells obtained from a Chinese Han population,23 the dataset encom-

passes samples of fetal and adult tissue and covered 60 human tissue types, and are subjected to Micro-

well-seq protocol.

Tabula Mursi

The Tabula Muris dataset (n = 54,865) is consisted of single-cells sorted by FACS from Mouse Cell Atlas4

across 20 different organs subjected to 10x and Smart-seq2 sequencing protocols.

The Cancer Genome Atlas (TCGA)

The TCGA dataset is consisted of 9,318 bulk samples with primary cancer and matched normal samples

spanning 33 cancer types.

Genotype-Tissue Expression Project (GTEx)

The GTEx dataset includes 11,688 bulk samples across 30 organs obtained from healthy donors.

Known marker genes of different cell types are curated from CellMarker database46: plasma cell (MZB1),

DCs and monocytes (CST3, FCER1A, IRF7, CD14 and FCGR3A), megakaryocyte (PPBP and PF4), B cell

(CD79A, CD79B and MS4A1) NK and cytotoxic T cell (NKG7, FGFBP2, GNLY, GZMA, GZMB and PRF1).

Cell state signatures are curated from CellMarker database,46 including progenitor signaling (STMN1,

TUBA1B and HIST1H4C), naı̈ve signaling (CCR7, LEF1 and SELL) and cytotoxic signaling (GZMA, CD8A,

CD8B, GZMB, PRF1, IL2, GNLY, GAMK, IFNG and NKG7).

T cellinfiltration signature is obtained from CellMarker database46; it consists of CD3D, CD3E and CD8A.

Tumor evasion signature is curated from the Figure 1 of a previous study.47

METHOD DETAILS

Input preprocessing

The input sequence list of top-expressing genes was obtained via descending sorting. The input to tGPT

was formulated as [<s>,G1,G2,G3,.,<e>], whereG1,G2 andG3 are gene symbols and<s>and<e>are two

special tokens respectively added to the start and end of the input sequence. The input sequence is

padded with special token<pad>if its length is less than a predefined value. The input sequence list is trun-

cated if its length exceeds the predefined value. We evaluated a length of 64 and 128 in this study. The dic-

tionary used by tGPT consists of 20706 protein-coding genes.

The architecture of tGPT

Embedding layer transforms the input gene symbols into a real-value matrix that carries the information on

gene token embedding and position encoding. The gene token embedding was obtained via an embed-

ding layer (parameterized asWe) that maps the indices of input genes obtained from the gene symbol dic-

tionary to real-value space. The position encoding (parameterized asWpÞ carries information on the sorted

gene rankings. For an input sequence U = fG� k ;.G� 1g, where k is the width of context window, the

embedding layer injects position encoding onto gene token embedding as:

h0 = UWe +Wp
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Transformer decoder blocks applies multi-headed masked self-attention over the input embeddings fol-

lowed by position-wise feed-forward layers, then through a softmax layer. tGPT use a multi-layer of trans-

former decoder.21

hl = jðhl� 1Þci˛ ½1;n�

PðUÞ = 4
�
hnW

T
t

�
where j is the transformer decoder block and 4 is the softmax layer, andWt is the embedding matrix of the

lth decoder block.

Masked Self-Attention is a variant self-attention mechanism.48 Each attention head adopts the scale dot-

product attention to map a query and a set of key-value pairs to an output. The input consists of query and

key of dimension dk , and value of dimensions dv : Self-attention is calculated as dot products of the query

(Qi) with key (Ki ) divided each by
ffiffiffiffiffiffi
dk

p
and multiply with value (Vi) after sofmax transformed49:

SelfAttniðQi;Ki;ViÞ = softmax

�
QiKi

Tffiffiffiffiffi
dk

p
�
Vi

Masked self-attention is implemented with the aid of attention mask. It basically always scores the future

tokens as 0 so tGPT cannot pick from future. The multi-head self-attention is formulated as:

MultiHeadðQ;K ;VÞ = ConcatðSelfAttn1; :::; SelfAttnhÞWO

where WO ˛Rhdv3dmodel denotes the learned output projection matrix.

Position-wise FeedForward neural network is a layer with fully-connected feed-forward layer. This layer

consists of two linear transformations with a ReLu activation function in between:

FFNðxÞ = maxð0; xW1 + b1ÞW2 +b2

where W1 and W2 are weight matrices and b1 and b2 are the bias.

Training scheme

tGPT was pretrained with a batch-size of 64 for 100 epochs. We used Adam with b1 = 0.9, b2 = 0.95, weight

decay of 0.01 and a learning rate of 0.003. The learning rate is warmed up for four epochs, and then decays

to 0 following a cosine schedule.12 tGPT was trained with PyTorch (version 1.7.1) and transformers (version

4.10.0) on NVIDIA DGX A100 with 8 GPUs each with 40 Gb memory.

Clustering on feature representation from tGPT

We respectively extracted the feature representations from the embedding layer and 8 different trans-

former layers. The extracted features were used to construct K-Nearest Neighbors (KNN) graphs for sub-

sequent community detection by Leiden algorithm50 implemented in Scanpy (version 1.8.1). We performed

grid-search to identify optimal values of two parameters n_neighbors and resolution that are the most rele-

vant for clustering. Batch-correction was not applied in clustering. The value of n_neighbors examined was

ranged from 5 to 100 with step of 5. The value of resolution examined was ranged from 0.1 to 2 with step of

0.2. The uniform manifold approximation and projection (UMAP) visualization51 is used.

Features derived from self-attention

Entropy of the self-attention matrices for a given input sequence is calculated as52:

EntropyaðxiÞ = �
Xi

j = 1

ai;jðxÞlog
�
ai;jðxÞ

�
;

where a is the self-attention matrix and ai;j is the attention weight between the ith and jth tokens. We aver-

aged the entropy of all cells in a cluster to derive a cluster-level entropy.
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Head importance score53 is defined as the influence of input on head output. It is calculated via gradient

backpropagation, formulated as:

Ih = Ex�X

����SelfAttnhðxÞT vLðxÞ
vSelfAttnhðxÞ

����
where x is the input sequence and LðxÞ is the corresponding loss given the input. Ih is high score while

SelfAttnhðxÞ is liable to have a large effect on the model.

Token attribution score is defined as the norm of the learned token features (xi) extracted from tGPT, which

is defined as:

Attribution =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22 + :::+ x2N

2

q

Attention analysis in relation to signaling

We define an attention-based pathway signaling score in a similar way as54:

paðf Þ =
X
x˛X

Xx
i = 1

Xx
j = 1

f ði; jÞai;jðxÞ
,X

x˛X

Xx
i = 1

Xx
j = 1

ai;jðxÞ

where ai;j is the attention weight between the ith and jth gene. For a given gene signature, we set f ði; jÞ = 1 if

the ith gene or jth gene occurs in that gene set.

Diffusion pseudo-time maps construction

We constructed the diffusion pseudo-time maps using package Pegasus34 (v1.4.3), and the cell trajectory

was visualized with force-directed layout embedding (FLE) algorithm.55 We set d and nd to its default

values: d = 2.0 and nd =5,000.

Firstly, we used the features obtained from last transformer decoder blocks to construct affinity matrix of

cells Wn3n, and the top-k nearest neighbor cells were find by community detection algorithm56 and the

HNSW algorithm,57 and the formula of affinity matrix is define as:

Kðx; yÞ =

 
2sxsy

s2
x + s2

y

!1
2

exp

 
� kx � yk2

s2
x + s2

y

!
(Equation 1)

k 0ðx; yÞ =
Kðx; yÞ
qðxÞqðyÞ (Equation 2)

Wðx; yÞ =

�
k0ðx; yÞ; y ˛ nðxÞ=x˛ nðxÞ
0;otherwise

(Equation 3)

The Equation 1 represented the distance between cell-x and cell-y, sx is the x’s local kernel width, x and y

are features of last transformer decoder block for cell-x and cell-y. The affinity matrix W was calculated as

the density-normalized kernel according to Equation 3.

We then calculated the Markov chain transition matrix P and the symmetric transition matrix Q as the

formula:

D = diag

 X
y

Wðx; yÞ
!

P = D� 1W ;Q = D� 1
2WD� 1

2
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The symmetrical matrixQ can be decomposed as UAUT. LetJ = D� 1
2U. A family with parameter timescale

of t for approximated diffusion maps fJtgt˛NWfNg is defined as:

JtðxiÞ =

0
BBBBB@

lt1J1ðiÞ
lt2J2ðiÞ
«

ltn� 1Jn� 1ðiÞ

1
CCCCCA

Jt
0ðxiÞ =

Xt
t0 = 1

Jt0 ðxiÞ =

0
BBBBBBBBBB@

l1
1 � lt1
1 � l1

J1ðiÞ

l2
1 � lt2
1 � l2

J2ðiÞ

«

ln� 1
1 � ltn� 1

1 � ln� 1
Jn� 1ðiÞ

1
CCCCCCCCCCA

Benchmark methods

We also performed single-cell analysis using Scanpy (version 1.6.0), Pegasus (version 1.4.3) and scVI (version

0.13.0). Batch-correction was performed with MNN (version 1.8.0),28 Combat (version 1.8.0),58 Harmony

(version 0.1.6),29Seurat (version 3.1.5),30,31 Pegasus (version 1.4.3),34 Scanorama (version 1.7.1),33 DESC

(version 2.1.1),37 iMAP (version 1.0.0),36 scVI (version 0.13.0),8 scArches (version 1.7.0),35 BBKNN (version

1.7.1).32

Scanpy is a comprehensive toolkit for analyzing single-cell transcriptome. We first filtered out cells with

the number of expressing genes <200 or mitochondrial counts> 30%. We used the function scanpy.pp.

highly_variable_genes to selected highly variable genes by setting max_mean to 3 and min_mean to

0.0125, which are the default values. We then applied clustering pipeline and grid-search to perform sin-

gle-cell clustering on KNN graph. The UMAP is used for visualizing clustering result.

scVI is a deep generative model for mining the single-cell omics data. We filtered out cells with the number

of expressing genes <200 or mitochondrial counts> 30%, and selected HVGs with scanpy.pp.highly_

variable_genes by setting max_mean to 3 and min_mean to 0.0125. We used the default parameter of

scVI to extract the 10 latent features. These latent features were used to construct KNN graphs for commu-

nity detection by Leiden algorithm.50

Pegasus is complete single-cell analysis pipline that is efficient on large datasets. We used the recommen-

ded parameters: min_genes of 500, max_genes of 6000, and percent_mito of 10. We identified the robust

genes with the default percent_cells of 0.05. Single-cell clustering was performed on KNN graph followed

by Leiden algorithm50 for community detection.

QUANTIFICATION AND STATISTICAL ANALYSIS

Clustering and batch-effect metrics

We used Adjusted Rand Index (ARI), Normalized Mutual information (NMI) and Fowlkes-Mallows Index

(FMI) to measure clustering performance. We used the kBET acceptance rate38 as a measurement of

batch-effect. The clustering metrics of ARI, NMI and FMI were calculated with sklearn (version 0.21.2).

kBET acceptance rate is computed with Pegasus (version 1.4.3).

ARI is calculated based on the contingency table summarizing the truth labels and clustering, and the rows

and columns represent truth and clustering labels in the contingency table, respectively. The formula is as

follows:

ARI =

P
ij

�
nij

2

�
�
	P

i

�
ai
2

�P
j

�
aj
2

�
��
n
2

�
1
2

	P
i

�
ai
2

�
+
P

j

�
aj
2

�

�
	P

i

�
ai
2

�P
j

�
aj
2

�
��
n
2

�
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where nij denoted the numbers of cell in common between clustering labels and truth labels, ai the sum of

ith row and aj the sum of jth column of the contingency table.

NMI is also used tomeasure the similarity between the clustering labels and actual labels. We assumed that

the clustering labels and actual labels of N cells are U and V, and the entropy of U and V is as the following

formula:

HðUÞ = �
XjUj
i = 1

PðiÞlogðPðiÞÞ

HðVÞ = �
XjV j
j = 1

P 0ðjÞlogðP 0ðjÞÞ

where pðiÞ = jUij=N is the probability that a cell picked at random from U falls into Ui, p
0ðjÞ = ��Vj

��=N is the

probability that a cell picked at random from V falls into Vj . We then calculated the mutual information (MI)

between U and V, and normalized the mutual information:

MIðU;VÞ =
XjUj
i = 1

XjV j
j = 1

Pði; jÞlog
�

Pði; jÞ
PðiÞP 0ðjÞ

�

NMIðU;VÞ =
MIðU;VÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðUÞHðVÞp

where pði; jÞ = ��Ui XVj

��=N is the probability that a cell picked at random falls into classes Ui and Vj.

Fowlkes-Mallows Index (FMI) is used to measure the consistency between clustering results and real cate-

gory, and the range of index is from 0 to 1. The FMI metric is denfined as the geometric mean between of

the precision and recall:

FMI =
TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞp

where TP is true positive, FP false positive, FN false negiative.

kBET acceptance rate is a measurement of batch effect. We assumed that the dataset of cells with batches

of m, and there are nj cells in batch j. The batch mixing frequency denotes as:

f = ðf1;/; fmÞ
where fj =

nj
N. Then, we calculated the number of neighbors of cell-i belonging to batch j is nkji . Its c

2 test

statistic and p-value with degrees of (m-1) are defined as follows:

kki =
Xm
j = 1

�
nk
ji � fj$k

2
fj$k

pk
i = 1 � Fm� 1

�
kk
i


where Fm� 1ðxÞ represents the cumulated density function. The kBET acceptance rate is defined as the per-

centage of cells that accept the null hypothesis at significance level a as follows:

kBET � rate =

PN
i = 1I

�
pk
i Ra

�
N

3100%;

I(x) is the indicator function where I(x) = 1 if x> 0 otherwise I(x) = 0. We used Pegasus (v1.4.3) to calculate the

kBET acceptance rate by setting K and a to 5 and 0.01, respectively.
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Bilingual Evaluation Understudy (BLEU) is an algorithm for evaluating match variable length phrases be-

tween output and the reference sequence.59 The basic metric requires the calculation of a brevity penalty

PB as:

PB =

�
1; c > r
eð1� r=cÞ; c% r

Where r is the length of the reference sequence, and the length of predicted sentence is c.

BLEU score is calculated as:

BLEU = PB exp

 XN
n = 0

wn log pn

!

wn are the positive weights summing to one. pn is the n-gram precision and it is calculated using n-grames

with a maximum length of N.

ADDITIONAL RESOURCES

This study did not generate additional data.

ll
OPEN ACCESS

iScience 26, 106536, May 19, 2023 19

iScience
Article


	ISCI106536_proof_v26i5.pdf
	Generative pretraining from large-scale transcriptomes for single-cell deciphering
	Introduction
	Results
	An overview of tGPT and its downstream applications
	Quantitative evaluations of tGPT on clustering
	Distinct features learned by tGPT are connected to cell types
	Inference of developmental lineage
	Clinical significance of tGPT in bulk sequencing sample

	Discussion
	Conclusion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Human Cell Atlas Census of Immune Cells (HCA)
	Human cell Landscape (HCL)
	Tabula Mursi
	The Cancer Genome Atlas (TCGA)
	Genotype-Tissue Expression Project (GTEx)

	Method details
	Input preprocessing
	The architecture of tGPT
	Training scheme
	Clustering on feature representation from tGPT
	Features derived from self-attention
	Attention analysis in relation to signaling
	Diffusion pseudo-time maps construction
	Benchmark methods

	Quantification and statistical analysis
	Clustering and batch-effect metrics

	Additional resources




