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Abstract: Porphyromonas gingivalis is an oral human pathogen. The bacterium destroys dental tissue
and is a serious health problem worldwide. Experimental data and bioinformatic analysis revealed
that the pathogen produces three types of lipopolysaccharides (LPS): normal (O-type), anionic
(A-type), and capsular (K-type). The enzymes involved in the production of all three types of
lipopolysaccharide have been largely identified for the first two and partially for the third type. In
the current work, we use bioinformatics tools to predict biosynthetic pathways for the production
of the normal (O-type) lipopolysaccharide in the W50 strain Porphyromonas gingivalis and compare
the pathway with other putative pathways in fully sequenced and completed genomes of other
pathogenic strains. Selected enzymes from the pathway have been modeled and putative structures
are presented. The pathway for the A-type antigen could not be predicted at this time due to two
mutually exclusive structures proposed in the literature. The pathway for K-type antigen biosynthesis
could not be predicted either due to the lack of structural data for the antigen. However, pathways
for the synthesis of lipid A, its core components, and the O-type antigen ligase reaction have been
proposed based on a combination of experimental data and bioinformatic analyses. The predicted
pathways are compared with known pathways in other systems and discussed. It is the first report in
the literature showing, in detail, predicted pathways for the synthesis of selected LPS components
for the model W50 strain of P. gingivalis.

Keywords: Porphyromonas gingivalis; structure prediction; LPS biosynthesis; O-type antigen

1. Introduction

Porphyromonas gingivalis is a common human pathogen of the oral cavity. The bac-
terium, which is an obligate anaerobe, is responsible for the destruction of dental tissue,
leading to periodontitis [1]. As the pathogen is difficult to grow under anaerobic condi-
tions, research on the pathology and diseases caused by it is complicated. However, with
the recent advances in genome sequencing and systems biology, it has been possible to
elucidate a large part of its metabolic pathways [2]. The recently published corrected DNA
sequence [3] of the original data [4] on P. gingivalis and the many sequences of different
strains enabled a comparison of its genome and metabolome with those of other systems,
specifically the well-studied Escherichia coli [5,6]. The analysis identified multiple targets
for intervention and potential strategies for prophylactics [7]. The last aspect of the analysis
is of importance as it is more cost-efficient to prevent periodontitis than to treat it.

Systems biology analysis of the metabolic network has identified conserved pathways
used in lipopolysaccharide (LPS) synthesis by P. gingivalis [2]. The LPS component is
a common part of many pathogens, and LPS fragments are used as adjuvants in many
commercial vaccines. LPS could be a potential target of a vaccine against P. gingivalis [8,9] as
it is important for the infection [10]. Currently, details of the metabolic pathways involved
in LPS biosynthesis are not sufficiently known at the experimental level.
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Two types of polysaccharides, the O-type (normal) and the anionic-type (A-type) car-
bohydrate, have been reported from all P. gingivalis strains [11,12]. A third polysaccharide
(K-type, capsular) has also been identified in some strains [13] (Table 1).

Table 1. The different polysaccharides produced by the Porphyromonas gingivalis W50 strain.

O-Type Antigen A-Type Antigen K-Type Antigen

Biological
function

Protection in a hostile
environment, interaction

with the environment,
structural support to the cell

Protection in a
hostile environment

Interaction with the
environment

Structural
information Fully described Two incompatible

proposals Unknown

Genomic
information Fully described Partially described

Locus sequenced,
function of

individual genes
unknown

Analysis of multiple P. gingivalis genomes showed that the pathogen secretes at least
two proteases, the Arg-type gingipain and the Lys-type gingipain [14]. The proteins
are similar and used by the bacterium to cleave host proteins, including bone tissue of
teeth [15], leading to the destruction of periodontal tissue [16]. The gingipain protein
sequences also contain adhesin motives, potentially responsible for the recognition of the
host’s cell surfaces and binding to them [17]. Research by other groups identified a type IX
secretion system (T9SS) responsible for gingipain secretion [18,19]. Blocking this system
could be an indirect strategy for the prevention of periodontitis caused by P. gingivalis [20].
Following the translocation of the cargo proteins by the T9SS system, they are anchored
to the cell surface via the A-type LPS [1]. The C-terminus of each cargo protein is amide-
bonded to 3-acetamido-2,3-dideoxy-2-(seryl)amino-α-D-glucuronamide, which serves as a
linking sugar [21], and the A-type LPS is attached by the PorZ protein [2].

The synthesis of the O-type and A-type antigens in P. gingivalis has not been sufficiently
studied experimentally. Therefore, comparisons with similar systems in other pathogens are
frequently used to identify associated operons and to assign putative roles to genes [22–24].
Multiple bioinformatic analyses of available genomes from P. gingivalis have been used to
identify putative glycosyltransferases.

To simplify the analysis of the genomes, established gene names were used when there
was a significant similarity to genes with a known name. For genes without established
names, the genes were referred to as pgnXXXX (ATCC33277 strain), pgXXXX (W83 strain),
or simply as HMPREFYYYY_XXXX when the assignment of genes was carried out by the
HMMER search algorithm.

Based on similarities with other systems, the A-type antigen genes were identified
as gtfC [21,25], vimF [25,26], gtfE [25], gtfB [27], gtfF [25], and wbaP [28]; the O-type anti-
gen genes were identified as wbaQ [28], gtfD [25,29], gtfE [25], and gtfB [25]; and the
K-type polysaccharide genes were identified as pgn0223/pg0106 [28,30], none/pg0110 [13],
pgn0232/pg0118 [13,25], and pgn0233/pg0119 [13,25] in P. gingivalis strains ATCC33277 and
W83, respectively. Lipid A-core genes were identified as pgn0242 (gtfG)/pg0129 [22,31] and
pgn1255 (rfa)/pg1155 [32] in strains ATCC33277 and W83, respectively. The analysis also
identified multiple glycosyltransferases with unknown functions [25,28,33–35].

To help in the prediction of biosynthetic pathways and the genes responsible for each
step of LPS biosynthesis, the P. gingivalis W50 model genome was analyzed using the
Pathway Tools software [36]. The analysis identified the genes involved in the biosynthesis
of the O-type antigen and other lipid core components needed for LPS biosynthesis. Un-
fortunately, the K-type antigen and A-type antigen biosynthetic pathways could not be
predicted—the former due to the lack of structural data and the latter due to the incompati-
ble structural data presented by different groups. The work presented here is the first in the
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literature reporting a detailed assignment of genes and reactions for the P. gingivalis O-type
antigen biosynthetic pathway and its core components. The implications are discussed for
general genome-wide metabolic pathway prediction.

2. Results
2.1. Pathway/Genome Database Building

Pathway/Genome Databases (PGDBs) were created using the Pathway Tools software
as part of the BioCyc portal. PGDBs are generated computationally by comparison of
the genome annotation to manually curated data in the MetaCyc database. This type of
database integrates the genomic data of an organism with its predicted metabolic network,
including full reaction data, Enzyme Commission (EC) numbers [37], and metabolic path-
ways. PGDBs have been generated for the strains ATCC33277, F0185, F0566, F0568, F0569,
F0570, TDC60, W4087, W50, and W83. Pathways specific for P. gingivalis LPS biosynthesis
were curated manually using genomic data from strain W50.

2.2. LPS Biosynthetic Pathway Modeling

This part was performed for the P. gingivalis W50 strain as the most characterized
in the literature in regards to the carbohydrate biosynthetic pathways. Details for the
pathways in other strains were inferred from the reconstruction for the W50 strain based
on putative orthologs.

2.2.1. O-Type Antigen Biosynthetic Pathway

Biosynthetic pathways for O-type antigen production in bacteria can be divided into
three major types, depending on the mechanism of O-type antigen assembly and the
participating enzymes: Wzx/Wzy-dependent pathways, ATP-binding cassette transporters
(ABC transporters)-dependent pathways, and synthase-dependent pathways, out of which
the Wzx/Wzy-dependent pathways are by far the most common [3]. Analysis of the
genome of the W50 strain and comparison with known biosynthetic pathways identified
enzymes from the Wzx/Wzy-dependent pathways as present in the P. gingivalis W50
genome. Key enzymes of the ABC transporter-dependent pathways and the synthase-
dependent pathways were not identified in the P. gingivalis W50 genome, suggesting that
the O-type antigen in this organism is synthesized via a Wzx/Wzy-dependent pathway.

The structure of the O-type antigen repeat structure was reported in 2001 as ->3)-α-D-
Gal-(1->6)-α-D-Glu-(1->4)-α -L-Rha-(1->3)-β-D-Gal-(1-> [4]. Based on the structure, the
first step in the O-type antigen biosynthesis pathway of P. gingivalis is the transfer of a
galactosyl residue from UDP-Galp to di-trans,octa-cis-undecaprenylphosphate (EC 2.7.8.6)
(Figure 1, top left corner).

This reaction is catalyzed in Salmonella species by the WbaP enzyme, which has been
well characterized. P. gingivalis has two homologs of the Salmonella wbaP gene, which were
named wbaP and wbaQ. Studies with different mutants suggested that WbaQ catalyzes
this reaction during O-type antigen biosynthesis, while WbaP catalyzes the same reaction
during A-type antigen biosynthesis [5,6].

The second predicted enzyme is dTDP-Rha:α-D-Gal-diphosphoundecaprenol α-1,3-
rhamnosyltransferase. This activity is catalyzed in Salmonella species by the WbaN enzyme.
The P. gingivalis enzyme was found to be encoded by the gtfB gene, despite little sequence
similarity to wbaN [6].

The third residue, proposed to be glucose by Paramonov et al. [4], is transferred by the
enzyme UDP-glucose:α-L-Rha-(1->3)-α-D-Gal-PP-Und α-(1,4)-glucosyltransferase. Even
though Shoji et al. [6] were not certain about the identity of this residue, they identified the
gtfE gene as encoding the transferase.

The last residue in the repeat unit proposed by Paramonov et al. [7] was galactose,
which is transferred by a UDP-galactose:α-D-Glu-(1->4)-α-L-Rha-(1->3)-α-D-Gal-PP-Und
α-(1,6)-galactosyltransferase. In agreement with the proposed structure, Shoji et al. pro-
posed that the gtfB gene encodes a galactosyltransferase [6].
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Figure 1. Biosynthetic pathway for O-type antigen of P. gingivalis. The pathway shows the synthesis of the tetrasaccharide 
repeat unit of the O-type antigen in the cytoplasm, its export to the periplasm, and its polymerization into the O-type 
antigen polysaccharide chain. Reconstruction and assignments were performed as described in the Materials and Methods 
section. The pathway enzymes (green) and genes (purple) are shown on the right, while EC numbers for the enzymes 
(blue) are shown on the left. The pathway’s intermediates are described by Glyco CT icons, with abbreviated names (red) 
listed underneath. Abbreviations used: Rha—rhamnose; Glc—glucose; Gal—galactose; PP-Und—di-trans,octa-cis-un-
decaprenyl diphosphate. 
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Figure 1. Biosynthetic pathway for O-type antigen of P. gingivalis. The pathway shows the synthesis of the tetrasaccharide
repeat unit of the O-type antigen in the cytoplasm, its export to the periplasm, and its polymerization into the O-type antigen
polysaccharide chain. Reconstruction and assignments were performed as described in the Materials and Methods section. The
pathway enzymes (green) and genes (purple) are shown on the right, while EC numbers for the enzymes (blue) are shown
on the left. The pathway’s intermediates are described by Glyco CT icons, with abbreviated names (red) listed underneath.
Abbreviations used: Rha—rhamnose; Glc—glucose; Gal—galactose; PP-Und—di-trans,octa-cis-undecaprenyl diphosphate.

Once completed, the O-type antigen repeat unit, still attached to its lipid anchor, is
flipped across the inner membrane into the periplasm by the flippase enzyme, Wzx, and
multiple units are polymerized into the O-type antigen by the Wzy polymerase. The gene
encoding the flippase was identified as the HMPREF1322_RS08880 gene, and the gene
encoding the polymerase was identified as the HMPREF1322_RS01430 gene. Transferring
of the polymerized antigen from its membrane anchor to the lipid A core is performed by
the O antigen ligase encoded by the HMPREF1322_RS00350 gene (waaL). The assignment
agrees with the gene functions identified for the orthologs from the P. gingivalis strain
ATCC33277 [5].

2.2.2. Lipid A Biosynthetic Pathway

Biosynthesis of the lipid A region of LPS in P. gingivalis is known to produce a variety
of structures. Remarkably, some of the structures act as agonists of the Toll-like receptor 2
(TLR2) and Toll-like receptor 4 (TLR4) human receptors, some are neutral, and some act as
antagonists. The organism can control the distribution of the different forms in response
to environmental clues such as temperature and the presence of hemin, an indicator for
ulcerated tissue [14–19].
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To simplify viewing these rather complicated biosynthetic pathways, we divided
the lipid A/core biosynthesis pathway into shorter segments. The first segment is the
biosynthesis of lipid IVA. This lipid A precursor is N- and O-acylated by four fatty acid
molecules. Analysis of the W50 strain genome identified the enzymes involved in lipid
IVA biosynthesis (Figure 2).Pathogens 2021, 10, x FOR PEER REVIEW 6 of 21 

 

 

 

Figure 2. Biosynthetic pathway for lipid IVA synthesis in the P. gingivalis W50 strain. The reactions are shown with detailed
structures of substrates and products. Reconstruction and assignments were performed as described in the Materials and
Methods section. The pathway enzymes (green) and genes (purple) are shown on the right, while EC numbers for the
enzymes (blue) are shown on the left. Chemical compound names (red) are shown below the structures.
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The enzymes catalyzing the O- and N-acylation are LpxA (gene HMPREF1322_RS03565)
and LpxD (gene HMPREF1322_RS03555), respectively [20]. Other enzymes involved are a
bifunctional UDP-3-O-acyl-N-acetylglucosamine deacetylase/3-hydroxyacyl-[acyl-carrier-
protein] dehydratase encoded by lpxC (HMPREF1322_RS03560), a diphosphatase encoded
by lpxH (HMPREF1322_RS01980), and a kinase encoded by lpxK (HMPREF1322_RS06260).

The next step in the pathway is the attachment of 3-deoxy-D-manno-octulosonate
(Kdo) residues to lipid IVA. Many species, such as E. coli, add two Kdo sugars with a single
Kdo bifunctional transferase (WaaA), whereas others, including members of Haemophilus,
Shewanella, and Bacteroides vulgatus, add a single Kdo that is then phosphorylated by a
separate enzyme at its 4-OH position, the same site at which the second Kdo residue
is attached in E. coli [8,9]. While the exact structure of the Kdo region in P. gingivalis
lipid A has not been reported in detail, it was reported that it is not phosphorylated
at position 4 [10]. Taking this into account, along with the similarity of the waaA gene
(HMPREF1322_RS06730) to the E. coli gene, we decided to include two Kdo residues in the
structure, but it is certainly possible that only a single Kdo residue is present (Figure 3).

The synthesis of (Kdo)2-lipid A from (Kdo)2-lipid IVA in P. gingivalis is described in
Figure S1. The initial reaction, catalyzed by lpxL (EC 2.3.1.241, HMPREF1322_RS07570), re-
sults in the formation of a penta-acylated, bisphosphorylated form [11]. However, the com-
bined action of two lipid A 4′-phosphatases (lpxF, HMPREF1322_RS06645, and lptO, HM-
PREF1322_RS06040) [15,17], a lipid A 1-phosphatase (lpxE, HMPREF1322_RS02005) [15,38],
and a lipid A deacylase (PGN_1123, HMPREF1322_RS09020) [18] results in the formation of
many different forms of (Kdo)2-lipid A including tri-acylated (3- and 3′-deacylated) [13,22],
tetra-acylated (3-deacetylated) [22,23], tetra-acylated (3′-deacetylated) [15,22–24], penta-
acylated (bisphosphorylated) [9,21,22,24], penta-acylated (4′-dephosphorylated) [9,21,22,24],
penta-acylated (1-dephosphorylated) [15], and penta-acylated (non-phosphorylated) [17,24]
varieties. For simplicity, the pathway shown in Figure S1 shows the formation of only five
of these forms.

The synthesis of capped core I-lipid A (penta-acylated) from (Kdo)2-lipid A (penta-
acylated, bis-phosphorylated) is shown in Figure S2. The penta-acylated substrate is one
of the versions made by the pathogen described above and used for the production of
other variants. The core pathway agrees with the experimental data of Paramonov et al. [7],
showing a glycerol molecule attached to a Kdo residue via a phosphoester and an unusual
α-D-allosamine sugar and a tetramannose region attached to the other carbons of the
glycerol core (Figure 1 in [7] and middle of Figure S2). While this structure forms the
basic core region, the final structure is capped by an additional tetramannose chain that is
required for the subsequent attachment of the O-type antigen. Currently, only a few of the
enzymes involved in this step can be assigned to genes [7].

The final reaction of attachment of the penta-acylated capped core I-lipid A variant
to the O-type antigen by the waaL ligase is shown in Figure S3. The lipopolysaccharide
typically has 3–5 repeat units of the polymerized O-type antigen core and the option for
the three repeat units transfer is shown.

2.2.3. K-Type Antigen Biosynthetic Pathway

Analysis of the K-type antigen biosynthetic pathway in the P. gingivalis W50 strain is
hampered by the lack of structural data for the K-type antigen, despite having the operon
identified in the W83 and 381 strains [25]. Some of the steps in the W50 strain could
be identified based on the predicted function of proteins, but the rest of the pathway is
unknown. Putative functional assignments of proteins from the W50 operon corresponding
to the genes identified in the W83 and 381 strains are given in Table 2.
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Table 2. Putative genes of K-type antigen biosynthetic operon in the P. gingivalis W50 strain.

Gene a Protein Function b

HMPREF1322_0447 undecaprenyl/decaprenyl-phosphate α-N-acetylglucosaminyl
1-phosphate transferase

HMPREF1322_0448 UDP-N-acetyl-D-mannosamine dehydrogenase

HMPREF1322_0449 O-antigen ligase domain-containing protein
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Table 2. Cont.

Gene a Protein Function b

HMPREF1322_0450 glycosyltransferase family 1 protein

HMPREF1322_0451 hypothetical protein

HMPREF1322_0454 aminoglycoside 3-N-acetyltransferase

HMPREF1322_0455 hypothetical protein

HMPREF1322_RS09085 serine acetyltransferase

HMPREF1322_0456 hypothetical protein

HMPREF1322_0457 hypothetical protein

HMPREF1322_0458 glycosyltransferase family 2 protein

HMPREF1322_0459 glycosyltransferase

HMPREF1322_0460 UDP-N-acetylglucosamine 2-epimerase (non-hydrolyzing)
a Gene assignment was based on the PG0106->PG0120 operon correspondence between the W83 and W50 strains
of P. gingivalis. Pseudogenes were omitted from the list. b Protein function assignment is based on the similarity
to proteins with a known function as determined by the Pathway Tools software.

The assignment of genes in the W50 strain agrees with the data published by other
groups [5,6,25].

2.2.4. A-Type Antigen Biosynthetic Pathway

The biosynthesis of the A-type antigen in P. gingivalis has been reported by two
different groups. In the work of Shoji et al. [6], the A-type antigen is based on a [unknown
sugar-Rha-Glc-Gal] repeat unit (Figure 4B), with at least two enzymes, GtfE and GtfB,
common for the O-type antigen synthesis, so that the last two residues added are the same
as for the O-type antigen (Figure 1).
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According to that study, the addition of a side branch involves at least two additional
enzymes: VimF and GtfF (gene pgn1668). However, as the final structure of the A-type
antigen was not determined by this group, the assignment of specific functions to these
enzymes was not possible.

In the model of Paramonov et al. [7], the A-type antigen repeat unit consists of a back-
bone of three D-Manp units connected via α-(1->6) bonds, with three different types of side
branches made of D-Manp units linked via α-(1->2) linkages (a single mannosyl residue, a
dimannosyl side-chain connected directly to the backbone, and a dimannosyl side-chain
connected via a phosphate ester). According to this model, the A-type antigen is attached
to the polysaccharide core via an α-(1->4) linkage from the reducing-end mannosyl residue
of the backbone to a non-terminal mannosyl residue in the core’s cap structure (Figure 4A).
The evidence was based on a detailed structural analysis of a purified lipopolysaccharide
by a combination of LC-MS/MS, NMR, and other techniques. Structurally, the models of
the A-type antigen as reported by Shoji and Paramonov are incompatible. Reconstruction
of a biosynthetic pathway for the A-type antigen production in P. gingivalis is, therefore,
impossible at present.

2.3. Analysis of LPS Biosynthetic Pathways in Other P. gingivalis Strains

Analysis of orthologs was performed across 10 strains of P. gingivalis downloaded
from the RefSeq database [21]. The 10 strains were W50 (NCBI Tax ID X), F0185 (NCBI
Tax ID 1321821), F0566 (NCBI Tax ID 1321822), F0568 (NCBI Tax ID 1227269), F0569 (NCBI
Tax ID 1227270), F0570 (NCBI Tax ID 1227271), TDC60 (NCBI Tax ID 1030843), W4087
(NCBI Tax ID 1321823), W83 (NCBI Tax ID 242619), and ATCC33277 (NCBI Tax ID 431947).
The genome of strain W50 has been manually annotated for the main O-type antigen
biosynthesis gene cluster, which includes the genes wzy (O-antigen polymerase), gtfE
and gtfD (glycosyltransferases involved in O-type antigen biosynthesis), wbpE, wbpS (an
aminotransferase and amidotransferase involved in the biosynthesis of 3-acetamido-2,3-
dideoxy-2-(seryl)amino-α-D-glucuronamide, which serves to link A-type LPS to proteins),
porS (a membrane protein similar to the wzx flippase with an undefined role in O-type
antigen biosynthesis), and wbaQ (undecaprenyl-phosphate galactose phosphotransferase,
the first enzyme in O-type antigen biosynthesis). Comparison of this cluster across the 10
genomes shows that it is well conserved among all organisms (Figure 5).

Another region in the genome contains the three genes vimA, vimE, and vimF. The vimA
and vimE genes encode additional enzymes that participate in 3-acetamido-2,3-dideoxy-2-
(seryl)amino-α-D-glucuronamide biosynthesis [26], while VimF catalyzes an essential but
undefined activity during A-type antigen biosynthesis [27] (Figure 6).

2.4. Homology Modeling of Selected Components from the LPS Biosynthetic Pathway

The proteins from the LPS biosynthetic pathways have, generally, either little resem-
blance to the existing structures, or the similarity is too low to have a reliable homology
model built. Part of the problem is the presence of transmembrane domains, either direct or
based on similarities to orthologous enzymes from other bacteria. In some cases, however,
the structures could be predicted and putative substrates could be docked.

2.4.1. O-Antigen Biosynthetic Pathway

The first step in O-type antigen biosynthesis in P. gingivalis, transfer of an activated
sugar residue to a phosphate group of undecaprenyl moiety, is very similar to the steps
performed by the Salmonella enterica WbaP and the Campylobacter jejuni PglC enzymes [28].
The S. enterica enzyme N-terminal domain with four transmembrane regions is needed
for its catalytic activity [29]. However, the catalytic core is located at the C-terminal
domain [29,30] and has a 37% identity to the catalytic domain of C. jejuni PglC protein (W.
Swietnicki, unpublished results). Phylogenetically, the small catalytic core is conserved
in many bacterial proteins, despite differences in topologies and overall low sequence
identities of proteins [31].
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In P. gingivalis, the corresponding enzyme is WbaQ and it is encoded by the pgn1233
gene in the ATCC33277 strain [6]. The protein is responsible for the addition of galactose
to the di-trans,octa-cis-undecaprenyl phosphate (Figure 1, top left corner) and has a 37%
overall identity to the C. jejuni PglC phosphoglycosyltransferase (PDB code: 5W7L). A
homology model of a monomer was constructed and the fragment a.a. 15–200 could be
fitted into the existing structure (Figure 7).
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The modeled protein had a very good overlap of backbone C-a atoms onto the template
and the putative catalytic residues could be easily identified as D92 (Figure 7B) and E93
(Figure 7A,B). The enzyme will most likely need Mg+2 for catalytic activity, similar to the
original PglC phosphoglycosyltransferase. The template enzyme is a membrane protein
with a helix-turn-helix motive partially embedded in the membranes, the insertion needed
for its catalytic activity [32]. Likely, the WbaQ enzyme will also be a membrane protein,
potentially with a ping-pong (covalent intermediate) mechanism proposed for the PglC
enzyme [32].

2.4.2. K Antigen Biosynthetic Pathway

The gene cluster encoding K antigen biosynthesis has been reported in strain W83 [25].
Among the genes included in the cluster are genes encoding an EC 2.7.8.33, UDP-N-
acetylglucosamine-undecaprenyl-phosphate N-acetylglucosaminephosphotransferase
(PG0106), EC 5.1.3.14, UDP-N-acetylglucosamine 2-epimerase (non-hydrolyzing) (PG0120),
four predicted glycosyltransferases (PG0110, PG0111, PG0118, and PG0119), two acetyl-
transferases (PG0113 and PG0115), and a flippase (PG0117). Since the structure of the
antigen is not known, it is not possible to assign specific functions to most of the enzymes,
except for EC 2.7.8.33 and EC 5.1.3.14.

Unlike the O-type antigen gene cluster, the K-type antigen gene cluster is not well
conserved among P. gingivalis strains (Figure 8).
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All clusters have the two starting genes (PG0106 and PG0108) in addition to the
four terminal genes (PG0116–PG0120). Based on the assigned function, only the UDP-
N-acetylglucosamine-undecaprenyl-phosphate N-acetylglucosaminephosphotransferase
(PG0106), flippase (PG0117), glycosyltransferases (PG0118 and PG0119), and UDP-N-
acetylglucosamine 2-epimerase (non-hydrolyzing) (PG0120) enzymes are conserved in all
analyzed strains. The first gene (PG0106) may be involved in the attachment of the first
sugar to the lipid anchor, but the hypothesis lacks experimental data. The presence of
an additional flippase (PG0117) suggests that P. gingivalis may have a separate enzyme
for flipping the K-type antigen chain across membranes in addition to the identified O-
type antigen flippase porS (Figure 1). Based on the amino acid sequence similarities, the
specificities of those enzymes are most likely different.

The product of EC 5.1.3.14 is UDP-N-acetyl-D-mannosamine, an amino sugar that is
found in the capsule polysaccharides of many bacterial species. The protein is encoded
by the HMPREF1322_0460 gene in the W50 strain (Table 2) and has over 60% identity to
the E. coli UDP-N-acetylglucosamine 2-epimerase (PDB code: 1F6D). The putative model
of the docked substrate, UDP-N-acetylglucosamine, in the enzyme active site is shown in
Figure 9.

Analysis of the model showed that the main active site interactions (Figure 9A)
agree with the structural data for the E. coli enzyme. Residue R11, corresponding to the
residue R10 in the bacterial enzyme [33], is the closest base to the C-2 atom of the N-
acetylglucosamine ring in the model and could be the catalytic residue responsible for the
first step of epimerase anti elimination observed in bacterial enzymes [34,35]. The distance,
however, is 6 Å and the domain would have to rotate, as observed in the original template
(PDB code: 1F6D), for the R11 side-chain to close the distance. The model structure has the
conserved G170 residue critical for the domain rotation.
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3. Discussion

Lipopolysaccharide biosynthetic pathways have been studied for a long time in E. coli,
and the basic pathways, together with the O-type antigen structure and enzymes involved
in its synthesis, are known [39]. As DNA sequences from many organisms have become
known, this information was used to predict similar pathways in other systems and to
construct genomic metabolic models [40]. The models, however, lack detailed information,
and since pathways vary among different organisms, using generic templates such as
KEGG (https://www.genome.jp/kegg/) pathways leads to problems with reconstruction.
Therefore, individual approaches that include a combination of experimental data and
pathway prediction are preferred. Such a combination allows for the identification of
variants and frequently explains many of the species-specific observations. In the case of
Porphyromonas gingivalis, the information was used to elucidate lipopolysaccharide syn-
thesis pathways and connect them to the enzymes identified by bioinformatic analysis
and experimental approaches (summary in [6]). In the current work, we have identified
complete pathways for the biosynthesis of O-type antigen using public information and
computational analysis of whole genomes with the help of the Pathway Tools software.
The combination of computational algorithms and manual curation resulted in the identi-
fication of genes, proteins, and metabolites for the model strain Porphyromonas gingivalis
W50. The analysis was performed for the O-type antigen pathways in detail (Figure 1),
including precursors used in the synthesis of core structures of LPS (Figures 2 and 3). The
proposed pathways are compatible with experimental data. A similar analysis for two
other antigens, A-type and K-type, could not be performed due to conflicting experimental
data for the former and the lack of structural data for the latter. The putative models
previously proposed for the A-type antigen structure have been presented, showing their
incompatibility (Figure 4A vs. Figure 4B).

A comparison with putative orthologs of other strains showed that the O-type antigen
biosynthetic pathway is strictly conserved in the analyzed genomes (Figure 5). In strains
W50, TDC60, W83, and ATCC33277, however, there is an extra insertion (gene pgn1241
in the last strain). The corresponding protein does not have any similarity to the known

https://www.genome.jp/kegg/
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conserved domains in the Conserved Domain Database (CDD) (https://www.ncbi.nlm.
nih.gov/Structure/cdd/cdd.shtml) and its function is unknown.

A similar alignment of vimA, vimF, and vimE genes (Figure 6) showed that this genetic
region is also strictly conserved and that there are no insertions in the analyzed strains.
Since the enzymes participate in the cargo modification by the type IX secretion system or
O-type antigen biosynthesis [26,27], the strict conservation may be related to the biological
function of their products in the pathogenesis of P. gingivalis.

Analysis of putative K-type antigen biosynthetic pathways (Figure 8) showed that
the possible starting point of the biosynthetic pathway (PG0106 in Figure 8) is strictly
conserved in all analyzed strains, in addition to five other genes. The pathway encodes an
additional flippase (PG0117, Figure 8), suggesting independence from the O-type antigen
biosynthetic pathway (wzx in Figure 1). Based on the predicted enzyme functions, the
K-type antigen may contain mannose, probably derivatized, as one of the sugar residues.
The data would have to be confirmed experimentally.

Analysis of proteins for the O-type antigen biosynthetic pathway also identified
a putative structure and the mechanism of reaction for the enzyme responsible for the
addition of the first carbohydrate to the growing chain, the WbaQ protein. The structural
information is important as the addition of other carbohydrates is most likely guided by
the identity of the first residue.

This is the first report in the literature showing detailed structural information for the
LPS structures being built in a human pathogen. The methodology presented here could be
used to reconstruct structures for other bacterial systems and potentially speed up vaccine
development significantly.

4. Materials and Methods
4.1. Genomes

The genomic data were obtained from the NCBI site for the P. gingivalis W50, SJD12,
SJD5, W83, AJW4, JCVI SC001, SJD2, TDC60, SJD11, SJD4, F0569, F0568, F0570, F0566, 381,
A7A1-28, F0185, and W4047 strains.

4.2. LPS Biosynthetic Pathways Reconstruction

Pathway/Genome Databases (PGDBs) were constructed for several strains of P. gin-
givalis using the Pathway Tools software [41] and included as part of the BioCyc web
portal [42]. During that process, the annotated genomes, obtained from the Reference
Sequence (RefSeq) database at NCBI [21], were compared to pathway and enzyme infor-
mation stored in the MetaCyc database [43], and the metabolic networks of the organisms
were inferred using the PathoLogic component of the Pathway Tools software [36]. The
structures of the different components of the P. gingivalis O-type LPS (lipid A, core, O-type
antigen) were reconstructed from the available data in the literature [4,17,21,22,24,43]. Path-
ways delineating the biosynthesis of these components were curated manually based on
similar pathways characterized from other organisms and curated previously into MetaCyc.
Genes were assigned to the reactions by several methods: some gene assignments were
predicted by the Pathway Tools software based on genome annotation or the Pathway
Hole Filler tool [44]. Other genes were assigned manually based on experimental evi-
dence [5–7,11,15,17,18,38,45,46]. The remaining genes were identified by manual BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) searches using characterized genes from other
organisms against the BioCyc P. gingivalis W50 database.

4.3. Ortholog Computation

The BioCyc project computes orthologs between two genomes using bidirectional
DIAMOND comparisons across their proteomes [47]. Two proteins are inferred to be
orthologs if they are the best bi-directional hits with both E-values less than 0.001. The best
hit(s) of protein A in proteome PB is defined by finding the minimal E-value among all
hits in proteome PB in the DIAMOND output. There could be hits to multiple proteins

https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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in proteome PB that share that same minimal E-value. In other words, ties are possible,
as in the case of exact gene duplications. All ties are included in the final set of orthologs
used by BioCyc. Thus, protein A could have multiple orthologs in PB, for example, if
multiple proteins B1, B2, etc., exist in PB and have the same regions aligned against protein
A. BioCyc does not calculate paralogs.

4.4. Homology Modeling of WbaQ Enzyme

The protein sequence for the P. gingivalis W50 strain was obtained from the NCBI
site and used for homology modeling with the Modeler module within the Chimera
software [48], with the PglC (PDB code: 5W7L) structure as the template. The model was
optimized in Schrodinger’s Maestro suite (https://www.schrodinger.com/downloads/
releases) and transferred back to Chimera for substrate docking. The structure of UDP-
a-D-Galp was downloaded from the PubChem website and optimized in Chimera [48]
for docking, together with the WbaQ enzyme, using the AutoDock Vina module. In the
first approach, the full protein surface was used for a grid search and the results were
compared with the original work by Ray et al. [32]. In the second attempt, the grid search
was narrowed to about 20 × 20 × 20 Å volume to match the center of the active site in
the PglC structure. The best docking solution was compared with the template structure
and found to agree with the proposed mechanism for the PglC enzyme. The pose was
optimized, overlaid on the PglC structure, and the positions of Mg+2 and phosphate
ions were used as the starting point for optimization of the WbaQ enzyme model with the
docked substrate with Schrodinger’s Maestro software. The final model was displayed with
the same software and the graphs were transferred to Adobe CS2 for quality adjustments.
Figures were prepared with the MS Office software suite.

4.5. Homology Modeling of the UDP-N-Acetylglucosamine 2-Epimerase

The protein sequence was obtained from the gene HMPREF1322_0460 (Table 2) and
used for automated model building with the Swiss-Model software [49]. The final model
was imported into the Chimera software [48], prepared for docking, and used for UDP-N-
acetylglucosamine docking in the AutoDock Vina module. Docking poses were compared
with the original structure (PDB code: 1F6D) and the first pose was selected. The docked
substrate and the model were transferred into Schrodinger’s Maestro suite (https://www.
schrodinger.com/downloads/releases) and adjusted in the ProteinPrep module. The final
structure was examined for steric problems and no violations were found. The final model
was displayed with the same software and the graphs were transferred to Adobe CS2 for
quality adjustments. Figures were prepared with the MS Office software suite.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/3/374/s1, Figure S1: The synthesis of (Kdo)2-lipid A in the P. gingivalis W50 strain; Figure S2:
Synthesis of the capped core I-lipid A from the (Kdo)2-lipid A in the P. gingivalis W50 strain; Figure
S3: Attachment of the capped core I-lipid A to the O-type antigen in the P. gingivalis W50 strain.
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