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At-risk alcohol use is a significant risk factor associated with multisystemic
pathophysiological effects leading to multiorgan injury and contributing to 5.3% of
all deaths worldwide. The alcohol-mediated cellular and molecular alterations are
particularly salient in vulnerable populations, such as people living with HIV (PLWH),
diminishing their physiological reserve, and accelerating the aging process. This
review presents salient alcohol-associated mechanisms involved in exacerbation of
cardiometabolic and neuropathological comorbidities and their implications in the
context of HIV disease. The review integrates consideration of environmental factors,
such as consumption of a Western diet and its interactions with alcohol-induced
metabolic and neurocognitive dyshomeostasis. Major alcohol-mediated mechanisms
that contribute to cardiometabolic comorbidity include impaired substrate utilization
and storage, endothelial dysfunction, dysregulation of the renin-angiotensin-aldosterone
system, and hypertension. Neuroinflammation and loss of neurotrophic support in
vulnerable brain regions significantly contribute to alcohol-associated development of
neurological deficits and alcohol use disorder risk. Collectively, evidence suggests
that at-risk alcohol use exacerbates cardiometabolic and neurocognitive pathologies
and accelerates biological aging leading to the development of geriatric comorbidities
manifested as frailty in PLWH.
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DEVELOPMENT OF ALCOHOL USE DISORDER

Globally, at-risk alcohol use is the seventh leading cause for morbidity and mortality accounting
for 5.3% of all deaths, and the leading cause of disability-adjusted life-years (DALYs) among
individuals 15–49 years of age (Burton and Sheron, 2018). Alcohol use disorder (AUD) is a chronic,
relapsing condition often characterized by a parallel emergence of neurological deficits and negative
emotional states (e.g., cognitive dysfunction, depression, pain) along with a significant escalation
of alcohol use (Edwards and Koob, 2010). Consequently, the progression from recreational to
at-risk drinking is thought to involve a motivational transition from positive reinforcement (i.e.,
drinking for pleasure) to negative reinforcement (i.e., drinking to avoid or mask the unpleasant
symptoms of withdrawal). However, continued drinking at high levels over long periods of time
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not only continues to damage the brain and other organs,
but also locks the individual into a motivational cycle of
binge/intoxication, withdrawal, and craving/anticipation of
renewed drinking during repeated abstinence (Koob, 2021).
The primary driver of excessive alcohol drinking stems from
a dysregulation of motivational behaviors regulated by the
brain. Specific brain reinforcement centers (including the central
amygdala and prefrontal cortex described below) have evolved to
process adaptive interactions with natural rewards encountered
in our environment (including the pursuit of food, sex, and
social cooperation). However, the adaptive function of these
brain regions and goal-directed behaviors can be compromised
by multiple genetic and environmental factors, including the
excessive use of alcohol.

Epidemiological data using Diagnostic and Statistical Manual
of Psychiatric Disorders (DSM-V) criteria indicate that 13.9%
of the United States of America (United States) population
met criteria for AUD over the past year (Grant et al., 2015).
AUD significantly decreases life expectancy and increases the
risk of mortality from mental disorders (10-fold), and from
cardiovascular diseases and cancers (two-fold) (Roerecke and
Rehm, 2014). The increased risk of mortality associated with at-
risk alcohol use results from alcohol-induced end organ injury
spanning cardiopulmonary, gastrointestinal, immune, adipose,
musculoskeletal, and nervous systems.

Relevance of Alcohol Drinking Patterns
Drinking in moderation, is defined by the 2015–2020 Dietary
Guidelines for Americans as consumption of up to one drink
per day for women and up to two drinks per day for men. Low
risk drinking as defined by the National Institute on Alcohol
Abuse and Alcoholism (NIAAA) is no more than 3 drinks per
day and no more than 7 drinks per week for women, and no
more than 4 drinks per day and no more than 14 drinks per week
for men. Drinking in moderation and low risk drinking are not
associated with a significant increase in risk for alcohol-induced
comorbidities. In contrast, binge drinking defined as drinking
to elevate blood alcohol concentrations to 0.08% (80 mg/dl) or
higher, generally resulting from drinking 4 or 5 drinks over a
2-h time frame is considered at-risk and categorized as extreme
when the consumption is twofold or greater than the gender-
specific thresholds (i.e., 10 or more standard drinks for men,
and 8 or more for women) (Yeomans et al., 2003; Alcohol
Research, Current Reviews, and Editorial Staff., 2018). Alcohol
consumption is discouraged in certain groups of people including
underage individuals (less than 21 years of age), women who
are pregnant or trying to become pregnant, those who take
medications that interact with alcohol, and those with existing
medical conditions, including human immunodeficiency virus
(HIV) as discussed in this review (Alcohol Research, Current
Reviews, and Editorial Staff., 2018).

While the contribution of at-risk alcohol consumption
to organ injury is well recognized, the definition of at-risk
drinking is complicated by different patterns of consumption,
the types of alcoholic beverages consumed across geographical
regions (World Health Organization, 2021), and the inconsistent
definition of a standard drink across countries, ranging from 8

g in Iceland to 20 g in Austria (Kalinowski and Humphreys,
2016). In addition, there appears to be wide variability for
defining rates of low to moderate-risk drinking across nations,
ranging from 98 to 140 g per week for women and 150–280 g
per week for men (Kalinowski and Humphreys, 2016). Several
factors are considered in the classification of alcohol drinking
patterns, including the frequency and amount of alcohol intake,
number of episodes of acute intoxication, and number of alcohol
binges (Wetterling et al., 1999). According to the World Health
Organization (WHO), prevalence of at-risk drinking is measured
by heavy episodic drinking, defined as consuming 60 g of alcohol
or more on at least one occasion in the past 30 days. In the
United States, where a standard drink is 14 g, heavy episodic
drinking is defined by consumption of 4.25 standard drinks.
Worldwide, approximately 18% of the adult population report
heavy episodic drinking (Poznyak, 2018).

AT-RISK ALCOHOL USE IN CHRONIC
DISEASE: RELEVANCE TO PERSONS
LIVING WITH HUMAN
IMMUNODEFICIENCY VIRUS

The Centers of Disease Control (CDC) estimates that over 50%
of PLWH in the U.S. are 50 years of age or older (CDC, 2018).
As life expectancy of PLWH continues to rise and approach that
of the general population, the frequency of maladaptive behaviors
increases as well. Maladaptive coping resulting from psychosocial
stressors, including stigma associated with living with HIV, is
associated with poorer immune status, increased viral load over
time, faster disease progression, and higher rates of mortality
(Cruess et al., 2003; Leserman, 2008). At-risk alcohol use is
among the principal maladaptive coping behaviors in PLWH, and
AUD frequently occurs in PLWH (Wardell et al., 2018).

AUD may exacerbate the risk for geriatric comorbidities
including cardiometabolic syndrome (CMS) and neurological
deficits (Kahl and Hillemacher, 2016; Sullivan and Pfefferbaum,
2019; Edwards et al., 2020) among PLWH. Data collected
from an ongoing New Orleans Alcohol and HIV (NOAH)
longitudinal clinical study (Ferguson et al., 2020) show that
lifetime alcohol exposure positively associates with Phenotypic
Frailty Index and a 52-item deficit index after adjustment for
subject demographics, HIV-related covariates, smoking, and
history of other substance use (Maffei et al., 2020). Premature
decline in functional status has been reported in PLWH (Piggott
et al., 2016). Data show that the prevalence of a frailty-related
phenotype (unintentional weight loss, exhaustion, weakness, slow
walking speed, low physical activity) in 55-year-old HIV-infected
men is comparable to that of HIV-uninfected men > 65 years
old, strongly supporting accelerated biological aging in PLWH
and its likelihood of associated enhanced risk for comorbidities
(Desquilbet et al., 2007).

The principal mechanisms underlying alcohol addiction,
alcohol-induced organ injury, and alcohol-related liver
injury have been extensively reviewed (Molina et al., 2014b;
Massey et al., 2015; Aberg et al., 2020; Arab et al., 2020;
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Maddur and Shah, 2020; Rasineni et al., 2020; Koob, 2021; Osna
et al., 2021). Here we focus on salient mechanisms of alcohol-
induced risk and exacerbation of CMS and neuropathological
comorbidities and discuss their implications in the context of
HIV infection and their role in exacerbating or accelerating
development of associated comorbidities in PLWH.

MECHANISMS OF ALCOHOL-INDUCED
END ORGAN INJURY

Alcohol-induced tissue injury leading to increased risk of
comorbidities result from a combination of pathophysiological
processes frequently linked to alcohol metabolism including
oxidative stress, mitochondrial injury, altered growth factor
signaling, nutritional deficits, and epigenetic modifications
(Molina et al., 2014b). Alcohol metabolism can occur in virtually
all tissues but occurs predominantly in the liver and generates
toxic by-products that, in turn, can promote tissue and cell injury
(Souza-Smith et al., 2016). Following first-pass metabolism of a
small fraction of ingested alcohol in the stomach, most (92–95%)
alcohol consumed is degraded by alcohol dehydrogenase (ADH)
and aldehyde dehydrogenase (ALDH), forming acetaldehyde and
acetate. Alcohol breakdown to acetaldehyde by ADH is associated
by nicotinamide adenine dinucleotide (NAD+) reduction to
NADH and a resulting decreased NAD+: NADH ratio that
decreases availability of mitochondrial glutathione (mGSH), and
cellular antioxidant reserve. The highly reactive product of
ADH; acetaldehyde, can react with proteins and cell membranes
producing acetaldehyde–protein adducts that also contribute to
tissue injury. Acetaldehyde metabolism to acetate by ALDH2
in the mitochondria, further decreases cellular NAD+: NADH
ratio. In addition to ADH conversion of alcohol to acetaldehyde;
alcohol is also metabolized by cytochrome P450, producing
reactive oxygen species (ROS). Thus, alcohol and its metabolites,
the generation of ROS, and formation of acetaldehyde adducts
contribute to cell and tissue injury (Cederbaum, 2012). Oxidative
stress and mitochondrial dysfunction are both implicated in HIV
disease pathogenesis (Aukrust et al., 2003; Schank et al., 2021)
suggesting that in combination, at-risk heavy alcohol use and
HIV are likely to impose a greater oxidative burden on tissues.
Chronic oxidative stress affects several biological processes and
synergize with gut immunopathological effects of alcohol (Gu
et al., 2021; Shukla et al., 2021) to decrease gut mucosal
barrier integrity and promote dysbiosis (Maffei et al., 2021).
The resulting gut leak promotes systemic immune activation,
inflammation, and cell senescence, enhancing tissue injury and
dysregulation of homeostatic mechanisms exacerbating the risk
for comorbidities in PLWH (Katz et al., 2015; Maffei et al., 2020;
Figure 1).

Interactions of At-Risk Alcohol Use and Human
Immunodeficiency Virus, Risk for Cardiometabolic
Syndrome
Cardiometabolic syndrome is a combination of
alterations including glucose intolerance, dyslipidemia,
hypertriglyceridemia, central adiposity, and hypertension,

that is now recognized by the WHO as a disease entity
(Saljoughian, 2016). CMS increases mortality risk due to
coronary heart disease, myocardial infarction, stroke, and
type 2 diabetes (Castro et al., 2003) and is one of the geriatric
comorbidities prevalent in PLWH (Woldu et al., 2020). Lifestyle
behaviors including at-risk alcohol use, consumption of diets
rich in fat and sugar, low physical activity, and behavioral
and psychosocial stressors are associated with increased risk
for CMS and type 2 diabetes. Alcohol use impacts risk for
CMS following a U or J shape curve (Alkerwi et al., 2009;
Baliunas et al., 2009; Koloverou et al., 2015; Lai et al., 2019).
However, this is not generalizable across geographical locations
or ethnic groups. Moderate alcohol consumption is shown
to be protective in studies from the United States (Kerr and
Ye, 2010) or Sweden (Rasouli et al., 2013), but not in studies
conducted in Japan (Teratani et al., 2012). Data relating alcohol
to all-cause and cardiovascular (CV) morbidity and mortality
from more than 600,000 current drinkers without a history
of CV disease, indicated a much lower threshold for amount
of alcohol consumed than currently accepted (Wood et al.,
2018). In a prospective, longitudinal study, male sex, being
physically active, and in good health status were independently
associated with light to moderate drinking. Though there was
an apparent protective effect of light to moderate drinking
on mortality after adjusting for age, sex, risk factors, and
cardiovascular events, the relationship was no longer significant
when adjusting for physical activity and perceived health
status (Muscari et al., 2015). These results suggest that the
protective effect of moderate alcohol use is most prominent
among individuals with a healthier lifestyle (Koloverou et al.,
2015). Moreover, compelling evidence suggest that risk for CMS
increases with increasing alcohol consumption (Vieira et al.,
2016). Alcohol-using PLWH have higher odds of displaying
lipodystrophy (Cheng et al., 2009; Molina et al., 2014a) and
altered adipokine profiles including that of leptin (Srdic et al.,
2017) and adiponectin (Lee and Kwak, 2014; Langkilde et al.,
2018). Alterations in these adipokines have been linked to
metabolic dysregulation in obese subjects (Harwood, 2012;
Lee and Kwak, 2014), in PLWH on ART (Jan et al., 2004;
Lagathu et al., 2005), and to impaired insulin signaling (Jan
et al., 2004; Stankov and Behrens, 2010). CMS is a comorbidity
commonly associated with cognitive deficits in PLWH (Pope
et al., 2020; Pasipanodya et al., 2021), and cardiometabolic
health is linked to improved cognitive function in aging PLWH
(Saloner et al., 2019).

Diet quality is influenced by the pattern of alcohol use, being
the poorest among subjects who consumed the highest quantity
of alcohol (Breslow et al., 2006), among women who were current
drinkers, and among both men and women as the amount
of alcohol consumption increased (Breslow et al., 2010). The
interaction of unhealthy alcohol use with an unhealthy diet is
likely to further enhance risk for comorbidities. Diet quality
among PLWH (Muhammad et al., 2019; Weiss et al., 2019) is
significantly lower than recommended. In a large single-site study
among PLWH in the US, dietary recall demonstrated that the
average carbohydrate intake was twice the recommended amount
and protein consumption was a third of recommendations
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FIGURE 1 | Interaction of at-risk alcohol use and HIV infection. Chronic stressors including unhealthy alcohol consumption and HIV infection affect several biological
processes and synergize with gut immunopathological effects of alcohol, decreasing gut mucosal barrier integrity, promoting dysbiosis, and gut bacteria and toxin
leak. Alcohol metabolism generates toxic by-products that, in turn, can promote tissue and cell injury. Pathophysiological processes frequently linked to alcohol
metabolism including oxidative stress, mitochondrial injury, altered growth factor signaling, nutritional deficits, and epigenetic modifications. These synergize with
systemic immune activation, inflammation, and cell senescence and exhaustion driven by gut leak, enhancing tissue injury and dysregulation of homeostatic
mechanisms increasing risk for cardiometabolic syndrome (CMS). The cluster of target organ dyshomeostasis associated with CMS is associated with increased risk
for neurocognitive deficits and pain syndromes that can exacerbate or accelerate biological aging. ROS, reactive oxygen species; RAS, renin angiotensin system;
HTN, hypertension; CMS, cardiometabolic syndrome. Created with Biorender.com.

and was also associated with a trend for increased fat intake
(Webel et al., 2017). This dietary pattern, referred to as a Western
Diet has been linked to immune and metabolic dysfunction
(Childs et al., 2019). PLWH have a lower healthy eating index
(HEI) score compared to HIV- subjects, with decreased scores
for consumption of seafood and plant proteins and beneficial
fatty acids, along with increased consumption of foods with non-
nutritional calories including alcohol (Weiss et al., 2019). The
HEI assesses dietary patterns and their degree of adherence to
the Dietary Guidelines for Americans (Guenther et al., 2008),
and scores ≤ 50 are inversely correlated with reduced risk
of all-cause mortality in the general population (Sotos-Prieto
et al., 2017a,b). Increased insulin, cholesterol, and triglycerides in
PLWH are associated with increased total dietary energy intake
with high total and saturated fat (Batterham et al., 2000). Chronic
binge alcohol in simian immunodeficiency virus (SIV) infected
macaques decreases total caloric intake and alters nutrient
selection, decreasing nitrogen intake and balance as the disease
progresses (Molina et al., 2006). The self-imposed carbohydrate
rich, low nitrogen diet likely contributes to decreased muscle
mass observed in end stage disease. Changes in dietary intake
can influence micronutrient availability and in addition modulate
circulating and tissue growth factors (Childs et al., 2019). Hence,
direct, and indirect alcohol-mediated effects as well as diet
quality and composition can significantly contribute to risk
for CMS in PLWH.

MECHANISMS IMPLICATED IN
ALCOHOL-HUMAN
IMMUNODEFICIENCY VIRUS
INTERACTIONS INCREASING RISK AND
PATHOGENESIS OF CARDIOMETABOLIC
SYNDROME

The pathophysiology of CMS is multifactorial, involving multiple
organs and several independent and interdependent pathways.
Several mechanisms impacted by at-risk alcohol use can
potentially increase the risk and/or exacerbate CMS in PLWH
(Figure 2). The most salient ones are discussed below.

Interference With Energy Substrate
Utilization and Storage
Alcohol-induced carbohydrate, lipid, and protein metabolic
dysregulation is due to either direct effects of alcohol and
its metabolites on liver, adipose tissue, and skeletal muscle
(SKM), or due to indirect effects resulting from immune
dysregulation (Figure 3). Alcohol consumption significantly
decreases gluconeogenesis partly due to impaired hepatic
utilization of lactic acid, glycerol, and alanine as gluconeogenic
substrates (Steiner et al., 2015a) and a reduction in glycolytic
and gluconeogenic hepatic enzyme activity (Baranyai and Blum,
1989; Mokuda et al., 2004). Alcohol impairs insulin signaling

Frontiers in Physiology | www.frontiersin.org 4 January 2022 | Volume 12 | Article 758230

http://Biorender.com
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-758230 January 12, 2022 Time: 14:58 # 5

Simon et al. Alcohol-Related Comorbidities in PLWH

FIGURE 2 | Mechanisms implicated in alcohol interactions with risk and pathogenesis of cardiometabolic syndrome. Alcohol associated metabolic instability,
alterations in endothelial function, extracellular remodeling, and dysregulation of the renin-angiotensin aldosterone system are salient mechanisms that contribute to
increased risk for CMS. Alcohol alters the gut microbiome, impacting on gut mucosal immunity and barrier function. The chronic immune activation associated with
gut leak results in immune activation, exhaustion, and senescence, underlying immunometabolic dysregulation. Across tissues, alcohol produces alterations in
cellular energy metabolism disrupting mitochondrial function and homeostatic responses. Several of these mechanisms are regulated by epigenomic alterations
reflected by changes in microRNA profiles, histone methyltransferases and deacetylase expression, and activity. Alcohol-induced multi-organ alterations may result
from inter-organ cross talk. Alcohol-induced tissue injury in one organ (i.e., adipose tissue) can result in release of mediators (i.e., adipokines, cytokines,
microvesicles, etc.) that target distant organs amplifying alcohol’s deleterious effects. Created with Biorender.com.

including decreased phosphorylation of the insulin receptor,
insulin receptor substrate (IRS)-1, and AKT, and decreases
GLUT4 membrane translocation in peripheral insulin sensitive
tissues (Steiner et al., 2015a). Reports in the literature indicate
that chronic alcohol feeding (Kang et al., 2007b) as well as
ART (Boccara, 2008) result in the development of insulin
resistance, one of the main components of CMS. The mechanisms
underlying insulin resistance and dysglycemia; manifested as
an increased frequency of glucose intolerance or frank diabetes
mellitus in PLWH (Willig and Overton, 2016; Natsag et al.,
2017; Noumegni et al., 2017), remain poorly understood. Chronic
subclinical inflammation has been proposed as a likely factor
contributing to metabolic dyshomeostasis seen in ART-treated
PLWH (Longenecker et al., 2013; Beires et al., 2018).

SKM is the major insulin-sensitive tissue in the body and is a
major player in maintaining glucose homeostasis. Thus, alcohol-
induced alterations in SKM homeostasis can potentially have
a significant impact on metabolic dysregulation. The alcohol-
mediated decrease in SKM protein synthesis (LeCapitaine et al.,
2011; Steiner and Lang, 2019) together with alterations in the
mammalian target of rapamycin (mTOR) signaling pathway
(Hong-Brown et al., 2012) result in alcoholic myopathy; which
together with the alcohol-associated alterations in synthesis
and breakdown of carbohydrates and lipids, contribute to
metabolic instability and increased risk for CMS (Figure 3).

These alcohol-mediated alterations in SKM and adipose mass,
and carbohydrate storage, can be reflected in anthropometric
changes as well as in alterations of circulating levels of
glucose, triglycerides, and cholesterol, as briefly discussed in
the next section.

Alterations in Body Composition
Central or abdominal obesity is associated with increased insulin
resistance (Klaus et al., 2009; Govers, 2015; Jankie and Pinto
Pereira, 2021). Heavy (20 to less than 60 g/day) and very
heavy (60 g/day) alcohol use increases waist circumference and
abdominal fat accumulation (Churilla et al., 2014; Hirakawa
et al., 2015). Though the exact mechanisms are unclear, proposed
alcohol-associated mechanisms include decreased leptin and
glucagon like peptide -1, alterations in sex steroid hormones, loss
of lean body mass, and increased lipolysis and fatty acid flux
(Riserus and Ingelsson, 2007; Sumi et al., 2019). In the post-ART
era, obesity is emerging as a critical problem in PLWH (Godfrey
et al., 2019), with increased body mass index (BMI) associated
with increased risk of CV disease and diabetes mellitus among
PLWH (Achhra et al., 2018).

Alterations in Glycemic Control
Reports on the effects of alcohol on glycemic control are mixed.
Low to moderate alcohol use inhibits hepatic glycogenolysis
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FIGURE 3 | Alcohol-mediated metabolic instability. Alcohol produces carbohydrate, lipid, and protein metabolic dysregulation directly, and indirectly through the
generation of its metabolites. Principal target organs include the liver, adipose tissue, and skeletal muscle (SKM). Alcohol-associated alterations in synthesis and
breakdown of carbohydrates, lipids, and proteins, result in metabolic instability and increase the risk for cardiometabolic syndrome (CMS). Created with
Biorender.com.

and gluconeogenesis, decreases fasting insulin and HbA1c, and
increases insulin sensitivity (Hong et al., 2009; Koloverou et al.,
2015; Schrieks et al., 2015; Vieira et al., 2016). Clinical studies
show that alcohol decreases circulating basal insulin secretion
(Bonnet et al., 2012) and decreases circulating insulin and
c-peptide response to glucose (Patto et al., 1993). Preclinical
studies show that chronic binge alcohol significantly impairs
endocrine pancreatic response to a glucose load in SIV-infected
macaques (Ford et al., 2016; Simon et al., 2021). Similarly, rodents
on a chronic alcohol diet have decreased circulating insulin
levels (Rasineni et al., 2019), and decreased pancreatic expression
of glucokinase, glucose transporter-2 (Kim et al., 2010), and
gamma-aminobutyric acid (GABA) receptors (Wang et al., 2014).

These alcohol-induced alterations can potentially contribute to
decreased insulin release following a glucose load. This is aligned
with studies showing that in vitro alcohol exposure decreases
glucose-stimulated insulin secretion (GSIS) from human (Dragan
et al., 2017) and rodent (Wang et al., 2014; Rasineni et al.,
2019) pancreatic islets and increases β-cell apoptosis (Dembele
et al., 2009; Kim et al., 2010). These findings support a role for
alcohol-mediated impairment of pancreatic endocrine function,
particularly of the integrity of β-cell response to glucose as an
underlying mechanism of glucose dyshomeostasis. In addition,
preclinical studies show that adiponectin, an insulin sensitizing
adipokine with anti-inflammatory properties is decreased with
at-risk alcohol use (Ford et al., 2016; Steiner and Lang, 2017).
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A potential factor in alcohol-mediated decrease in adiponectin
levels may be increased resistin levels in both clinical studies and
animal models of alcohol use. Resistin suppresses adiponectin
secretion and stimulates lipolysis, releasing fatty acids and
glycerol into circulation (Chen et al., 2014). However, results
from clinical studies are inconclusive, with both low to moderate
and at-risk alcohol use increasing adiponectin (Steiner and
Lang, 2017; Nova et al., 2019). Overall, alcohol-associated
alterations in adipocytokine profile may contribute to impaired
glucose homeostasis. Moreover, alcohol-mediated impairment
of glycolytic pathways is associated with increased formation
of advanced glycation end products (AGEs), which together
with endothelial dysfunction, inflammatory responses, and
oxidative stress discussed below contribute to the development
of hypertension and atherosclerosis, important components
of CMS (Vasdev et al., 2006). Recent data show that in
PLWH at-risk alcohol use increased the likelihood of meeting
the clinical criteria for prediabetes/diabetes (Primeaux et al.,
2021). Moreover, HOMA-β cell function negatively associated
with AUDIT-C, phosphatidyl ethanol (PEth), and Timeline
Followback (TLFB), suggesting that alcohol use is associated with
impaired endocrine pancreatic function (Simon et al., 2020).
Others have also reported a high incidence of diabetes in well
controlled PLWH (Bratt et al., 2021), associated with increased
oxidative stress (Bastard et al., 2019).

Dysregulation of Lipid Homeostasis
Chronic alcohol use results in a dose-response positive
relationship with high density lipoprotein-cholesterol (HDLc)
and negative relationship with low density lipoprotein
(LDL) (Shuval et al., 2012). The alcohol-mediated biological
mechanisms contributing to lowering of cholesterol levels
include increased transport of lipoproteins and lipoprotein lipase
activity (Shuval et al., 2012), and increased eNOS activity that
helps transport of HDL-C (Hirakawa et al., 2015; Wakabayashi,
2019). At-risk alcohol use increases triglyceride levels especially
among women (Hirakawa et al., 2015; Vieira et al., 2016) and
moderate alcohol is associated with lower triglyceride levels
(Kovar and Zemankova, 2015). Alcohol-mediated mechanisms
that contribute to increased triglycerides include adipose
tissue lipolysis, and hepatic synthesis of large very low density
lipoprotein (VLDL) particles through the increased expression
of microsomal triglyceride transfer protein (Klop et al., 2013).
The interactions of alcohol with high fat diet further exacerbate
hypertriglyceridemia by regulating hypothalamic peptides that
increase appetite and energy intake (Barson et al., 2010).

Alcohol directly and indirectly alters the balance of lipogenesis
and lipolysis and thus dysregulates lipid metabolism (Figure 3).
Loss in adipose tissue mass resulting from chronic alcohol
consumption is partly due to an increase in triglyceride turnover
without significant alteration in triglyceride synthesis (Kang et al.,
2007a; Zhong et al., 2012). Alcohol-induced activation of lipolysis
and release of free fatty acids (FFAs) that are taken up by the
liver has been proposed as a central mechanism of alcohol-
induced steatohepatitis. Overall, alcohol alters hepatic lipid flux
by increasing free fatty acid uptake from the diet and from
adipose tissue lipolysis; stimulating lipogenesis from glycolytic

end products; and dysregulating β- oxidation. Moreover, alcohol
upregulates expression of fatty acid transporters particularly
CD36/FAT promoting fatty acid uptake, and esterification of free
fatty acids into triglycerides (You and Arteel, 2019). Alcohol
dysregulates lipolysis through inhibitory effects on insulin action
(Yki-Jarvinen et al., 1988), but not through enhanced adrenergic
effects (Lang et al., 2014). In addition, alcohol increases plasma
and adipose tissue expression of fibroblast growth factor 21
(FGF21), a known stimulus for lipolysis (Zhao et al., 2015). In
contrast, alcohol decreases expression and activation of several
lipogenic enzymes (Steiner and Lang, 2017). Thus, alcohol-
associated dysregulation of lipid homeostasis results from an
imbalance between lipolysis and lipogenesis. Dyslipidemia is
highly prevalent among PLWH (Grunfeld et al., 1992), and this
has been attributed to the infection itself, and some types of
ART drugs. Early following HIV seroconversion, total, HDL,
LDL cholesterol levels decrease. Following the initiation of ART,
the profile shifts to increased total and LDL cholesterol to pre-
infection levels, with persistent low HDL levels (Riddler et al.,
2003). Alcohol-using PLWH have higher odds of presenting with
lipodystrophy (Cheng et al., 2009). CVD risk factors, including
dyslipidemia and hypertension, are determinants of reduced life
expectancy in PLWH (Freiberg and Kraemer, 2010).

Dysregulation of Blood Pressure
In addition to alcohol-induced metabolic dysregulation or
instability, alcohol-associated risk for hypertension is also an
important contributor to CMS (Saljoughian, 2016). Some studies
report higher prevalence of hypertension in PLWH than in
uninfected individuals, with a higher frequency in individuals
50 years of age or older (Xu et al., 2017; Fahme et al.,
2018). Furthermore, hypertension in PLWH is associated with
heavy alcohol use (Ikeda et al., 2013). Multiple mechanisms
affected by alcohol and HIV infection can contribute to
blood pressure dysregulation. Alcohol-induced dysregulation of
vasoconstrictor levels, vasoreactivity, and endothelial integrity
are all possible mechanisms contributing to altered blood
pressure regulation. Alcohol at low doses produces transient
vasodilation. In contrast, at higher doses and with binge
drinking, alcohol leads to vasoconstriction (Rekik et al., 2002;
Kloner and Rezkalla, 2007) and chronic heavy alcohol use
increases the risk of hypertension (Kahl and Hillemacher,
2016; Vieira et al., 2016). Several mechanisms contribute to
alcohol-associated hypertension including genetic predisposition
for an ALDH2 polymorphism (Hu et al., 2014), activation of
renin angiotensin aldosterone system (RAAS), central adrenergic
activity, increased sympathetic flow, vascular smooth muscle
tone, shifts in baroreceptor reflex sensitivity, and decreased
nitric oxide (NO) release (Husain et al., 2014; Kahl and
Hillemacher, 2016). In addition, alcohol increases both cytosolic
free calcium (Ca2+) and cellular Ca2+ uptake by direct
upregulation of voltage-gated Ca2+ channels, inhibits Ca2+-
adenosine triphosphatase, and sodium-potassium ion pumps,
thus increasing sensitivity to endogenous vasoconstrictors and
exacerbating hypertension (Altura and Altura, 1982; Husain
et al., 2014). The magnitude of increase in blood pressure
with heavy alcohol use averages about 5–10 mm Hg with
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greater increases in systolic than diastolic pressure (Clark,
1985). The association between alcohol use and hypertension is
stronger among older individuals (Burke et al., 1992; Riserus and
Ingelsson, 2007), which may be due to enhanced sensitivity to
sympathoadrenal activation (Husain et al., 2014). Thus, alcohol-
associated risk for hypertension results from alterations in
endothelial function and in the levels and activity of endogenous
mediators of vasoreactivity as discussed in the next section.

Endothelial Dysfunction
Several alterations in vascular integrity and responsiveness may
contribute to increased risk for hypertension and vascular
instability. The vascular endothelium integrates humoral and
hemodynamic signals modulating vasomotor tone and adjusting
blood flow to the local tissue needs. Alcohol exerts biphasic
effects on endothelial function (Puddey et al., 2001; Figure 4).
Acute alcohol consumption produces immediate and transient
vasodilation (Bau et al., 2005; Oda et al., 2020) followed
by increased blood pressure later after alcohol consumption
resulting in a biphasic effect of alcohol on blood pressure.
The acute alcohol-induced vasodilation is mainly attributed to
the increased expression of endothelial nitric oxide synthase
(eNOS) and NO (Venkov et al., 1999). This mechanism has
been proposed in cardioprotective benefits of moderate alcohol
consumption (Abou-Agag et al., 2005; Toda and Ayajiki,
2010). Chronic and at-risk alcohol use is associated with
hyperactivation of the hypothalamo-pituitary-adrenal (HPA)
axis and increased glucocorticoid release. Excess glucocorticoid
action can also contribute to endothelial dysfunction and
accelerate the atherogenic process (Bau et al., 2005). Overall, at-
risk alcohol use increases the risk of coronary artery disease,
and hemorrhagic and ischemic stroke. Endothelial dysfunction
is a predictor of CV disease and precedes atheromatous
plaque formation (Schachinger and Zeiher, 2000). In addition,
cytotoxicity resulting from at-risk alcohol use through generation
of peroxynitrite, resulting from reaction of NO with superoxide;
a product of alcohol-induced oxidative stress (Pacher et al.,
2007), may also contribute to endothelial dysfunction. PLWH
have significant impairment in endothelial function reflected
in significantly lower flow-mediated vasodilation compared to
uninfected controls, and present with elevated levels of markers
of endothelial dysfunction (Rethy et al., 2020). Though evidence
supports a deleterious effect of HIV infection on endothelial
function, definitive studies remain limited and inconclusive.

Dysregulation of Vasoconstrictor Levels
and Vasoreactivity
At-risk alcohol use may alter the balance of endogenous
vasoconstrictor levels including angiotensin II, endothelins,
and norepinephrine (Tsuji et al., 1992), contributing to the
increased risk for hypertension. Studies demonstrate that alcohol
consumption increases overall activity of RAAS (Jing et al.,
2008; Yarlioglues et al., 2019). Plasma renin activity is increased
in individuals with heavy alcohol consumption (Husain et al.,
2014) and angiotensin converting enzyme (ACE) activity in
serum of hospitalized individuals with history of chronic alcohol

consumption is higher than that of healthy controls (Okuno
et al., 1986). Similarly, some evidence supports a role for
increased RAAS activation in development of hypertension
and metabolic syndrome in PLWH (Srinivasa et al., 2015;
Masenga et al., 2020). The importance of increased activation
of the Ang II type 1 receptor (AT1) to the development
of alcoholic cardiomyopathy has been shown in preclinical
studies (Cheng et al., 2006). Furthermore, activation of the
AT1 receptor by chronic alcohol activates NADPH oxidase
producing endothelial injury (Warnholtz et al., 1999; Gonzaga
et al., 2018; Assis et al., 2020). Alcohol increases levels of renin,
aldosterone, and angiotensin II (Jing et al., 2008), circulating
renin and ACE activity, and left ventricular myocyte AT1
receptor expression in individuals with at-risk alcohol use
(Husain et al., 2014). In addition, at-risk alcohol use results
in increased plasma vasopressin levels indicating increased
sympathetic stimulation (Chan and Sutter, 1983). Together
with alterations in endothelial function, the alcohol-induced
dysregulation of circulating levels of endogenous vasoactive
mediators and their respective receptors promotes alterations in
blood pressure regulation, increasing the risk for hypertension.

Alcohol-Human Immunodeficiency Virus Interactions
Increase Risk for Neurological Impairment in Persons
Living With Human Immunodeficiency Virus
CMS has been linked to neurocognitive impairment in the
general population (Yaffe et al., 2004; Panza et al., 2010),
particularly in the presence of inflammation. More recently,
this link has been examined in the context of HIV infection,
demonstrating an additive effect of HIV and CMS on
neurocognitive dysfunction, including apathy and decreased
executive function (Pope et al., 2020), and impairments in
the neurocognitive domains of learning and fine motor skills
(Yu et al., 2019). The neurological consequences of chronic
HIV infection span both the peripheral and central nervous
systems, and despite the success of ART to control viral
loads, HIV infection and treatment continue to promote
neurological and psychiatric co-morbidities that worsen disease
outcomes and overall quality of life. Neurocognitive disorders are
highly prevalent in PLWH, and HIV-associated neurocognitive
disorder (HAND) and co-occurring AUD can exacerbate these
deficits (Fama et al., 2016). HAND can include deficits
in attention, memory, and executive function. ARTs have
successfully extended life expectancy of PLWH but are not fully
protective against the neurocognitive symptoms of HAND and
therefore greater cognitive impairment may surface with aging
(Alakkas et al., 2019).

The cognitive and behavioral deficits associated with
excessive drinking are commonly attributed to long-lasting
neuroadaptations and functional changes to neuronal circuitry,
as both former and current AUD subjects demonstrate cognitive
impairments including deficits in working memory (Kopera
et al., 2012), executive functioning (Green et al., 2010), and
impulsivity (Li et al., 2009), which all contribute to maladaptive
decision-making, including relapse to alcohol seeking during
attempted abstinence periods. Interestingly, such deficits
partially but incompletely overlap between men and women
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FIGURE 4 | Alcohol-induced biphasic effects on endothelial function. Acutely, moderate doses of alcohol increase production of nitric oxide and result in transient
vasodilation. Chronic, heavy alcohol consumption produces oxidative stress and activates vasoconstrictor pathways including endothelins (ET) and angiotensin II
formation (Ang II) that lead to endothelial dysfunction and altered response to vasoactive mediators. ET, endothelin; Ang II, angiotensin II; NE, norepinephrine; eNOS,
endothelial nitric oxide synthase; AGES, advance glycation end products; ECM, extracellular matrix. Created with Biorender.com.

(Fama et al., 2020). From a neuroanatomical perspective, these
chronic alcohol induced-cognitive impairments are associated
with selective brain damage in vulnerable areas such as the
prefrontal cortex (Pfefferbaum et al., 1998; Le Berre et al., 2014)
and hippocampus (Mira et al., 2019). Heavy alcohol use may also
predispose individuals to cognitive disorders such as Alzheimer’s
disease (AD), as frequent drinkers display higher levels of
AD-related biomarkers in their cerebrospinal fluid (Wang et al.,
2021). In addition, a rapidly emerging area of interest is how
sleep disturbances impact neurological function and may interact
with cognitive deficits to promote AUD (Laniepce et al., 2021).

Neuroinflammation is hypothesized to be a primary
mechanism of HAND-associated cognitive impairment
(Garvey et al., 2014). However, it is becoming increasingly
recognized that neuroinflammation alone cannot explain the
neurological consequences of HIV (Gelman, 2015). In a murine
model of HIVE, neuropathology persists despite suppressed
neuroinflammation and CNS viral replication. Preclinical
studies suggest that disruptions in growth factor expression and
signaling likely contributes to HIV neuropathology and cognitive
impairments (Maxi et al., 2016). Chronic binge alcohol unmasks
neurocognitive deficits in SIV-infected, non-ART treated
macaques (Winsauer et al., 2002). Furthermore, disruptions in
growth factor expression and signaling as potential mechanisms
contributing to cognitive impairments have been reported.
Brain-derived neurotropic factor (BDNF) is a neuroprotective
factor regulating synaptic plasticity and cognitive function.
Reduced BDNF signaling through TrkB, including ERK and Akt
pathways, have been shown to decrease neuronal plasticity and
are linked to HIV-associated neurocognitive decline (Michael
et al., 2020). In vitro studies have indicated that the HIV peptide
Tat induces downregulation of BDNF and other CREB-regulated
genes. Alcohol consumption can further reduce BDNF levels
and impair BDNF signaling through TrkB receptors (John
MacLennan et al., 1995). Interestingly, though ART attenuates
expression of microglial markers of neuroinflammation in
the frontal cortex and monocyte/macrophage markers of
neuroinflammation in the basal ganglia, it did not ameliorate the
alcohol-associated inhibition of growth factor signaling in the

frontal cortex of SIV-infected macaques. These findings suggest
that while ART may be effective in reducing neuroinflammation
associated with infection and alcohol, it is not sufficient to
attenuate the deficits in BDNF signaling and may explain the
persistence of HAND despite widespread ART use (Maxi et al.,
2019). These results support the need for continued research
into strategies to prevent HIV-associated neurocognitive decline,
including the potential to target neuroinflammation and growth
factor signaling as new therapies are developed.

Neuropathological Comorbidities
Associated With At-Risk Alcohol Use and
Human Immunodeficiency Virus
In addition to the direct and indirect alcohol-mediated peripheral
tissue injury implicated in pathophysiology of CMS, at-risk
alcohol use also impacts both peripheral and central nervous
system physiology. This is perhaps best represented by alcohol’s
ability to regulate the conscious experience of pain through its
interactions with both ascending and descending nociceptive
circuitry (Egli et al., 2012). Importantly, chronic pain affects
approximately 20% of adults worldwide and approximately
100 million Americans (Nahin, 2015), a number that will
likely increase over the next few decades given an aging
U.S. population. Chronic or neuropathic pain is prevalent in
approximately 57% of PLWH, significantly impairing quality
of life (Ellis et al., 2010). PLWH with HIV-related pain
also have higher rates of depression, anxiety, and insomnia,
compared to those without neuropathy symptoms (Phillips
et al., 2014), indicating that neurological pain symptoms
may ultimately transform into CNS pathophysiology including
cognitive dysfunction and psychiatric illness. Preclinical studies
show significant heightened pain sensitivity in response to
systemic injection of HIV viral particles (Guindon et al., 2019;
Bagdas et al., 2020). SIV infection in pigtail macaques induces
inflammatory cell infiltration in the spinal cord, a frequent
finding in chronic pain conditions (Mangus et al., 2015).

Evidence also suggests that diet and metabolic factors
influence the development and chronicity of pain symptoms.
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Diets containing high amounts of omega-6 fatty acids (common
in Western diets) exacerbate nociceptive sensitivity in preclinical
animal models of neuropathic and inflammatory pain (Boyd
et al., 2021). Importantly, Western diets appear to prolong
recovery from a pain-related injury in animals, although
recovery was accelerated by switching animals to an anti-
inflammatory diet (Totsch et al., 2018). Similar dietary
interventions have also demonstrated efficacy in reducing
pain symptoms in humans (Lattanzio and Imbesi, 2018).
A review of global studies also highlighted links between
affective disorders, metabolic syndrome, and chronic pain (Bica
et al., 2017), strongly suggesting that negative affect serves
as a moderator of these relationships. Convergent evidence
suggests a strong underlying influence of chronic inflammation
in these integrated disease processes, providing a mechanistic
basis for how HIV and alcohol use promotes and sustains
these conditions.

At-Risk Alcohol Use, Chronic Pain, and
Pain-Related Negative Affect
While the analgesic effects of alcohol have been known for
some time (Thompson et al., 2017; Cucinello-Ragland and
Edwards, 2021), excessive alcohol exposure damages elements of
the peripheral nervous system producing a characteristic small
fiber painful neuropathy (Maiya and Messing, 2014), and the
resulting increased nociceptive sensitivity (termed hyperalgesia)
is hypothesized to contribute to an increased motivational drive
to drink (Egli et al., 2012). In addition to the direct effects
of alcohol, abstinence from heavy drinking can also increase
affective pain sensitivity (termed hyperkatifeia) as part of a
larger motivational withdrawal syndrome (Edwards et al., 2012;
Koob, 2021) that may also promote the use of alcohol for
affective/emotional pain management. Indeed, self-reports of
alcohol use specifically for pain are common. Problem drinkers
of both sexes report more severe pain symptoms compared
to non-drinkers, and also a higher incidence of using alcohol
to manage their pain (Brennan et al., 2005). Interestingly, use
of alcohol to manage pain symptoms presaged a worsening
of alcohol drinking-related comorbidities, including diabetes
(Brennan et al., 2005).

Acute pain represents an adaptive sensory process vital
to protecting our bodies from damage. In contrast, chronic
or unrelieved pain represents a profound negative emotional
experience that can have a powerful influence on brain
reinforcement mechanisms, possibly facilitating the transition to
AUD in vulnerable individuals (Zale et al., 2021). As support
for this conceptualization, there are strong associations among
alcohol consumption, chronic pain, and pain-related disability
(Witkiewitz et al., 2015a,b; Yeung et al., 2020). Evidence
suggests that chronic pain may be predictive of future at-risk
alcohol use. In one prospective epidemiological study, self-
reported pain interference (or how pain disrupts daily life
activities) was predictive of AUD development (McDermott
et al., 2018). Additional preclinical research suggests that the
relationships between individual levels of alcohol drinking
and resultant chronic pain relief may change over time

(Adrienne McGinn et al., 2020), although the neurobiological
basis of these links is currently unknown.

In addition to chronic pain, important bi-directional
relationships exist between at-risk alcohol drinking and other
negative affective conditions (e.g., stress, anxiety, depression)
that represent additional risks for psychiatric co-morbidities.
Importantly, people with chronic pain and high negative affect
report higher pain severity and pain interference compared to
people with only one of the two disorders (Arnow et al., 2006).
Such symptoms may precede or emerge within the development
of more severe forms of AUD (Gilpin et al., 2015). For example,
the development of negative affective states comprises a portion
of the constellation of symptoms of alcohol withdrawal, and
as such, likely contribute to negative reinforcement processes
that drive continued or escalated drinking over time (Tolomeo
et al., 2021). Another intense line of preclinical and clinical
investigation concerns factors that precede and may presage the
development of at-risk drinking. These range from neurological
conditions including traumatic brain injury (Phillips et al., 2014;
Mayeux et al., 2015; Adams et al., 2020; Schindler et al., 2021) to
pre-existing psychiatric disorders such as post-traumatic stress
disorder (Whitaker et al., 2014; Langdon et al., 2016; Livingston
et al., 2021).

Confounding Factors Impacting Alcohol-Associated
Risk for Cardiometabolic Syndrome and Cognitive
Deficits
Several biological factors may contribute to alcohol-mediated
tissue injury and risk for CMS, including the pattern and type
of alcohol use, sex, existing underlying comorbid conditions,
and alcohol-induced alterations in target organ milieu (i.e.,
dysregulation of the extracellular matrix). Both acute and chronic
alcohol consumption decrease total brain glucose uptake and
the rate of glucose utilization (Volkow et al., 2013), and this
may be associated with decreased neuronal activity. These
alcohol-associated alterations in brain glucose metabolism may
have significant implications for increased risk of cognitive
dysfunction, particularly in PLWH (Hammoud et al., 2018;
Ge et al., 2021). Binge drinking increases the risk of CMS,
type 2 diabetes, stroke, and coronary artery disease compared
to continuous alcohol consumption (Lindtner et al., 2013;
Hong et al., 2015), and more frequent moderate drinking
is associated with more favorable outcomes than occasional
or weekly drinking. Moreover, occasional heavy drinking
rather than regular heavy drinking is associated with central
obesity and hyperglycemia (Wakabayashi, 2014). Increased
drinking frequency was associated with increased triglycerides,
hyperglycemia, blood pressure, and abdominal obesity only
among men (Schroder et al., 2007), and hyperglycemia and
hypertension in women (Lee, 2012).

The type of alcohol consumed, and the rate of alcohol
metabolism may have a differential impact on CMS risk. Wine
that is rich in polyphenols is most associated with decreased
CMS incidence (Beulens et al., 2012; Rasouli et al., 2013),
and beer in larger doses increases the odds ratio of having
a higher waist-hip ratio together with elevated blood pressure
and triglycerides (Koloverou et al., 2015; Vieira et al., 2016).
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Polyphenols found in alcohol, especially resveratrol, are anti-
inflammatory and increase eNOS activity, which not only allows
for vasodilation but also increases HDL-c transport. Polyphenols
also decrease accumulation of 3-nitotyrosine, and PARylated
(poly ADP-ribosylated) proteins associated with diabetes (Drel
and Sybirna, 2010). Alcohol metabolism differs between sexes.
Females have higher percentage of body fat, lower water content,
and lower gastric ADH activity than males and these sex-specific
differences result in higher blood alcohol concentrations in
women than in men given consumption of a similar amount of
alcohol (Cowan et al., 1996).

Emerging evidence suggests that Western diets commonly
consumed in the U.S. worsen both neurocognitive (Martin and
Davidson, 2014; Davidson et al., 2019) and pain symptomatology
(Boyd et al., 2021). Thus, the neurobiological interaction of
excessive alcohol drinking, cognition, and pain in the context of
WD consumption represents a critical area of research and public
health interest.

Although alcohol-mediated alterations in extracellular
matrix (ECM) remodeling, characterized by an imbalance
of extracellular matrisome protein synthesis and degradation
leading to overt fibrosis has been well described in alcohol-related
liver injury (Poole and Arteel, 2016; Dolin and Arteel, 2020);
more recently, dysregulation of matrisome proteins has been
reported in adipose, cardiac, SKM, brain, and lung (Sueblinvong
et al., 2014; Steiner et al., 2015b; Mouton et al., 2016; Ninh et al.,
2019). This altered ECM phenotype has functional consequences
that can lead to or exacerbate tissue dysfunction and increase
risk for CMS. The major proteins that make up the ECM include
collagens, fibronectin, laminin, elastin, and proteoglycans and the
continuous remodeling of the matrisome relies on the expression
and activity of metalloproteases and their tissue inhibitors
(Poole and Arteel, 2016). Studies using both in vivo and in vitro
preclinical models, and postmortem samples of people with
AUD have shown that alcohol dysregulates matrisome proteins
including laminins, collagen, PAI-1, and tissue plasminogen
activator (tPA) (Trindade et al., 2016; Rubio-Araiz et al., 2017;
Go et al., 2020). In parallel, alcohol increases AGEs (Vasdev et al.,
2006) and the irreversible cross-links of collagens and elastin
are unorganized and have dysfunctional ECM fiber distribution
(Zieman et al., 2005). AGEs also quench NO and generate
peroxynitrite contributing to endothelial dysfunction. In
addition, alcohol-mediated oxidative stress induces transforming
growth factor beta-1 (TGFβ1) (Sueblinvong et al., 2014), which
in turn activates Smad signaling impacting target genes involved
in maintaining ECM homeostasis such as PAI-1, urokinase
plasminogen activator (uPA), and collagen (Seth et al., 2010).
Alcohol dysregulates ECM remodeling producing a profibrotic
milieu in SKM (Dodd et al., 2014; Simon et al., 2015) and adipose
tissue (Ford et al., 2018) and these alterations in the matrisome
are associated with decreased SKM metabolic function and
regenerative capacity (LeCapitaine et al., 2011; Simon et al.,
2014; Duplanty et al., 2018; Ford et al., 2018) in SIV-infection.
Thus, alcohol-induced dysregulation of the ECM contributes
to tissue injury and risk of CMS. The ECM plays an important
role in brain development, maturation of neural circuits, and
adult neuroplasticity, suggesting that processes that affect

composition or turnover of brain ECM could impair brain
function and contribute to development of neuropsychiatric
or neurodegenerative disease (Lubbers et al., 2014; Senkov
et al., 2014). Studies show that alcohol affects the regulation
of brain ECM through various mechanisms throughout the
lifespan. Because of the important role the ECM plays in synaptic
processes affected by alcohol exposure, brain ECM remodeling
may be an important contributor to the pathophysiology of AUD
(Lasek, 2016) and is an area worthy of further investigation.

Taken together, data from clinical and preclinical studies
strongly suggest that neuropathological comorbidities in PLWH
result from a constellation of pathophysiological mechanisms
including metabolic dyshomeostasis, neuroinflammation
(Perkins et al., 2019; Delery and Edwards, 2020), and loss of
neurotrophic support (Somkuwar et al., 2016; Maxi et al., 2019;
Silva-Pena et al., 2019). Comorbid at-risk alcohol use exacerbates
these neuropathological processes (Zahr, 2018) and a greater
understanding of these mechanisms will lead to new and more
effective pharmacological and behavioral strategies for treating
AUD (Ray et al., 2021).

CONCLUSION

The multisystemic pathophysiological effects of at-risk alcohol
use alter underlying cellular and organ homeostasis predisposing
the host for increased risk for comorbidities. These alterations
are particularly salient in vulnerable populations such as those
with chronic diseases, diminishing physiological reserve and
increasing vulnerability to tissue injury resulting from direct
and indirect effects of alcohol. In PLWH, at-risk alcohol use
exacerbates cardiometabolic and neurocognitive pathologies that
together with chronic use of ART lead to development of geriatric
comorbidities manifested in frailty. Overall, these data strongly
support the association of AUD with accelerated biological
aging and enhanced risk for comorbidities. Interventions
aimed at diminishing at-risk alcohol use are urgently needed
in this vulnerable population. Greater understanding of the
underlying mechanisms and their specific contribution to
comorbidity risk is likely to identify therapeutic targets to
ameliorate tissue injury and protect organ systems from the
combined impact of HIV infection, chronic ART, and alcohol-
mediated tissue injury.
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