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Abstract
Purpose: Radiation treatment interruption associated with unplanned hospitalization remains understudied. The intent of this study
was to benchmark the frequency of hospitalization-associated radiation therapy interruptions (HARTI), characterize disease processes
causing hospitalization during radiation, identify factors predictive for HARTI, and localize neighborhood environments associated
with HARTI at our academic referral center.
Methods and Materials: This retrospective review of electronic health records provided descriptive statistics of HARTI event rates at
our institutional practice. Uni- and multivariable logistic regression models were developed to identify significant factors predictive for
HARTI. Causes of hospitalization were established from primary discharge diagnoses. HARTI rates were mapped according to patient
residence addresses.
Results: Between January 1, 2015, and December 31, 2017, 197 HARTI events (5.3%) were captured across 3729 patients with 727 total
missed treatments. The 3 most common causes of hospitalization were malnutrition/dehydration (n = 28; 17.7%), respiratory distress/infection
(n = 24; 13.7%), and fever/sepsis (n = 17; 9.7%). Factors predictive for HARTI included African-American race (odds ratio [OR]: 1.48; 95%
confidence interval [CI], 1.07-2.06; P = .018), Medicaid/uninsured status (OR: 2.05; 95% CI, 1.32-3.15; P = .0013), Medicare coverage (OR: 1.7;
95% CI, 1.21-2.39; P = .0022), lung (OR: 5.97; 95% CI, 3.22-11.44; P < .0001), and head and neck (OR: 5.6; 95% CI, 2.96-10.93; P < .0001)
malignancies, and prescriptions >20 fractions (OR: 2.23; 95% CI, 1.51-3.34; P < .0001). HARTI events clustered among Medicaid/uninsured
patients living in urban, low-income, majority African-American neighborhoods, and patients from middle-income suburban communities,
independent of race and insurance status. Only the wealthiest residential areas demonstrated low HARTI rates.
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Conclusions: HARTI disproportionately affected socioeconomically disadvantaged urban patients facing a high treatment burden in
our catchment population. A complementary geospatial analysis also captured the risk experienced by middle-income suburban
patients independent of race or insurance status. Confirmatory studies are warranted to provide scale and context to guide intervention
strategies to equitably reduce HARTI events.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Radiation therapy (RT) is an integral component of can-
cer care. Approximately 50% of all patients with cancer will
undergo at least 1 course of radiation treatment.1 Optimal
tumor control requires strict adherence to daily treatment
scheduling. Unplanned interruptions are associated with
inferior outcomes, including reduced overall survival.2-8

Hospitalization during RT is a severe, potentially pre-
ventable complication of treatment.9,10 Limited data are
available to identify specific causes for hospitalization dur-
ing RT.10 The purpose of this study was to catalog hospitali-
zation rates during RT and identify patient-specific
demographic, clinical, and treatment factors predictive for
hospitalization-associated RT interruptions (HARTI) at our
academic referral center. We also employed a secondary
geospatial analysis to identify residential neighborhood
environments most closely associated with interruption
events to localize the potential need for interventional sup-
port to protect vulnerable populations.11
Methods and Materials
Patient population

Institutional review board approval was obtained to
examine the electronic health records of patients receiving
radiation treatment. Patients were included in the study if
they were scheduled to begin RT between January 1, 2015,
and December 31, 2017. Only those who initiated therapy
were included in the study.
Outcome measures

The primary outcome of the study was frequency of
HARTI, defined as any unplanned cancellation of sched-
uled RT associated with hospitalization during RT. Hospi-
talization was defined as emergency department visits, as
well as inpatient admissions with levels of care ranging
from observation to the intensive care unit.

Secondary outcomes included causes of hospitalization
defined by patient primary diagnoses at the time of dis-
charge, as well as identification of patient-specific demo-
graphic, clinical, and treatment factors significantly
predictive for HARTI.
Data collection

Patient demographic, clinical, and treatment informa-
tion was compiled from electronic medical records. Patient
predicted income was categorized according to median
household income from the 2016 federal census informa-
tion at the census tract level, and stratified into low (<
$34,000), middle ($34,000-$67,000), and high (>$67,000)
thirds for the statistical analysis. Residence addresses were
mapped at the ZIP code level for the purpose of geospatial
analysis. The season in which patients began treatment was
divided into winter (November-February) or nonwinter
(March-October). Travel distance to the treating facility for
individual patients was measured from residence ZIP code
centroids. Rurality of patient home address was defined
according to the U.S. Department of Agriculture 2013 Rural
−Urban Continuum Codes.
Statistical analysis

Descriptive statistical analyses were performed to clas-
sify the frequency of HARTI events across demographic,
clinical, and treatment variables.2 tests were performed to
determine significance. Post hoc pairwise x2d tests were
used to further identify significant factors within each cat-
egorical variable. Univariable logistic regression models
were developed to determine significant factors among
those previously identified to predict any interruption
event.12-14 Subsequent stepwise logistic regression models
identified those variables most predictive for HARTI, and
a multivariable logistic regression model was created to
determine significant independent predictors. P-values
were 2-sided, and P < .05 was considered statistically sig-
nificant. All analyses were performed using RStudio, ver-
sion 1.3.959 (PBC, Boston, MA), and SAS, version 9.4
(SAS Institute, Inc, Cary, NC).
Geospatial analysis

Frequency of HARTI was mapped at the level of resi-
dence ZIP codes and stratified according to patient race
and insurance status to identify HARTI hotspots. Geo-
graphic data were plotted with RStudio, version 1.3.959
(PBC, Boston, MA), using the GIS package, and ggmap:
Spatial Visualization was performed with ggplot2.15
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Table 1 Study cohort characteristics and hospitalization-associated RT interruption likelihood

Number (%)
Frequency of hospitalization-associated
RT interruption, n (%)

Total 3729 197 (5.3)

Sex

Male 1664 (44.6) 6.0

Female 2065 (55.4) 4.7

Age, mean, y 61.2

<65 2195 (58.9) 5.1

≥65 1534 (41.1) 5.6

Race

White 2032 (54.5) 4.4*

African-American 1577 (42.3) 6.3*

Other 120 (3.2) 6.7

Ethnicity

Hispanic 50 (1.3) 6.0

Non-Hispanic 3540 (94.9) 5.2

Unknown 139 (3.7) 7.9

Marital status

Married 1967 (52.7) 4.3*

Unmarried 1648 (44.2) 6.4*

Unknown 114 (3.1) 5.3

Patient predicted income

Low (<$34k) 1012 (27.1) 4.4

Middle ($34-67k) 1532 (41.1) 5.6

High (>$67k) 1149 (30.8) 5.7

Unknown 36 (1.0) 5.6

Geography of residence

Rural not by metro 114 (3.0) 0.9

Rural by metro 201 (5.4) 3.0

Metro 3428 (91.6) 5.6

Distance from RT, mile

0-5 1108 (29.9) 6.6

6-10 1175 (31.7) 5.6

11-15 503 (13.6) 3.8

16-20 220 (5.9) 6.9

21-30 253 (6.8) 4.8

31-40 110 (3.0) 1.9

>40 337 (9.1) 3.3

Insurance type

Commercial 1794 (48.1) 3.5*

Medicare 1503 (40.3) 6.3*

Medicaid/no insurance 432 (11.6) 9.0*

(continued on next page)
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Table 1 (Continued)

Number (%)
Frequency of hospitalization-associated
RT interruption, n (%)

Medicaid 221 (5.9) 7.7

No insurance 211 (5.7) 10.4*

Diagnosis

Breast 974 (26.1) 1.7*

Prostate 413 (11.1) 3.4

Lung 353 (9.5) 10.8*

Gynecologic 226 (6.1) 6.2

Head and neck 402 (10.8) 10.7*

Gastrointestinal 238 (6.4) 5.0

Central nervous system 148 (4.0) 4.7

Metastasis 490 (13.1) 4.1

Skin 123 (3.3) 5.7

Soft tissue 53 (1.4) 3.8

Hematologic 146 (3.9) 2.7

Other 163 (4.4) 13.4

Treatment season

Nonwinter (March-October) 2455 (65.8) 5.7

Winter (November-February) 1274 (34.2) 4.6

Prescribed fractions

1-5 421 (11.3) 1.2*

6-10 494 (13.2) 5.7

11-15 195 (5.2) 5.1

16-20 586 (15.7) 2.2*

21-25 368 (9.9) 4.6

26-30 976 (26.2) 7.0*

>30 689 (18.5) 8.1*

RT, radiation therapy
* Denotes statistical significance
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Results
Cohort characteristics

A total of 3729 patients received 72,964 fractions of EBRT
between January 1, 2015, and December 31, 2017, with an
average prescription of 20 fractions. Of the 3729 patients,
3487 (93.5%) completed the entire prescribed regimen.
Patient characteristics are described in Table 1. Average
patient age was 61.2 years, 2065 patients (55.4%) were female,
and 2195 (58.9%) were age <65 years. In addition, 2032
patients (54.5%) were White, 1577 (43.3%) African-Ameri-
can, and 120 (3.2%) reported a race other thanWhite or Afri-
can-American. Hispanic ethnicity was reported by 50 patients
(1.3%). A total of 1967 patients (52.7%) were married.
Insurance status was recorded as commercial for
1794 (48.1%), Medicare for 1503 (40.3%), and Medic-
aid/uninsured for 432 (11.6%; 221 Medicaid and 211
uninsured patients; 5.9% and 5.7%, respectively)
patients. In addition, 1012 patients (27.1%) fell within
the low, 1532 (41.1%) within the medium, and 1149
(30.8%) within the high patient predicted-income cate-
gories. The most common sites treated were breast
(n = 974; 26.1%), metastases (n = 490; 13.1%), and
prostate (n = 413; 11.1%) with 976 patients (26.1%)
receiving most commonly 26 to 30 fractions, 689
(18.5%) receiving >30 fractions, and 586 receiving
(15.7%) 16 to 20 fractions.

Most patients (n = 2455; 65.8%) began treatment in
nonwinter months. The mean distance between patient



Table 2 Primary causes of hospitalization

Number (%)
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residence and treatment facility was 23.7 miles, with a
median of 9.1 miles (standard deviation: 103.3; interquar-
tile range, 5.4-15.6).
Total 175 (100)

Principal problem

Malnutrition/dehydration 28 (17.7)

Respiratory distress/infection 24 (13.7)

Fever/sepsis 17 (9.7)

Pain control 16 (9.1)

Renal dysfunction 15 (8.6)

Chest pain 15 (8.6)

Neurologic dysfunction 10 (5.7)
Hospitalization-associated radiation therapy
interruption

HARTI was observed in 197 patients (5.3%) with a
total of 727 scheduled treatments missed. Patients missed
between 1 and 21 treatments, with a median of 2 treat-
ments and mean of 3.69 treatments (standard deviation:
4.13; interquartile range, 1-5). Of the 197 patients, 83
(42.1%) missed only 1 treatment.
Percutaneous endoscopic gastrostomy tube
complication

9 (5.1)

Radiation mucositis/dermatitis 9 (5.1)

Acute bleeding episode 7 (4)

Urinary tract infection 5 (2.1)

Soft tissue infection 5 (2.1)

Other 15 (8.6)
Causes of hospitalization

Of the 197 patients to experience HARTI, an identifi-
able cause of hospitalization was found in 175 patients.
Table 2 details the most common principal problems
associated with hospitalization as determined by primary
discharge diagnoses. The most common primary disease
processes leading to hospitalization were malnutrition/
dehydration (n = 28; 28.7%), respiratory distress or infec-
tion (n = 24; 13.7%), fever/sepsis (n = 17; 9.7%), inade-
quate pain control (n = 16; 9.1%), renal dysfunction
(n = 15; 8.6%), and chest pain (n = 15; 8.6%).
Predictive factors for hospitalization-
associated radiation therapy interruptions

Table 1 details the proportion of patients who expe-
rienced HARTI among several demographic, clinical,
and treatment factors. A ꭓ

2 analysis identified statisti-
cally significant differences in the proportion of
patients experiencing HARTI among each factor.
Increased likelihood of HARTI was seen among Afri-
can-American (6.3% vs 4.4% for White; P = .016) and
unmarried (6.4% vs 4.3% for married; P = .007)
patients. A pairwise x2d analysis further demonstrated
that patients treated for lung (10.8%) and head and
neck (10.7%) malignancies were significantly more
likely to experience HARTI compared with patients
treated for breast (1.7%) malignancies.

Patients treated for malignancies with regimens com-
posed of 26 to 30 (7.0%) and >30 (8.1%) fractions were
more likely to experience HARTI compared with those
with treatment regimens composed of either 1 to 5 (1.2%)
or 16 to 20 (2.2%) fractions. Medicare patients were
almost twice as likely to experience HARTI (6.3% vs 3.5%
for commercially insured; P = .0002), and Medicaid/unin-
sured patients almost 3 times as likely (9.0% vs 3.5%; P <
.0001) with 10.4% of uninsured patients experiencing
HARTI (P < .0001 vs commercial).
Uni- and multivariable analyses of
hospitalization-associated radiation therapy
interruptions

Findings for both uni- and multivariable analyses
models predicting HARTI are described in Table 3. On
multivariable analysis, African-American patients had an
almost 50% greater odds to experience HARTI (odds ratio
[OR]: 1.48; 95% confidence interval [CI], 1.07-2.06;
P = .018) compared with White patients. Additionally,
both Medicare (OR: 1.7; 95% CI, 1.21-2.39; P = .0022)
and Medicaid/uninsured (OR: 2.05; 95% CI, 1.32-3.15;
P = .0013) patients had greater odds of HARTI compared
with patients with commercial insurance. Patients treated
with >20 fractions were more likely (OR: 2.23; 95% CI,
1.51-3.34; P < .0001) to experience HARTI than those
receiving <20 fractions. Compared with patients treated
for breast cancer, significantly higher odds of HARTI
were seen among patients treated for lung (OR: 5.97; 95%
CI, 3.22-11.44; P < .0001), head and neck (OR: 5.6; 95%
CI, 2.96-10.93; P < .0001), gynecologic (OR: 2.57; 95% CI,
1.20-5.40; P = .013), gastrointestinal (OR: 2.55; 95% CI,
1.13-5.56; P = .02), central nervous system (OR: 2.71; 95%
CI, 1.00-6.60; P = .036), metastatic (OR: 3.46; 95% CI,
1.69-7.13; P = .0007), and skin malignancies (OR: 4.37;
95% CI, 1.58-11.01; P = .0026).

Variables predictive for HARTI on univariable analysis
that did not reach statistical significance on multivariable
analysis included marriage status and travel distance to
treatment facility.



Table 3 Analysis of hospitalization-associated radiation therapy interruptions by study cohort characteristics

Univariable model Multivariable model

Unadjusted odds ratio
(95% confidence interval) P-value

Adjusted odds ratio
(95% confidence interval) P-value

Sex

Male Reference Reference

Female 0.77 (0.58-1.03) .076 1.33 (0.93-1.88) .12

Age, y, mean

≥65 Reference Reference

<65 0.9 (0.67-1.20) .46 1.1 (0.71-1.70) .68

Race

White Reference Reference

African-American 1.48 (1.10-1.98) .009* 1.48 (1.07-2.06) .018*

Other 1.56 (0.68-3.11) .24 1.49 (0.64-3.06) .32

Marital status

Married Reference Reference

Unmarried 1.38 (1.03-1.85) .032* 0.4 (0.02-4.36) .48

Patient predicted income

High (>$67k) Reference Reference

Middle ($34-67k) 0.98 (0.71-1.37) .92 0.97 (0.69-1.38) .88

Low (<$34k) 0.77 (0.52-1.13) .19 0.85 (0.56-1.28) .43

Geography of residence

Metro Reference Reference

Rural not by metro 0.15 (0.01-0.68) .061 0.15 (0.008-0.67) .058

Rural by metro 0.52 (0.20-1.09) .12 0.51 (0.20-1.09) .12

Distance from radiation therapy, mile

0-5 Reference Reference

6-10 0.83 (0.59-1.17) .29 0.82 (0.57-1.17) .27

11-15 0.56 (0.32-0.91) .026* 0.7 (0.40-1.16) .18

16-20 1.04 (0.57-1.81) .88 1.26 (0.67-2.24) .46

21-30 0.71 (0.36-1.27) .28 0.76 (0.38-1.40) .4

31-40 0.27 (0.043-0.86) .068 0.32 (0.05-1.09) .13

>40 0.48 (0.24-0.87) .025* 1.32 (0.46-3.21) .58

Insurance type

Commercial Reference Reference

Medicare 1.85 (1.34-2.58) .0002* 1.7 (1.21-2.39) .0022*

Medicaid/no insurance 2.73 (1.79-4.11) < .0001* 2.05 (1.32-3.15) .0013*

Medicaid 2.29 (1.28-3.90) .0034* 1.56 (0.85-2.73) .13

No insurance 3.20 (1.89-5.24) < .0001* 2.64 (1.53-4.43) .0003*

Diagnosis

Breast Reference Reference

Prostate 1.98 (0.95-4.06) .061 1.73 (0.76-3.89) .19

Lung 6.82 (3.86-12.55) < .0001* 5.97 (3.22-11.44) < .0001*

(continued on next page)
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Table 3 (Continued)

Univariable model Multivariable model

Unadjusted odds ratio
(95% confidence interval) P-value

Adjusted odds ratio
(95% confidence interval) P-value

Gynecologic 3.73 (1.79-7.69) .0004* 2.57 (1.20-5.40) .013*

Head and neck 6.77 (3.88-12.34) < .0001* 5.6 (2.96-10.93) < .0001*

Gastrointestinal 3.00 (1.38-6.33) .0042* 2.55 (1.13-5.56) .02*

Central nervous system 2.81 (1.07-6.63) .024* 2.71 (1.00-6.60) .036*

Metastasis 2.41 (1.25-4.69) .0087* 3.46 (1.69-7.13) .0007*

Skin 3.41 (1.30-8.09) .0076* 4.37 (1.58-11.01) .0026*

Soft tissue 2.22 (0.35-8.02) .3 1.94 (0.30-7.23) .39

Hematologic 1.59 (0.45-4.37) .41 2.28 (0.63-6.57) .16

Other 7.67 (3.89-15.25) < .0001* 8.4 (4.07-17.45) < .0001*

Treatment season

Nonwinter (March-October) Reference Reference

Winter (November-February) 0.77 (0.56-1.06) .11 0.81 (0.58-1.12) .22

Prescribed fractions

1-20 Reference Reference

>20 2.18 (1.60-3.02) < .0001* 2.23 (1.51-3.34) < .0001*

*Denotes statistical significanceasd
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Geospatial analysis of hospitalization-
associated radiation therapy interruptions

The greater Memphis metropolitan region has been
historically shaped by racial and socioeconomic segrega-
tion. Central Memphis is comprised predominantly of
African-American neighborhoods, clustered into areas
with limited social resources apart from a smaller major-
ity of White neighborhoods. Suburban/exurban Memphis
has gradually become more racially diverse, but remains
the majority White with affluent regions interspersed
with middle and low-income rural ZIP codes.

A geospatial analysis of our patient’s reported home
addresses mapped at the ZIP code level (Figs. 1 and 2)
identified associations between HARTI and patient home
location. The highest rates were observed in Medicaid/
uninsured patients living in urban, low-income, majority
African-American neighborhoods. Moving outward from
downtown, elevated HARTI rates were observed in mid-
dle-income suburban ZIP codes independent of patient
race and insurance coverage. Only the wealthiest ZIP
codes (so-called “Poplar Corridor” of East Memphis)
demonstrated low rates of HARTI events.
Discussion
The Southeastern United States experiences some of the
worst cancer outcomes in the country,16 attributable in part
to socioeconomic burdens endemic to the region, such as
increased rurality and poverty, which are predictive for
increased cancer mortality burden.17-19 In our Mid-South-
ern academic referral practice, we have identified candidate
risk factors for RT interruption associated with unplanned
hospitalization. African-American race, Medicaid/unin-
sured status, Medicare coverage, longer treatment regimens
of >20 fractions, and disease sites associated with high radi-
ation toxicity were predictive for HARTI. Government-
based coverage or lack of insurance was associated with up
to a 200% greater risk of HARTI compared with commer-
cial insurance. African-American patients faced a nearly
50% increased risk, and patients with head and neck or
lung cancer experienced almost 6 times the risk experienced
by patients with breast malignancies.

The mechanistic pathways by which upstream social
risk and health status factors affect radiation treatment
quality are complex and difficult to disentangle. Various
theories have been proposed to simplify the explanation
of persistent associations between social risk factors and
health disparities in the face of ongoing improvement in
public health and medical interventions over time.20 The
fundamental cause theory is specifically relevant to our
current study. As proposed and tested by Link and Phe-
lan,21 this theory in simplest terms postulates that
improvements in disease control fuel paradoxical health
shortfalls in disadvantaged groups, because advantaged
individuals enjoy preferential access to such improve-
ments. Privileged populations are less exposed to the



Figure 1 Geospatial analysis of hospitalization-associated radiation therapy interruption rates, stratified according to
patient race. Median household income is mapped at census tract level according to prespecified categories. Greater hospi-
talization-associated radiation therapy interruption rates are denoted by larger bubbles plotted at ZIP code centroids.
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causes of preventable disease and, when affected, are bet-
ter treated by virtue of better access to resources.

Empirical data support the explanatory value of this
model across numerous infectious, chronic disease, and
mortality rate case examples,22-26 including race/ethnic-
ity-specific COVID-19 transmission patterns observed in
the United States.27 In the case of HARTI, disadvantaged
groups (eg, minority race and/or those without commer-
cial insurance) potentially face the greatest risk exposure
to preventable chronic disease, including cancer. When
faced with the need for full-course RT for high-burden
cancer diagnoses (eg, head and neck, lung), these patients
lack social, financial, and medical support to manage tox-
icity and comorbidities at home. Hospitalization and RT
interruptions ensue, leading to preventable financial cost,
morbidity, and outcome disparities.

Although identification of specific root causes responsible
for HARTI events in this study were outside the scope of
work, a secondary geospatial analysis provided insight into
residential environments associated with risk. HARTI
affected more patients living in urban, low-income, majority
−minority neighborhoods, as well as suburban, low−middle
income areas. Expected income appeared to be more tightly
associated with HARTI risk than race or insurance in the
suburban setting, which echoes data demonstrating a tight
geographic association between entrenched county/ZIP
code-level poverty and cancer mortality,18 even in the coop-
erative group trial setting.28 Access to local assets and social
networks intertwine with patient-level socioeconomic factors
to determine individual vulnerability.11-13,29 Validated iden-
tification of specific social, financial, environmental, and
health risks mechanistically responsible for HARTI risk in
specific patients will be required to effectively triage support-
ive intervention strategies. Automated warehousing and
linkage of high-dimensional, population-level, social risk
data to individual-level electronic health record data are a
realistic, testable strategy to achieve these strategies.30,31

Previous studies have focused on Medicaid status or
lack of insurance as predictive risk factors for RT
interruption.12,13 We identified a novel risk for HARTI in
our Medicare patient population, potentially attributable to
coexisting health issues in this older population. Up to 70%
of Medicare beneficiaries have at least 2 chronic conditions
and 14% have ≥6 comorbidities requiring treatment.32 Such
comorbidities can be reasonably presumed to predispose
Medicare patients to increased radiation-related toxicity,



Figure 2 Geospatial analysis of hospitalization-associated radiation therapy interruption rates stratified according to
patient insurance. Median household income is mapped at census tract level according to prespecified categories. Greater
hospitalization-associated radiation therapy interruption rates are denoted by larger bubbles plotted at ZIP code centroids.
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thereby increasing their risk of hospitalization,33-35 which
would be a testable hypothesis in confirmatory studies.

Progression of toxicity to the point of unplanned hospi-
talization may signal inadequacies in supportive manage-
ment and/or coordination with primary care providers.
Individualized supportive care strategies employing the
real-time, automated collection of patient-reported toxicities
and responsive supportive care have been shown to be effec-
tive during chemotherapy,36-38 and could be formally inves-
tigated in the radiation treatment setting. Many of the
causes for hospitalization we found were preventable, and
could be identified by upfront patient risk stratification.
Many hospitalizations could be preempted by primary care
teams already familiar with the patients. Unfortunately, for-
mal coordination pathways between cancer and primary
providers remain relatively understudied, and are a straight-
forward path toward holistic care.39-41 Other institutions
have investigated the implementation of other interven-
tions, such as patient symptom inventories and intensified
visit schedules, and have found these to significantly reduce
hospitalizations during cancer treatment.9,42
Reducing hospitalization during RT would potentially
provide a significant value. Patients would benefit
from optimized cancer treatment outcomes and reduced
suffering. All stakeholders, notably provider systems and
insurers, would directly benefit from cost savings
and improved capacity. From the perspective of Medicare,
the average cancer diagnosis-related hospitalization can
generate costs totaling more than twice the expected
charges for a standard-fractionated radiation treatment
course.43,44 All patients, insured or uninsured, share direct
out-of-pocket expenses from hospitalizations. Stressed
families and caregivers are additionally affected by indi-
rect costs and lost income opportunities.

Our study has limitations affecing the interpretation
and generalizability of our findings. First, this study has a
relatively small study population sampled from a single
metropolitan region and managed by 1 provider system,
with only 197 HARTI events captured. Of note, the full
Memphis region surrounding our academic care center is
served by several hospital systems, each with siloed elec-
tronic health record platforms. If any patients were
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admitted to outside hospitals in the area, their respective
HARTI events would not have been captured. Second,
causes for hospitalization were cataloged retrospectively
from discharge diagnoses; thus, conclusive associations
(or lack of association) of hospitalization events with can-
cer-specific treatment was not possible to establish.

Third, effect specific to hospitalization on downstream
cancer outcomes relative to RT interruption was not
addressed by this data. Finally, some ZIP codes in outlying
suburban areas contained small total numbers of captured
patients, so any single event would disproportionately affect
the risk metric. Full regional sampling of all patients with
cancer treated with RT in the region would be required to
correct for this. Prompted by COVID-19, we are creating a
unified public health observatory for the full Memphis
region to achieve this goal in future studies.45 We expect
our baseline results to focus more definitive work toward
candidate neighborhoods and patient populations most in
need.
Conclusions
At our academic referral practice, we found that RT
interruptions during unplanned hospitalizations were
associated with Medicaid/uninsured or Medicare cover-
age, African-American race, prolonged treatment course,
and treatment of sites with high symptomatic burden
requiring intensive treatment. A complementary geospa-
tial analysis identified risk hotspots in low-income, urban,
majority African-American neighborhoods, as well as
suburban low−middle income areas independent of race
or insurance coverage. These findings are hypothesis-gen-
erating, and require additional context via scaled-up sam-
pling from a wider assortment of U.S. cities. Nonetheless,
this work promises to guide design and validation of indi-
vidualized social interventions to meaningfully reduce RT
outcome disparities.
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