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ABSTRACT Digital imagery can help to quantify seasonal changes in desirable crop phenotypes that can be treated as quantitative
traits. Because limitations in precise and functional phenotyping restrain genetic improvement in the postgenomic era, imagery-based
phenomics could become the next breakthrough to accelerate genetic gains in field crops. Whereas many phenomic studies focus on
exploratory analysis of spectral data without obvious interpretative value, we used field images to directly measure soybean canopy
development from phenological stage V2 to R5. Over 3 years, we collected imagery using ground and aerial platforms of a large and
diverse nested association panel comprising 5555 lines. Genome-wide association analysis of canopy coverage across sampling dates
detected a large quantitative trait locus (QTL) on soybean (Glycine max, L. Merr.) chromosome 19. This QTL provided an increase in
yield of 47.3 kg ha21. Variance component analysis indicated that a parameter, described as average canopy coverage, is a highly
heritable trait (h2 = 0.77) with a promising genetic correlation with grain yield (0.87), enabling indirect selection of yield via canopy
development parameters. Our findings indicate that fast canopy coverage is an early season trait that is inexpensive to measure and has
great potential for application in breeding programs focused on yield improvement. We recommend using the average canopy
coverage in multiple trait schemes, especially for the early stages of the breeding pipeline (including progeny rows and preliminary
yield trials), in which the large number of field plots makes collection of grain yield data challenging.
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INFORMATIONon spectral reflectance obtained fromdigital
imagery can indicate a plant’s chemical composition and

physical properties. Imagery also provides useful information
about plant architecture (Yol et al. 2015). Image data can
produce multiple time series and spectral indices (White
et al. 2012), for which limiting factors include the frequency
withwhich pictures are taken during the growing season, and
the capabilities of the camera or sensor in a given wavelength
spectrum (Andrade-Sanchez et al. 2014). Recent phenomic
studies employing imaging have focused onmulti- and hyper-
spectral capabilities (Yang et al. 2013; Kumar et al. 2015),
with minimal investigation of time series of images for cap-
turing crop development and canopy architecture (Schunk
et al. 2012). Yet plant architecture comprises a set of feature-

driven traits that can contribute to genetic improvement
of field crops. For instance, dwarfing (an architectural
trait) is well-known for contributing to the yield increases
attained from the Green Revolution (Hammer et al. 2009;
Swaminathan 2014).

Imagery-based field phenotyping with high-throughput
platforms has the potential to drive the discovery of novel
traits, and to facilitate routine quantification of architectural,
developmental, physiological, and phenological crop charac-
teristics (Araus and Cairns 2014). Because it allows inexpen-
sive evaluation of large numbers of field plots with multiple
measures in a short period of time (White et al. 2012), such
information provides an efficient framework to tackle pheno-
typing bottlenecks in plant breeding (Furbank and Tester
2011; Araus and Cairns 2014; Kumar et al. 2015).

In contrast to point- or plant-based spectral reflectance,
image analysis allows direct measurement of spatial or field-
based traits that are known to be valuable, such as canopy
coverage and vegetation indices, which are possible to collect
from the field with high-throughput platforms, such as un-
manned aircraft systems (UAS) (Cabrera-Bosquet et al. 2012;
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Liebisch et al. 2015). Additionally, acquisition of imagery
can be a robust approach, regardless of its collection plat-
form, that is less sensitive to technical challenges and
prevailing environmental conditions than other data ac-
quisition methods. Thus, characterization and selection
of phenotypes acquired from image analysis represents
a low-hanging fruit for genetic improvement of yield po-
tential in crops.

Increased crop yields often associate with greater biomass
production (expressed as the product of total incident radi-
ation throughout the duration of crop growth), the amount of
light interception (LI) by crop canopies, and the conversion of
chemical energy into plant dry matter (Richards 2000). Im-
proved LI from rapid canopy development is a significant
contributor to increased biomass, total photosynthesis, and
yield, which makes it an important target when selecting for
genetically superior crops. Richards (2000) proposed that
genetic selection for improved LI has been occurring inadver-
tently since the beginning of crop domestication through the
selection of young, competitive seedlings with fast crop
growth rates, with this resulting in rapid canopy establish-
ment, and, therefore, greater LI during early vegetative
growth. Many canopy parameters play dominant roles in de-
termining source-sink ratios (Board and Harville 1993) along
with light-use efficiency of the plant’s photosynthetic machin-
ery (Tharakan et al. 2008).

From1924 to 2012, on-farm soybean yields increased�23
kg ha21 annually, due to both improved genetics and im-
proved agronomic practices (Rincker et al. 2014; Specht
et al. 2014; Suhre et al. 2014). Since the introduction of
genomic tools in the past two decades, the rate of yield in-
crease has grown to 66 kg ha21 per year, where 50–66% of
gain is associated with genetic improvement (Board and Kah-
lon 2011; Rowntree et al. 2013). Recently, evaluation of soy-
bean cultivars released between 1923 and 2007 determined
that the greater biomass production and yield potential of
newer cultivars is driven by linear increases in LI, efficiency
of radiation use, and partitioning efficiency (Koester et al.
2014). At present, much of the existing genetic variation
in photosynthetic efficiency and related processes is con-
fined to undomesticated germplasm (Sherman-Broyles
et al. 2014).

Purcell (2000) developed a precise and rapid technique
using ground-based digital imagery for evaluating seasonal
variation in soybean canopy coverage. The methodology is
based on the binary classification of individual pixels from
plot images into canopy or background, thereby providing a
direct quantification for the percent of canopy coverage on a
continuous scale (Purcell 2000; Karcher and Richardson
2005). This research established a one-to-one relationship
between fractional canopy coverage (determined through
image analysis) and canopy light interception measurements
acquired using a line quantum sensor, thereby facilitating the
use of digital imagery to evaluate seasonal canopy intercep-
tion of photosynthetically active radiation (PAR) (Purcell
et al. 2002; Edwards et al. 2005).While these findings greatly

improved the efficiency with which we can assess LI, this
method is impractical for use in large experiments that re-
quire phenotyping thousands of genetically distinct lines to
determine gene–phenotype associations for complex traits
(Myles et al. 2009).

Rapid canopy development in soybean optimizes growth
dynamic parameters, providing a foundation for a greater
biomass accumulation during the season, and ultimately
greater grain yield potential (Hall 2015); it also favors
early-season weed suppression (Jannink et al. 2010; Fickett
et al. 2013). Canopy coverage can be observed for the entire
season, and it is likely that observed variation has a genetic
basis, and could be a target for genetic improvement. The
objectives of this study were (1) to characterize imagery-
based early-season canopy coverage in soybean as a trait with
quantitative genetic control, (2) to describe the genetic ar-
chitecture of canopy coverage via genome-wide association,
and (3) to provide insight into the application of UAS quan-
tification of canopy parameters for applications in soybean
breeding aimed at improving yield.

Theapplicationofmarker-assistedselection(MAS) inplant
breeding represented a critical step in selection practices
driven by realized genetic information (Muir 2007; Hayes
et al. 2009). The applications of genomic tools evolved to
whole-genome selection techniques, effective in selecting
the favorable alleles in small-effect quantitative trait loci
(QTL) that govern low-heritability traits (Heffner et al.
2009). However, poor phenotypic data quality is a major
limitation for effective use of genomic prediction models
(Cobb et al. 2013; de los Campos et al. 2013). More pre-
cise phenotypic information is necessary to accelerate the
annual rate of genetic gain in field crops in the postge-
nomic era (Henryon et al. 2014). Nevertheless, phenomic
platforms can be successful in crop improvement only
if they satisfy basic requirements that include high-
throughput at a low cost (White et al. 2012; Basu et al.
2015), and the ability to provide meaningful, heritable,
and measurable trait information (Cobb et al. 2013;
Liebisch et al. 2015).

Imagery acquired from ground and aerial platforms was
used to characterize early-season canopy development for
3 years in a next-generation soybean genetic population,
for which we also assessed agronomic performance. We de-
veloped methodology to automatically extract canopy data
from the best quality aerial image of each plot, rather than
using mosaics. Percentage canopy pixels was quantified from
over 70,000 ground images and over 2000 aerial images.
Methods necessary for the analyses include spatial statistics,
generalizedmixed linearmodels, and logistic growth function
to model longitudinal data of canopy coverage for each ge-
netic line. Genomic data for the population helped determine
the genetic architecture of the newly-described soybean trait.
Quantitative genetic properties were evaluated to assess the
application of high-throughput field-based canopy phenotyp-
ing to increase the rate of genetic gain in soybean breeding
pipelines.
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Materials and Methods

Germplasm

The SoyNAM population (www.soynam.org) is a nested asso-
ciationmapping panel consisting of�5600 F5-derived recombi-
nant inbred lines (RILs) that originated as sets of 140 RILs
descended from each of 40 biparental matings of 40 founder
parents with one common, high yielding, hub parent (IA3023).
The RILs exhibit maturities ranging from late MG II to early
MG IV. The 40 founder parents include 17 cultivars or elite
public breeding lines contributed by soybean breeders across
the North Central Region, 15 unique breeding lines developed
to have diverse ancestry, and eight diverse plant introductions
selected for their performance in water-limited environments.
Visual canopy field images of the SoyNAMparents are available
at http://www.soybase.org/SoyNAM/imagebrowser.php. Geno-
typing of the lines employed an Illumina SoyNAM BeadChip
SNP array designed for this population, using 5305 single nu-
cleotide polymorphism (SNP) markers identified from the ge-
nomic sequences of all 41 parental lines. We imputed missing
SNP locus calls using random forest, and removed SNPs with
a minor allele frequency,0.15 (Xavier et al. 2016) using the R
package NAM (Xavier et al. 2015). This left a final total of
4077 SNPs for the association analysis.

Field design

In 2013, 2014, and 2015, we collected phenotypic data from
the SoyNAM population in West Lafayette, Indiana. From
2012 to 2014, the experiment used a modified augmented
design, and an augmented complete block design in 2015.
Line planting took place onMay 20, 2013;May 24, 2014; and
May 23, 2015, at the Purdue University Agronomy Center for
Research and Education (40�28920.599N 86�59932.399W). Ex-
perimental unitswere basedon two-rowplots (0.76 3 2.90 m)
at a density of�35 plants m22. The 2012–2014 experiments
grew all the SoyNAM entries, but the 2015 experiment grew
only the six families (NAM5, NAM 9, NAM12, NAM15,
NAM24, and NAM40) with the largest phenotypic variance
for the traits of interest. The 2015 experiment experienced
mild flood damage.

Canopy coverage

The metric we used to measure canopy coverage was the
percentage of image pixels that were classified as canopy pixels
(Figure 1). We took images at regular intervals from 2 to
8 weeks after planting, which spanned soybean phenological
stages V2–R5 (Fehr et al. 1971). The timeframe of data collec-
tion coincides with all but the final R5–R7 dry matter accumu-
lation period (Egli and Leggett 1973). Collection of image data
used ground-based (2013–2014) and aerial (2014–2015) plat-
forms and images underwent a classification procedure to de-
termine the number of pixels showing the soybean canopy.

Classification of ground-based images used SigmaScan Pro
software according to themethods of Karcher andRichardson
(2005). The Appendix (Supplemental Material, Figure S1)
provides examples of classified ground imagery across the

seasons. Classification of aerial images used a binomial model
implemented in ENVI 5.0 and calibratedwithmanually labeled
training data.

Using a logit link function for each field plot, we fit canopy
coverage observations from multiple sampling dates into a
logistic model, with the canopy coverage (cc) for any point in
time (t) represented as

cct ¼ eðb0 þ b1tÞ

1þ eðb0 þ b1tÞ (1)

where b0 and b1 are the logistic regression coefficients for
any given field plot. This function provided daily canopy
coverage projections that were used to estimate canopy de-
velopment parameters. The single-trait representation of
canopy in this study is the average canopy coverage (ACC),
defined as

ACC ¼
Z tn

t0
f ðcctÞ@ðcctÞ ¼ 1

N

Xtn
t0

cct (2)

where N is the number of observed days, and t0 and tn repre-
sent the first and last day of canopy coverage data collection,

Figure 1 Example canopy imagery of a single plot, used to calculate a
percentage canopy coverage on a given sampling date. (A, B) From aerial
(above; A) or ground (below; B) platforms, with raw (left) and classified
(right) imagery.
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respectively. In essence, the ACC value is an arithmetical mean
of multiple seasonally observed values of canopy coverage.

Ground-based imagery

Collection of images used to infer canopy coverage employed
the methodology described by Purcell (2000). We took Red-
Green-Blue (RGB) pictures (680 3 480 pixels) at the center
of each plot, �1.5 m above the ground, at a 30� angle from
the horizon, using a pocket camera (Canon PowerShot
A400IS), then cropped these to 560 3 480 pixels to avoid
capturing canopy from neighboring plots.

Aerial imagery

In 2014, we collected aerial images using a Precision
Hawk UAS equipped with a Nikon 1-J1 digital camera
(3872 3 2592 pixels). It collected individual images at an
altitude of 100 m, yielding a spatial resolution of 3.25 cm
pixel21. In 2015, it collected images at 50 m using a Nikon
1-J3 digital camera (4608 3 3072 pixels), yielding a spatial
resolution of 1.50 cm pixel21. These images had a 70% lateral
and forward overlap, which allowed image stitching using
Pix4Dmapper software. Image stitching outputs, including esti-
mated camera positions and orientations, and plot map coordi-
nates, helped to extract ortho-rectified image mosaics, digital
surface models, camera positions, and orientations for each
aerial photo, and camera model parameters. These outputs
were registered to map coordinates (easting, northing, and
altitude) using ground control points. We obtained the map
coordinates of the individual plots by gridding the image
mosaics. The map coordinates of the plots, positions, and orien-
tations of the camera, camera model parameters, and a collin-
earity relationship, were used to automatically identify which
plots appeared in which images and extract ortho-rectified im-
ages of the plots directly from the aerial images (Kasser 2002).

Correspondence between platforms

Ganey and Block (1994) reported that canopy coverage esti-
mates from various methods are directly comparable. In
2014, we collected canopy data from both the ground and
the UAS platforms, and calculated ACC values for both plat-
forms. A paired data set comparison provided evidence of
suitably sufficient correspondence between the two plat-
forms (Figure 2), so we elected to collect data from the
UAS platform only in 2015.

Statistical model

Correlation and genome-wide association analysis used ge-
netic values obtained from best linear unbiased prediction
estimators, rather than observed phenotypes of canopy cov-
erage from individual time points. The followingmixed linear
model was used to provide the genetic values

y ¼ 1mþ f ðxÞ þ ZuþWg þ e (3)

where y is the vector of observed phenotypes, m is the in-
tercept, and f(x) is a nonlinear function that accounts for

the spatial heterogeneity of field variation within the blocks
imposed by the field design, where f(x) is computed as the
average phenotypic value of neighbor plots (Lado et al.
2013). Z is the incidence matrix of environment, u is the
vector of regression coefficients of environment effects, W
is the incidence matrix of genotypes, g is the vector of genetic
values, and e is the vector of residuals. Environment and
genotypes were treated as random effects. Random coeffi-
cients were assumed to be normally and independently dis-
tributed as u � Nð0; Is2

uÞ; g � Nð0; Is2
gÞ and e � Nð0; Is2

eÞ:
Association analysis

Genome-wide association analysis used the random effect
model designed for multi-parental populations (Wei and Xu
2015), implemented in the function gwas2 from the R pack-
age NAM (Xavier et al. 2015). Analysis were performed for
individual canopy coverage measurement days spanning 14–
56 days after planting, using a random linear effect model:

g ¼ 1mþ Xaþ cþ e (4)

where g is the vector of genetic values of canopy coverage for
a given point in time fitted in Equation 3, m is the intercept, X
is the incidence matrix of alleles generated from the marker
data and family information, a is the vector of regression
coefficients corresponding to the allele effects,c corresponds
to the polygenic effect that accounts for population structure,
and e is the vector of residuals. Random effect coefficients
were assumed to be normal as a � Nð0; Is2

aÞ; c � Nð0;Ks2
cÞ

and e � Nð0; Is2
eÞ; where K represents the genomic relation-

ship matrix.
We evaluated statistical significance using a likelihood

ratio test by comparing the restricted log-likelihood of the
model with the marker included (L1) to the reduced model
(L0), not including the marker (Xa). Thus,

LRT ¼ 2 2ðL12 L0Þ: (5)

Figure 2 Correspondence between the average canopy coverage mea-
sured from ground or aerial imagery from 2014.

1084 A. Xavier et al.



In the randommodel, theLRT followsamixtureof chi-squared
and binomial distributions (Xavier et al. 2015), with P-values
computed using a chi-squared distribution with 0.5 degrees
of freedom. The Bonferroni threshold that accounts for false
positives under multiple hypothesis testing (a ¼ 0:05) was
used to define which markers were associated with the trait
of interest. The expected threshold for 4077 SNPs markers
was estimated 4.91 –log (P-value).

Phenotyping of agronomic traits

Grain yieldwasmeasured as grams of seed per plot, converted
to kg ha21 using harvest-timed seed moisture to adjust all
plot values to 13% seedmoisture. We collected maturity data
twice a week as the number days after planting (DAP), back
and forward scoring plots that flowered and matured be-
tween the intervals. The criterion for a plot to achieve matu-
rity (R8) was 50% of the plants having 95% of their pods
mature (Fehr et al. 1971).

Variance component analysis

We computed Pearson and Spearman correlations from the
phenotypic data using built-in R functions. A multivariate
mixed linear model estimated covariance components for
each of the three traits: grain yield, days to maturity, and
average canopy coverage. The linear model was presented on
Equation 3, but environment was treated as fixed effect.
Model fitting used the AI-REML algorithm (Gilmour et al.
1995) implemented in AIREMLF90 (Misztal et al. 2002) with
the covariance structure set up as follows:

VarðYÞ ¼
�
K5

X
g
þ I5

X
e

�
(6)

Here K represents the realized genomic relationship ma-
trix. Matrices

P
g
and

P
e
represent the genetic and residual

covariance matrices among the three traits. These covari-
ance components then helped to estimate the heritabil-
ity of average canopy coverage, grain yield, and days to

maturity, as well as the genetic correlations among these
traits.

Data availability

Phenotypes and genotypic data are available in the R package
NAM (https://CRAN.R-project.org/package=NAM). Load
the data using the following command: data(met, package =
“NAM”).

Results and Discussion

Canopy behavior

Individual lines showed the potential to attain full canopy
coverage (100%) as early as 50 DAP, while others did not
reach full coverage within 64 DAP (Figure 3). In the latter
case, lines seemed incapable of closing the canopy entirely in
a production system employing a row spacing of 76 cm. Re-
ports indicate that yield and canopy traits are under similar
genetic control when grown using narrower row spacing,
with slight changes in heritability (Weaver and Wilcox
1982; De Bruin and Pedersen 2008).

Genome-wide association

Sixgenomic regions, on soybeanchromosomes1, 5, 6, 9, 10, and
19, associated with canopy coverage when measured or esti-
mated across all days (Figure 4b). The largest effect QTL de-
tected was on chromosome 19, and it associated with canopy
coverage on all days within the survey period (Figure 4a). The
second largest effect QTL was located on chromosome 10, and
was significant for approximately two-thirds of the survey pe-
riod, from14 to 26 DAP. Table 1 summarizes theQTL detected,
the period during which these QTL were significant, and their
average allelic effects on ACC, grain yield, and maturity.

The existence of large-effect QTL alongwith several nearly
significant associations indicate that ACC is controlled by
major genes in the soybean genome. Another canopy trait,

Figure 3 Development of canopy coverage in the Soy-
NAM population described as logistic curves of canopy
development for individual soybean lines over two or
three seasons. Each curve describes an individual soybean
line. The white dotted curve represents the mean curve.

Phenomic Canopy Coverage in Soybeans 1085

https://CRAN.R-project.org/package=NAM


early-season canopy height, was reported to be heritable
(h2 = 0.64) and genetically correlated to weed-suppression
ability (rx;y ¼ 0:80) (Jannink et al. 2000).

Genome-wide association presented by day (Figure 4a)
shows that the chromosome 19QTLwas significant through-
out the survey period. Other associations were significant
either earlier or later in the season, or when the canopy

was nearly closed (Table 1). Early- and late-season canopy
growth are controlled through independent geneticmechanisms
and can be dissected into distinct traits (Jannink et al. 2001).

Assuming pleiotropy, the estimated increase in grain yield
associatedwith the positive allele of the chromosome 19QTL
was 47.30 kg ha21. Importantly, this increase did not also
increase days to maturity (20.24 days).

Figure 4 Results of the genome-wide association study for canopy coverage. Genomic regions significantly associated with early-season soybean
canopy coverage for 2 or 3 years observed or estimated for (A) each day from 14 to 56 days after planting, and (B) across all days.

Table 1 SNPs significantly associated with early-season soybean canopy coverage and the number of DAP during which they were
significant

SNP
Period of Significant
Association (DAP) GY (kg ha21) R8 (DAP) ACC (%)

Gm01_50911939_C_T 56 226.04 21.12 20.36
Gm05_37467797_A_G 53–56 244.71 0.08 20.65
Gm06_14104090_T_C 56 99.58 0.50 0.55
Gm09_4034850_C_T 14–35, 59–64 12.24 20.60 20.44
Gm010_44120764_T_C 14–23 5.95 20.59 0.04
Gm010_44630777_C_A 14–26 51.61 1.06 0.33
Gm019_1586092_T_C 14–64 47.30 20.24 1.34

Mean change in phenotypic values associated with each QTL in terms of grain yield (GY) expressed as kilograms per hectare, number of DAP to maturity (R8), and the
percentage of ACC, calculated as the allelic substitution of the homozygous founder parent genotype for the homozygous IA3023 genotype.
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Quantitative genetic properties of average
canopy closure

Variance components provide an insight about the level of
genetic and environmental control of the traits of interest,
necessary to estimate heritability (Table 2). At multivariate
level, (co)variances indicate the nature of the relationship
between multiple traits, uncovering whether traits are more
associated at genetic or environmental level (Table 3).

For ACC to be an effective predictor of grain yield potential
in the early stages of breeding pipelines, the phenotypic
correlations, and, more importantly, the genetic correlations,
must be high between the two traits. The genetic correlation
betweengrain yield andACC is quite high (Table 3), but so are
the correlations between days to maturity and ACC, and be-
tween grain yield and days to maturity. However, as noted
above, the main allelic effect of the chromosome 19 QTL
affects ACC and yield, without negatively impacting days to
maturity.

Selection for canopy coverage

A faster rate of canopy coverage development (achieved
through manipulation of crop management practices) in-
creases light interception, suppresses weeds, and has other
beneficial properties (Purcell 2000; Jannink et al. 2001;
Martius et al. 2004; Campillo et al. 2008). As a target for
artificial selection, the trait presents attractive genetic prop-
erties, such as high heritability and strong genetic correlation
with grain yield that allows for indirect selection or predic-
tion of grain yield potential.

For indirect selection to be effective, the response of grain
yield potential when selecting for ACC must be greater than
the response of selecting for yield directly. Very few cases of
successful indirect selection have been reported (Bernardo
2010). The indirect selection equation indicates that efficient
indirect selection for yield at the same selection intensity is
possible with ACC because the correlated response (CR) to
selection for grain yield is 14% greater than the direct re-
sponse (R):

rcc;y ¼
CR
R

¼ h2cc 3 rcc; y
h2y

¼ 0:763 0:88
0:58

¼ 1:14: (7)

In the equation above, h2cc represents the heritability of the
secondary trait (i.e., ACC), rcc;y is the genetic correlation be-
tween primary and secondary traits, and h2y is the heritability
of the primary trait (i.e., grain yield potential). Thus, assum-
ing identical selection intensities, indirect selection of grain

yield using average canopy coverage would be expected to be
better than direct selection for yield. Although the canopy
traits reported by Jannink et al. (2001) did not show maturity-
mediated tradeoffs, use of selection indices including both
ACC and days to maturity may be necessary to mitigate in-
direct increases in maturity.

The use of average canopy coverage to predict lines with
high grain-yield potential when collection of accurate yield
data are not feasible or is challenging. This is often the case
during early generations in a breeding pipeline when yield
data are of low quality due to low seed number, orwhen limited
resources are available for the evaluation of many lines, as in
preliminary yield trials. ACC may also be useful in selection
indices that include grain yield and other valuable traits.

UAS phenotyping and phenomics

From the perspective of genetic improvement of crops, traits
with known properties that can be collected in situ using UAS
platforms are a low-hanging fruit, in particular canopy char-
acteristics and vegetation indices (Cabrera-Bosquet et al.
2012; Liebisch et al. 2015). In addition to being robust, sim-
ple, and cost-effective, these traits are likely more valuable
than measurements made in controlled environments for
physiological characteristics that cannot be translated into
field phenotypes, and which seldom provide economic
advantages (White et al. 2012; Von Mogel 2013). Here, we
have shown canopy coverage to be a highly heritable trait
associated with grain yield potential, possibly the most prom-
ising phenomic trait reported so far.

Accounting for environmental noise

This studyused spatial statistics in itsmodel,whichprovideda
covariate term that accounted for micro-environmental field
variation, or environmental noise, on a plot-by-plot basis
(Lado et al. 2013). Without this adjustment, the heritability
of ACC was estimated to be 0.46 (data not shown), though
the magnitude of the genetic correlation of ACC with grain
yield remained the same. Previous studies (Piepho et al.
2008; Oakey et al. 2016) described the importance of consid-
ering spatial structure among field observations to achieve
proper estimation of statistically-estimated trait values, or
breeding values. Many authors report the challenge of differ-
entiating between signal and noise in phenomic data col-
lected from the field (Cobb et al. 2013; Araus and Cairns
2014; Basu et al. 2015). We conclude that analysis of field
phenomic traits should not ignore spatial information.

Table 2 Variance components of the traits considered in this study

GY R8 ACC

Var(G) 78.80 208.36 25.54
Var(E) 56.12 9.39 8.10
h2 0.58 0.96 0.76

Genetic (G) and environmental (E) variances and heritabilities for soybean grain yield
(GY), and days to maturity (R8), and ACC.

Table 3 Phenotypic Pearson (P), phenotypic Spearman (S), genetic
(G), and environmental (E) correlations among GY, ACC and days
to maturity (R8)

GY-ACC R8-ACC GY-R8

Cor(P) 0.63 0.31 0.42
Cor(S) 0.70 0.38 0.46
Cor(G) 0.88 0.77 0.72
Cor(E) 0.18 20.06 0.23
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Breeding values incorporating phenomic data

Research is beginning to explore the optimal application of
phenomic traits in genetic improvement of crop plants, and
how selection schemes and prediction models should accom-
modate phenomic information. Phenomic quantifications
from field imagery are indicators of plant health and devel-
opment (Liebisch et al. 2015), but inclusion of such measure-
ments as covariates in genomic models can be controversial
(Valente et al. 2015) because they share both a genetic and
an environmental correlation with agronomic traits (Table 3).
Instead, phenomic traits might be more suitably used in multi-
trait models, to improve the accuracy of estimated breeding
values by exploiting genetic correlations, and, therefore, pre-
serve the genetic nature of the association between the target
trait and phenomic trait. We showed that canopy coverage dis-
plays a high correlation with valuable soybean traits (Table 3),
that favors multivariate models and enhances the accuracy of
breeding values.
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