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Abstract
Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related
structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria.
Recently, sialic acids have been discovered as an important compound in the extracellular matrix of virtually all microbial life
and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here,
bioaggregates highly enriched with these bacteria (approx. 95% based on proteomic data) were used to study the production
of NulOs in an enrichment of this microorganism. Fluorescence lectin-binding analysis, enzymatic quantification, and mass
spectrometry were used to analyze the different NulOs present, showing a wide distribution and variety of these carbohydrates,
such as sialic acids and bacterial NulOs, in the bioaggregates. Phylogenetic analysis confirmed the potential of “Ca.
Accumulibacter” to produce different types of NulOs. Proteomic analysis showed the ability of “Ca. Accumulibacter” to reutilize
and reincorporate these carbohydrates. This investigation points out the importance of diverse NulOs in non-pathogenic bacteria,
which are normally overlooked. Sialic acids and other NulOs should be further investigated for their role in the ecology of “Ca.
Accumulibacter” in particular, and biofilms in general.

Key Points
•“Ca. Accumulibacter” has the potential to produce a range of nonulosonic acids.
•Mass spectrometry and lectin binding can reveal the presence and location of nonulosonic acids.
•The role of nonulosonic acid in non-pathogenic bacteria needs to be studied in detail.
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Introduction

Wastewater transports polluting nutrients, such as organic
matter, phosphorus (P), or nitrogen (N). When P and/or N
are in excess, discharging this wastewater into surface

waters leads to eutrophication. Thus, these pollutants must
be eliminated from wastewater streams (Mainstone and
Parr 2002). Enhanced biological phosphorus removal
(EBPR) has become a widely applied treatment to elimi-
nate inorganic phosphorus and organic matter from waste-
water. This technology exploits the metabolic capacity of
polyphosphate-accumulating organisms (PAOs) to take up
inorganic phosphorus and to store it in the form of intra-
cellular polyphosphate. “Candidatus Accumulibacter
phosphatis”, a well-studied model PAO, has been identi-
fied as a dominant species responsible for EBPR (Seviour
et al. 2003). This microorganism has not been isolated
yet. It grows in the form of compact microcolonies and
bioaggregates (flocs, granules, or biofilms) held together
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by extracellular polymeric substances (EPS) (Weissbrodt
et al. 2013; Barr et al. 2016).

EPS is a complex mixture of biopolymers of different na-
ture, such as polysaccharides, proteins, nucleic acids, or lipids,
among others. These biopolymers are synthesized or released
by microorganisms across their life cycle, forming matrices
that provide mechanical stability and act as a scaffold for the
microorganisms in biofilms (Flemming and Wingender
2010). Although research in the past years led to analytical
advances for the extraction and characterization of EPS (Felz
et al. 2016; Boleij et al. 2018; Felz et al. 2019; Boleij et al.
2019), the EPS matrix still represents the “dark matter” of
biofilms that need to be studied in more detail (Neu and
Lawrence 2016; Neu and Lawrence 2017; Seviour et al.
2019). The pragmatic study of individual components (i.e.,
proteins and carbohydrates like monosaccharides and poly-
saccharides) can give new insights into the understanding of
EPS as a whole. Recently, sialic acids have been detected and
described in the EPS of both EBPR and salt-adapted aerobic
granular sludge with the presence of “Ca. Accumulibacter”
using fluorescence lectin-binding analysis (FLBA) coupled
to confocal laser scanning microscopy (CLSM) (Weissbrodt
et al. 2013; de Graaff et al. 2019).

Sialic acids are a subset of a family of α-keto acids with a
nine-carbon backbone, called nonulosonic acids (NulOs).
These carbohydrates are unusual among the various monosac-
charide building blocks of extracellular glycoconjugates,
which normally have five or six carbons. Sialic acids are typ-
ically found as terminal residues on the glycan chains of ver-
tebrate extracellular glycoconjugates, making them the
“bridging” or recognition molecules between cells, as well
as between cells and extracellular matrix (Chen and Varki
2010). The distinct features of sialic acids contribute to higher
structural complexity and the potential for more unique and
varied biological functions, in comparison to other monosac-
charides (Deng et al. 2013).

Looking into the specific chemical structure, sialic acids
a r e d e r i v a t i v e s o f n e u r a m i n i c ( N e u ) a n d
ketodeoxynonulosonic (Kdn) acids. The most studied one is
N-acetylneuraminic acid (Neu5Ac) (Varki et al. 2017). Apart
from these acids, other NulOs have been found only in mi-
crobes, such as the isomers pseudaminic (Pse) and
legionaminic (Leg) acids, which are structurally similar to
sialic acids (Fig. 1a) (Knirel et al. 2003). These NulOs have
recently been described as ubiquitous in the microbial world
(Lewis et al. 2009; Kleikamp et al. 2020a), making their study
and understanding highly relevant.

Despite the different chemical structure, the NulOs share
similarities in their metabolic pathway (Fig. 1c). The common
steps in each NulO biosynthetic pathway (NAB) are catalyzed
by homologous enzymes: the condensation of a 6-carbon in-
termediate with phosphoenol pyruvate (PEP) produces a 9-C
α-keto acid (catalyzed by the enzyme NAB-2); its activation

results from the addition of CMP by the enzyme NAB-1
(Lewis et al. 2009). The different NulOs can be further mod-
ified by additional substitutions on the hydroxyl groups such
as O-acetyl, O-methyl, O-sulfate, O-hydroxybutyryl, O-for-
myl, or O-lactyl groups (Fig. 1b) (Angata and Varki 2002).
A phylogenetic analysis of the NAB-2 enzyme, the most con-
served one in the pathway, can be used to predict the NulO
types synthesized by an organism (Lewis et al. 2009). In the
case of the sialic acids NeuAc and Kdn, the same biosynthetic
mach i n e r y l e a d s t o t h e i r s yn t h e s i s , u s i ng N -
acetylmannosamine or mannose as a starting substrate respec-
tively (Varki et al. 2017).

Investigations of NulOs have been predominantly focused
in animal cells and pathogenic bacteria. Among the large di-
versified NulOs, Neu5Ac is often assumed as the most dom-
inant one present in biological samples. It plays important
roles in recognition processes or stabilization of biomolecules
(Hanisch et al. 2013). In animals, it is crucial to physiological
processes, such as recognition between cells and neuronal
transmission, or diseases such as cancer and autoimmune dis-
eases (Traving and Schauer 1998). In pathogenic bacteria,
NulOs contribute in delaying the host’s immune response by
mimicking the host’s glycosylation pattern (Carlin et al.
2009).

Regardless of the intensive studies of NulOs in animal
tissue and on the surface-related structure of pathogenic
bacteria cells, the presence, production, and function of
NulOs in non-pathogenic bacteria have not been widely
realized and studied. Only very recently, a genome-level
study (Lewis et al. 2009) and a NulO universal survey by
high-resolution mass spectrometry (Kleikamp et al.
2020a) revealed the unexpectedly wide distribution of
nonulosonic acid biosynthesis (NAB) pathway genes and
widespread occurrence of NulOs in non-pathogenic bac-
teria. These discoveries indicate that NulOs must be an
important component in the EPS of bacterial aggregates
in natural and engineered ecosystems, which has been
completely overlooked at present. It also indicates that
the current model of evolution and utilization of sialic
acids in prokaryotes which is driven by host-pathogen
interactions may not reflect the complete picture and need
to be questioned (Lewis et al. 2009; Kleikamp et al.
2020a).

It is known that “Ca. Accumulibacter” is not only the
most abundant and well-studied PAO in EBPR systems
but also contributes to phosphate sequestration and phos-
phate cycling in estuarine systems (Watson et al. 2019). It
is unknown how many types of NulOs can be produced
and what the potential pathways are. Studying the diver-
sity, production, and utilization of NulOs with an enriched
culture of “Ca. Accumulibacter” will add new information
to the ecology of this important microorganism, i.e., if
diverse NulO production is one of the strategies to win
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the competition over other microorganisms in the system.
Furthermore, it will provide valuable insights into the
synthesis and turnover of NulOs (or sialic acids) by non-
pathogenic environmental bacteria. The study of the role
of NulOs outside the pathogen-host interaction will ex-
tend the current understanding of ecology and evolution
of these carbohydrates.

The objective of this research is to confirm the presence,
predict the production, and explore the diversity of NulOs in
“Ca . Accumu l i b a c t e r ” . To ach i eve th i s , “Ca .
Accumulibacter” was enriched using a lab-scale sequencing
batch reactor with EBPR performance (Guedes da Silva
2020). NulOs produced by this biomass were analyzed by a
combination of techniques, such as fluorescence lectin-

Fig. 1 Common metabolic pathway for the biosynthesis of different
NulOs. a Chemical structure of different NulOs. b Possible
modifications of the hydroxyl groups NulOs. c Core (left) and specific
(right) biosynthetic pathways for the different NulOs. The biosynthetic
pathways of the different NulOs branch from UDP-GlcNAc, with the

exception of Kdn. Each arrow represents one enzymatic step. NeuAc
and Kdn share the enzymes involved in the synthesis. (I) mannose-6-
phosphate; (II) N-acetylmannosamine; (III) 2,4-diacetamido-2,4,6-
trideoxy-L-altropyranose; (IV) 2,4-diacetamido-2,4,6-trideoxy-d-
mannopyranose. Adapted from (Lewis et al. 2009)
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binding analysis (FLBA), enzymatic release, and mass spec-
trometry. Genomic and proteomic investigations were con-
ducted to evaluate the diversity of pathways involved in
NulO formation and utilization by “Ca. Accumulibacter”.

Materials and methods

“Ca. Accumulibacter”–enriched biomass and
seawater-adapted aerobic granules

An in-house enrichment culture of “Ca. Accumulibacter” was
used (Guedes da Silva 2020). The enrichment was maintained in
a 1.5-L sequencing batch reactor (SBR), with slight modifica-
tions from the SBR-2 described in Guedes da Silva et al. (2018).
The COD-based acetate to propionate ratio in the feed was 65:35
gCOD/gCOD. Fluorescence in situ hybridization (FISH) showed
the dominance of PAO in the system (approx. 95% of
biovolume), and 16S rRNA gene amplicon sequencing con-
firmed “Ca. Accumulibacter” as the dominant PAO. Proteomic
investigations by Kleikamp et al. (2020b) further confirmed this
dominance (approx. 95%). Seawater-adapted aerobic granules
from de Graaff et al. (2019) were also used in the study. FISH
showed the dominance of PAO in these granules as well.

Nonulosonic acid analyses

Fluorescence lectin-binding analysis (FLBA)

Lectin staining of the biomass was done according to earlier
works (Weissbrodt et al. 2013; Boleij et al. 2018; de Graaff
e t a l . 2019) . Bioaggrega tes enr iched with “Ca .
Accumulibacter” were stained and mounted in coverwell
chambers with a 0.5-mm spacer in order to avoid squeezing
of the samples. Glycoconjugates of the biomass were exam-
ined by means of barcoding with green fluorescent lectins
(Neu and Kuhlicke 2017). Thus, all commercially available
lectins labelled with a green fluorophore (FITC or Alexa488)
were applied as probes individually to different aggregates. A
total of 77 lectins were used to screen glycoconjugates
(Bennke et al. 2013). The binding sites of the sialic acid–
specific lectins that gave the strongest signal are listed in
Table 1. After incubation with the lectin solution, the sample

was washed with tap water for three times in order to remove
unbound lectins. For 3D imaging, a TCS SP5X confocal laser
scanning microscope (Leica, Germany) was employed. The
system comprised an upright microscope and a super contin-
uum light source (white laser). The hardware setup was con-
trolled by the software LAS AF 2.4.1. Confocal data sets were
recorded by using 25× NA 0.95 and 63× NA 1.2 water im-
mersion lenses. Excitationwas at 490 nm and emission signals
were detected simultaneously with two photomultipliers from
480 to 500 nm (reflection) and 505–580 nm (fluorescence).
Image data sets were deconvolved with Huygens version
18.04 using blind deconvolution (SVI, The Netherlands) and
projected with Imaris version 9.2 (Bitplane, Switzerland).
Images were printed from Photoshop CS6 (Adobe).

Nonulosonic acid diversity and enzymatic quantification

The diversity of NulOs in bioaggregates from the “Ca.
Accumulibacter” enrichment and in seawater-adapted aerobic
granules (de Graaff et al. 2019) was analyzed by high-
resolution mass spectrometry according to Kleikamp et al.
(2020a), with the addition of manual verification of lower
abundant species. The Sialic Acid Quantitation Kit (Sigma-
Aldrich, USA) was used to estimate the content of sialic acids
(Neu5Ac as model one) in the enriched “Ca. Accumulibacter”
biomass following the manual instructions. A detailed de-
scription of the protocol can be found in the Supplementary
methods.

Genomic analysis of pathways for biosynthesis of
different nonulosonic acids

BLAST (Basic Local Alignment Search Tool) analysis of key
enzymes

In order to predict the potential production of different NulOs
by “Ca. Accumulibacter”, different near-complete draft
metagenome-assembled genomes (MAGs) of “Ca .
Accumulibacter” (Rubio-Rincón et al. 2019) were studied.
These MAGs were used to get the amino acid sequences of
nonulosonic acid synthases (NAB-2), i.e., the most conserved
enzyme of the biosynthetic pathway, which condensates a 6-
carbon intermediate with pyruvate to produce a 9-carbon α-

Table 1 Sialic acid–specific lectin used in this analysis

Lectin name Abbreviation Ligand motif Reference

Cancer antennarius lectin CCA 9-O-Ac-NeuAc; 4-O-Ac-NeuAc Ravindranath et al. (1985)

Maackia amurensis lectin MAA Neu5Ac(α2-3)Gal(β1-4)GlcNac/Glc Knibbs et al. (1991)

Sambucus nigra lectin SNA Neu5Ac(α2-6)Gal/GalNAc Shibuya et al. (1987)

Wheat germ agglutinin WGA Internal GlcNAc; Neu5Ac Gallagher et al. (1985)
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keto acid (Fig. 1c). A protein sequence alignment versus a
protein database (BLASTp), or a protein sequence alignment
versus a translated nucleotide sequence database (TBLASTn;
when only nucleotide sequences were available) from the
NCBI website (blast.ncbi.nlm.nih.gov/Blast.cgi) was
performed using the sequence of the known N -
acetylneuraminic acid synthase from Campylobacter jejuni
(accession number: CAL35431.1) as query. E-values lower
than 5e-15 were set as positive result and chosen for the phy-
logenetic analysis (Petit et al. 2018).

Phylogenetic analysis of NAB-2 sequences

In order to predict the specific NulO synthesized by the
different NAB-2 enzymes from the MAGs of “Ca.
Accumulibacter”, the phylogenetic method developed by
Lewis et al. (2009) was performed. For this analysis, NAB-
2 amino acid sequences with known specificity from dif-
ferent bacteria, archaea, and animals were employed. Less
conserved enzymes from “Ca. Accumulibacter” (Table 2
M-S) were removed from the analysis in order to improve
the final alignment. The removed sequences might repre-
sent unknown specificities not included in the analysis
(Lewis et al. 2009).

Shotgun proteomic analysis

Shotgun proteomic analysis of the “Ca. Accumulibacter” en-
richment was performed as described in the study of Kleikamp
et al. (2020b). A detailed description of the methodology can
be found in the Supplementary methods.

Results

The enrichment culture of “Ca. Accumulibacter” was derived
from the system described by Guedes da Silva (2020). Data
describing the performance of the enrichment are given by the
authors. As shown by FISH and proteomic data (Kleikamp
et al. 2020b), the bioaggregates used in this research were
highly enriched with “Ca. Accumulibacter” (approx. 95%).

Nonulosonic acid analyses

Fluorescence lectin-binding analysis (FLBA)

Lectins are proteins that bind to specific carbohydrate groups.
Fluorescence-labelled lectins can be used as probes for the in
situ analysis of glycoconjugates in the EPS of bioaggregates

Table 2 Selected NAB-2 enzymes (nonulosonic acid synthase) from
“Ca. Accumulibacter” used for the phylogenetic analysis. Amino acid
sequences were obtained by performing BLASTp using the NAB-2 en-
zyme from C. jejuni (accession number: CAL35431.1) as query. No
accession numbers are provided for the enzymes where no protein

sequences were available as the whole nucleotide sequence was used.
Genomes were recovered from on-line public databases such as NIH
GenBank (GCA accession numbers), NCBI RefSeq (GCF accession
numbers), and JCI MGM (Ga accession numbers)

Enzyme reference Enzyme accession number E-value Genome name Genome accession number

A 2626517415 6.00E-53 “Ca. Accumulibacter sp. UW-2” Ga0078784

B 2689798196 7.00E-53 “Ca. Accumulibacter phosphatis Type IA UW-3” Ga0131788

C 2626510243 7.00E-53 “Ca. Accumulibacter sp. UW-?” Ga0078783

D OJW49354.1 2.00E-49 “Ca. Accumulibacter sp. 66-26” GCA 001897745

E KFB70901.1 3.00E-49 “Ca. Accumulibacter sp. BA-91” GCF 000585035

F OJW47994.1 2.00E-42 “Ca. Accumulibacter sp. 66-26” GCA 001897745

G KFB74173.1 5.00E-40 “Ca. Accumulibacter sp. BA-91” GCF 000585035

H KFB66819.1 6.00E-39 “Ca. Accumulibacter sp. SK-01” GCA 000584955

I KFB76891.1 1.00E-38 “Ca. Accumulibacter sp. SK-02” GCA 000584975

J WP_046535243.1 3.00E-38 “Ca. Accumulibacter phosphatis UW-1” GCA 000024165

K - 7.00E-38 “Ca. Accumulibacter sp. UBA 5574” GCA 002425405

L - 2.00E-37 “Ca. Accumulibacter sp. HKU-2” GCF 000987395

M HCZ15346.1 5.00E-22 “Ca. Accumulibacter sp. UBA11064” GCA 003538495

N HCN68329.1 2.00E-21 “Ca. Accumulibacter sp. UBA 11070” GCA 003535635

O EXI67255.1 7.00E-21 “Ca. Accumulibacter sp. SK-12” GCA 000585015

P - 3.00E-20 “Ca. Accumulibacter sp. UBA 2783” GCA 002352265

Q EXI83869.1 6.00E-20 “Ca. Accumulibacter sp. BA-94” GCA 000585095

R EXI78685.1 7.00E-20 “Ca. Accumulibacter sp. BA-92” GCA 000585055

S RDE52394.1 5.00E-19 “Ca. Accumulibacter sp. UW-LDO-IC” GCA 003332265
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(Neu and Kuhlicke 2017). Intact biomass samples collected
from the “Ca. Accumulibacter” enrichment culture were
screened with 77 lectins (data not shown). Some sialic acid–
specific lectins gave a positive result, such as CCA, WGA,
MAA, and SNA (the binding site of these lectins can be found
in Table 1). Especially, MAA and SNA gave the strongest
signal (Fig. 2a, b). The signals from both lectins were widely
distributed across the aggregate, mainly detected at the surface
of the bacterial cells (a more detailed view can be seen in Fig.
3). SNA recognizes α-2,6-linked sialic acid, while MAA rec-
ognizes α-2,3-linked sialic acid (Soares et al. 2000) (Table 1).
The strong signals from both SNA andMAA lectins indicated
that the sial ic acids on the cel l surface of “Ca .
Accumulibacter” present both types of linkages. In contrast
with SNA and MAA, the distribution of the signal of WGA
showed the presence of lectin-specific glycoconjugates in oth-
er parts of the biomass (Fig. 2c). This may be due to the wider
specificity of WGA (e.g., towards GlcNAc). In addition, al-
though CCA gave a low signal (Fig. 2d), it indicated the pres-
ence of sialic acids with different modifications, as it is spe-
cific for the staining of 9-O or 4-O-acetyl NeuAc.

Nonulosonic acid diversity by mass spectrometry analysis

Lectin staining showed a wide distribution of different sialic
acids in the “Ca. Accumulibacter”–enriched bioaggregates.

However for this, not only the type of NulO but also the same
motifs (linkage type and sub-terminal monosaccharide) can
result in binding. In order to fully explore the diversity of
NulOs, manual verification was added in mass spectrometry
analysis, which allowed the detection of relatively lower
abundant species. Similar as what was reported in Kleikamp
et al. (2020a): bacterial NulOs (Pse/Leg) were found dominant
both in the enrichment and seawater-adapted aerobic granular
sludge, NeuAc was only detected in the latter biomass. Unlike
Kleikamp et al. (2020a), a small amount of Kdn was detected
in the enrichment. Since both samples were enriched with
“Ca. Accumulibacter”, it seems that bacterial NulOs (Pse/
Leg), NeuAc, and Kdn might be the potential NulOs that this
microorganism can produce.

Sialic acid enzymatic release

Bacterial NulOs and sialic acids are widely distributed in the
enriched “Ca. Accumulibacter” biomass. In order to quantify
the amount of sialic acids present in the enrichment, a com-
mercial enzymatic assay was performed, using a broad-
spectrum sialidase (α-(2➔3,6,8,9)-neuraminidase). The en-
zyme releases α-2,3-, α-2,6-, α-2,8-, and α-2,9-linked
NeuAc. The liberated sialic acids are then detected and quan-
tified after a reaction with an aldolase and dehydrogenase.
Unfortunately, no sialic acids were released. This could be

Fig. 2 Confocal laser scanning
microscopy (CLSM) after
fluorescence lectin-binding
analysis (FLBA). Images show
bioaggregates enriched in “Ca.
Accumulibacter”. The
glycoconjugates visualized in a–d
show four different sialic acid–
specific lectins (a MAA, b SNA,
c WGA, d CCA). The reflection
signals either mark reflective
particles associated with the
granules (a, b) or outline the
shape of the granule due to cell
internal reflections (c, d). Color
allocation: green—
glycoconjugates, white—
reflection signal
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due to the specificity of the sialidase which might recognize
only NeuAc, but not other variants of sialic acids (e.g., Kdn)
and bacterial NulOs. According to MS analysis, NeuAc was
present in seawater-adapted aerobic granules, but not in the
enriched “Ca. Accumulibacter” biomass, which explains why
the amount of sialic acids was successfully quantified by the
enzymatic assay in seawater-adapted granules as described in
de Graaff et al. (2019), but was unsuccessful for “Ca.
Accumulibacter” enrichment. In fact, sialidases have been re-
ported to differ in their sensitivity; e.g., it was found that Kdn
is linked to almost all glycan structures in place of NeuAc, but
it has lower sensitivity to sialidase which is specific for NeuAc
(Lambre et al. 1982).

Phylogenetic analysis

Various metagenome-assembled genomes (MAGs) of “Ca.
Accumulibacter” available in public repositories and surveyed
in literature (Rubio-Rincón et al. 2019) were used to predict
the potential diversity of NulOs that “Ca. Accumulibacter”
can produce. The prediction was focused on the NulO syn-
thase (NAB-2), the enzyme that condenses a 6-carbon inter-
mediate with phosphoenol pyruvate to yield a 9-carbonα-keto

acid. This is a common step in the biosynthetic pathway of the
different NulOs and the most conserved enzyme in the meta-
bolic route (Lewis et al. 2009). The enzyme NeuAc synthase
from Campylobacter jejuni (accession number: CAL35431.1)
was used to obtain NAB-2 amino acid sequences from the
different genomes of “Ca. Accumulibacter” (Table 2).
Different reported NAB-2 amino acid sequences were used
as query, giving similar results (data not shown). All the po-
tential NAB-2 enzymes listed present low e-value, ranging
from 6e-53 to 5e-19. Although the NeuAc synthase from
C. jejuni matched with most of the available MAGs of “Ca.
Accumulibacter”, some of them did not show the presence of
this enzyme, which can be both due to a poor assembly or
annotation of the genome or to the genetic incapacity of some
genotypes to produce NulOs.

These amino acid sequences were used to predict their
potential specificity using the phylogenetic analysis method
developed by Lewis et al. (2009). The sequences of “Ca.
Accumulibacter” with the higher e-values (M-S in Table 2)
were eliminated from the analysis as they appeared to be less-
conserved and affected the multiple alignment and therefore
the phylogenetic analysis. These divergent sequences might
indicate specificity for a different NulO than the ones used for

Fig. 3 Zoomed in section of a
granule showing more details of
glycoconjugate distribution after
lectin staining. The settings for
projections were defined in a way
that strong and weak signals can
be differentiated in different
colors. a Strong signal of lectin
MAA at the surface of the
bacterial cells (shown in green).
Please take notice of the blob-like
appearance of the
glycoconjugates at the bacterial
cell surface. b Weak signal of the
lectin MAA in the space in
between bacterial cells (shown in
red). c Overlay of a and b. d–f
The same is shown for the lectin
SNA
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the final analysis (Lewis et al. 2009). The rest of the enzymes
of “Ca. Accumulibacter”, together with sequences from ani-
mal, bacteria, and archaea, were used to generate a distance-
based neighbor-joining tree (Fig. 4).

The different NAB-2 sequences were grouped based on
their predicted specificities. Four groups are generated
corresponding to legionaminic acid (Leg), pseudaminic
acid (Pse), neuraminic acid (Neu), and “animal-like”
NulOs, which reflects a novel phylogenetic class for
which no biochemical data currently exist (Lewis et al.
2009). Within these four groups, NAB-2 enzymes from
“Ca. Accumulibacter” were located in the three groups:
Pse, Leg, and Neu. For the genomes that presented more
than one copy of NAB-2, each of the copy was predicted
to produce either the sialic acid Neu or the one of the
bacterial structures (Pse/Leg). Therefore, it is predicted
that “Ca. Accumulibacter” has the potential to synthesize
NulOs with one or two different core structures (Pse/Leg
and Neu). Looking back at the mass spectrometry (MS)
results, the enriched “Ca. Accumulibacter” in this re-
search produced bacterial NulOs (as Leg and Pse are iso-
mers, they cannot be differentiated by MS analysis) and
Neu (including Kdn and derived forms of Neu (e.g.,
NeuAc) as well since they share the same pathway with
Neu), which is in consistence with the phylogenetic
prediction.

Interpretation of proteomic analysis

The production of NulOs by “Ca. Accumulibacter” was con-
firmed by lectin staining, the recent mass spectrometry survey
(Kleikamp et al. 2020a), and the phylogenetic analysis. To
understand also the metabolism of NulOs, the proteome of
the “Ca. Accumulibacter”–enriched biomass was studied
using mass spectrometry. Out of the complete list of identified
proteins (Table S1), it was found that “Ca. Accumulibacter”
expressed neuraminic acid receptor, permease, and tripartite
ATP-independent periplasmic (TRAP) transporter proteins
(Table 3). Those three proteins are used by some pathogenic
bacteria as a mechanism to decorate their surface molecules,
such as capsule polysaccharides, lipopolysaccharides, or fla-
gellum, with sialic acids scavenged from the host; i.e., an
extracellular sialic acid molecule is captured via a receptor
(i.e., neuraminic acid receptor) and transported through the
plasma membrane into the cell via a transporter (e.g., TRAP
transporter), linking the sialic acid to a glycoconjugate and
finally embedding the glycoconjugate within the plasma
membrane (Honma et al. 2015). This suggests the presence
of a NulO-specific utilization/recycling system in the “Ca.
Accumulibacter” enrichment, similar to the one in pathogenic
bacteria. Other enzymes involved in the utilization of NulOs
were not found, such as sialidases or enzymes involved in the
catabolism of NulOs.

Fig. 4 Distance-based neighbor-
joining tree of the NAB-2
sequences (nonulosonic acid
synthase). Sequences from
bacteria, archaea, and animals
were used. Enzymes are grouped
based on their predicted
nonulosonic acid specificity
(color shading). Letters (a–l)
indicate the enzymes present in
the different available genomes of
“Ca. Accumulibacter” as shown
in Table 2
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Discussion

“Ca. Accumulibacter” and nonulosonic acid
production

Nonulosonic acids (NulOs) are a family of acidic carbohy-
drates with a nine-carbon backbone. They include sialic acids
and other bacterial monosaccharides such as pseudaminic
(Pse) and legionaminic (Leg) acids. NulOs have been ob-
served at the surface of animal cells and pathogenic bacteria,
but they have been generally overlooked in non-pathogenic
microorganisms (Varki et al. 2017).

Recently, sialic acids were discovered in glycoproteins
within the extracellular polymeric substances (EPS) of
seawater-adapted aerobic granular sludge (de Graaff et al.
2019). “Ca. Accumulibacter” was suggested to be respon-
sible for sialic acid production. However, to prove the link
between the specific microorganism and sialic acid produc-
tion, a study on a highly enriched culture was necessary.
The granular biomass used in this study was proven to be
highly enriched in “Ca. Accumulibacter” (approx. 95%, by
proteomic investigations (Kleikamp et al. 2020b) and by
FISH staining (Guedes da Silva et al. 2018)). Sialic acid–
specific lectin staining displayed that sialic acids with α-
2,3- and α-2,6-linkage to the sub-terminal monosaccharide
were distributed widely on the cell surface of “Ca.
Accumulibacter”. In fact, these sialic acids visualized by
lectin staining consist of diverse NulOs, i.e., Kdn (a com-
mon sialic acid) and Pse/Leg (bacterial NulOs) with vari-
ous modifications, as the actual structure cannot be deter-
mined by lectin staining (Song et al. 2011). The most con-
served enzyme (nonulosonic acid synthase, NAB-2) of the
NulO biosynthetic pathway can be traced back from the
available genomes of “Ca. Accumulibacter”. The lack of
this enzyme in some genomes might be attributed to a low-
quality or an incomplete state of those genomes and also to
the genetic inability to produce NulOs of some genotypes
of “Ca. Accumulibacter”. Phylogenetic analysis based on
different sequences of the NAB-2 enzyme predicted the
capacity of “Ca. Accumulibacter” to produce Pse, Leg,
and/or Neu (including Kdn). Therefore, this study provides
evidence that “Ca. Accumulibacter” can synthesize sialic
acids and other NulOs. Moreover, it shows the significant

diversity of NulOs available in biological environments, in
addition to the most common sialic acid Neu5Ac.

Importance of sialic acids and other nonulosonic acids
in non-pathogenic bacteria

The ability of bacteria to synthesize sialic acids has beenmain-
ly studied in a number of pathogens, where sialic acids or
NulOs serve as a way of abolishing the immune response of
the host by molecular mimicry (Carlin et al. 2009). Three
different types of NulOs are frequently reported as produced
by pathogenic bacteria: NeuAc, Pse, and Leg. Most NulO-
producing pathogens synthesize one type of NulOs; e.g.,
Pasteurella multocida can synthesize NeuAc, Pseudomonas
aeruginosa can synthesize Pse, and Clostridium botulinum
can synthesize Leg. Only few pathogens, such as
Campylobacter jejuni and Vibrio vulnificus can synthesize
multiple types of NulOs depending on the strain examined
(Almagro-Moreno and Boyd 2010). The production of
NulOs confers specific advantages to these bacteria in the
hos t - p a t hogen in t e r a c t i on . Su rp r i s i ng l y , “Ca .
Accumulibacter”, a non-pathogenic bacterium that was culti-
vated in a bioreactor without any host-pathogen interaction,
was found to produce different types of NulOs. Moreover,
these compounds were also present in most bacteria and ar-
chaea recently tested by Kleikamp et al. (2020a). Thus, the
synthesis of NulOs is not necessarily connected with the host-
pathogen interaction.

Apart from the synthesis of NulOs, mammalian commensal
and pathogenic bacteria that colonize sialic acid–rich tissues,
such as the respiratory or the gastrointestinal tract, use host-
derived sialic acids as competitive advantage. These bacteria
take up sialic acids released from the host by means of dedi-
cated transporters, either incorporating them into their cell
surface macromolecules or metabolizing them as a source of
carbon, nitrogen, and energy source (Almagro-Moreno and
Boyd 2010). These bacteria that uptake/utilize sialic acids
are closely associated with the host and exposed to a sialic
acid–rich environment. However, it is extremely interesting to
see that “Ca. Accumulibacter”, cultivated without any NulOs
in the media, still expressed Neu receptor, permease, and
TRAP transporter proteins, which are essential for the uptake
of NulOs. Therefore, the common understanding that both the

Table 3 Expressed proteins by “Ca. Accumulibacter” involved in the transport of NulOs. The complete list of identified proteins in the enriched
biomass can be found in Table S1

Protein Accession number No. of unique peptides Coverage (%)

Neu5Ac-binding protein A0A011QNL6 11 58

Neu5Ac permease A0A011P7S7 4 6

TRAP transporter solute receptor A0A011QP03 3 73
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abilities to synthesize and utilize NulOs are limited within
pathogenic and/or commensal bacteria is not correct. These
abilities might be widely spread in bacteria.

Most of the studies of NulOs to date have been focused on
Neu5Ac, since it is the most abundant one in mammals (espe-
cially in humans). The findings that there were multiple
NulOs produced by “Ca. Accumulibacter” enrichment and
microorganisms in seawater-adapted aerobic granules, togeth-
er with other findings reported in literature, suggest the need to
extend the consideration of NulOs beyond Neu5Ac alone
when bacteria are involved.

Nonulosonic acids and the EBPR process

To avoid eutrophication due to phosphorus pollution, inorgan-
ic phosphorus is removed fromwastewater by a process called
EBPR. “Ca. Accumulibacter” has been identified as the dom-
inant organism responsible for EBPR (Zilles et al. 2002). This
microorganism has been well studied in the past decades:
Different genomic, proteomic, metabolic, and modelling stud-
ies are available (Oehmen et al. 2010; Barr et al. 2016;
Oyserman et al. 2016; Guedes da Silva et al. 2018; Guedes
da Silva et al. 2019; Rubio-Rincón et al. 2019). However,
most of the studies overlook the extracellular matrix.

Sialic acids are known to participate in cell-cell interactions
in mammals (Schnaar et al. 2014). Especially due to their
electronegative nature, together with their bulky structure,
they form a protective layer surrounding the cell. NulOs might
play a similar role in “Ca. Accumulibacter” and provide ad-
vantages in competing with other microorganisms in the
EBPR process. “Ca. Accumulibacter” is able to synthesize
multiple NulOs with various modifications. These structures
cannot be recognized by a single type of sialidase (as shown in
the enzymatic analysis); therefore, they can protect the cells
from enzymatic degradation. On the other hand, when NulOs
become available (e.g., released from their own macromole-
cules), the expression of specific transporters by “Ca.
Accumulibacter” allows them to re-uptake these carbohy-
drates and re-utilize them, avoiding synthesizing them de
novo. Through this recycling, less nutrients and cellular ener-
gy resources are required, perhaps this strategy provides “Ca.
Accumulibacter” advantages in competition as well.
Moreover, in vertebrates, sialic acids are typically found as
terminal residues on the glycan chains of extracellular
glycoconjugates, acting as “bridging” molecules between
cells, and between cells and extracellular matrices (Chen and
Varki 2010). Although NulOs have been overlooked in envi-
ronmental bacteria, their known roles as recognition mole-
cules in other organisms suggest that they may be involved
in functions such as regulation of “Ca. Accumulibacter”
bioaggregate formation in wastewater treatment process and
natural estuarine systems or mediating recognition for bacte-
riophages. Therefore, sialic acids and other nonulosonic acids

should be investigated in further detail to understand their role
in the ecology of “Ca.Accumulibacter” and even in the EBPR
process in particular, and biofilms in general.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00253-021-11249-3.
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