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Abstract

Analysis of stability under linearized dynamics is central to ecology. We highlight two key

limitations of the widely used traditional analysis. First, we note that while stability at fixed

points is often the focus, ecological systems may spend less time near fixed points, and

more time responding to stochastic environmental forcing by exhibiting wide zero-mean fluc-

tuations about those states. If non-steady, uniquely precarious states along the nonlinear

flow are analyzed instead of fixed points, transient growth is possible and indeed common

for ecosystems with stable attractive fixed points. Second, we show that in either steady or

non-steady states, eigenvalue based analysis can misleadingly suggest stability while

eigenvector geometry arising from the non-self-adjointness of the linearized operator can

yield large finite-time instabilities. We offer a simple alternative to eigenvalue based stability

analysis that naturally and straightforwardly overcome these limitations.

Introduction

Ecosystem stability is vigorously studied, emphasizing both mathematical [1–11] and ecologi-

cal [12–17] aspects. Ecosystem stability research is broad and diverse, and “ecological stability”

can have such diverse meanings as constancy, persistence, robustness or resilience [13]. Here,

we (1) highlight two key limitations of ecological stability analysis as widely (but not univer-

sally) practiced; (2) demonstrate their characteristic manifestations; and (3) offer simple yet

highly effective strategies for overcoming these pitfalls. Taken together, the key message of

these three thrusts is simple enough: basing stability decisions on the leading eigenvalue alone

—implicitly considering perturbation fates over infinitely long times—can mislead the analyst

into expecting stability where perturbations can in fact grow over ecologically relevant time

scales.

Traditionally, “stability” and “resilience” are used quite synonymously in the ecological lit-

erature, yet with (at least) two different meanings. The first addresses whether or not an eco-

system will return to its original stable state after perturbation, and if so, the rate of

perturbation decay (e.g., [18]). The second strives to quantify the magnitude of disturbance

required to drive the system toward a different stable state (presumably a distinct attractor in

configuration space, e.g., [19], later termed “ecological resilience” by Holling [20]).
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Here, by “stability” we mean the rate at which the system returns to a reference state (or

dynamic trajectory) after a transient imposed disturbance. Despite their diversity, most analy-

ses of ecosystem stability—including those sharing our stability definition in the context of dif-

ferential equations based models—have two technical commonalities (with few exceptions

highlighted below). First, stability determination is eigenvalue based, thus addressing the time

!1 limit. Yet analyses of geophysical [21–28] and more recently ecological [29–31] dynam-

ical systems have demonstrated the limitations of eigenvalue based stability determination

over finite timescales. These limitations, and the complementary importance of finite time

horizons for stability determination are of wide ecological relevance (emphasized by, e.g.,

Hasting [15] or Cortez [32]). Extending stability analysis beyond eigenvalues, the above papers

introduced the key and often ignored role of eigenvector geometry. Yet eigenvector geometry

was secondary to the broader thrusts of [29–31], and consequently not emphasized. Moreover,

neither strove to provide an introductory, accessible explanation of the mechanisms by which

eigenvector geometry contributes to transient growth (or “reactivity” in mathematical ecology

[29, 31]). This may explain the observation that most of the hundreds of papers citing the

above ecological papers address other elements of the work (notably spatial connectivity).

Appreciation of the unique importance of eigenvector geometry to finite time ecosystem sta-

bility analysis is therefore yet to take deep, widespread roots in ecology, despite the potential

mechanistic insights it can offer [31]. An explicit, systematic demonstration and explanation

of the limitations of eigenvalue based stability analysis (whose precision [30] characterize in

their Table 1 as “poor”) is therefore needed and timely. Providing such an introduction is one

of our two objectives here.

Second, most ecosystem stability work addresses nonlinearly stable configurations, fixed

points or limit cycles (e.g., [1, 29]). The view of the system underlying this focus is that noise—

unusual rains and droughts, or N flushes from upstream uplands—amounts to slight, rapidly

linearly self correcting departures from the steady state, allowing the nonlinear governing

dynamics to nearly always maintain a stable state, which is thus assumed to dominate system

history. The key question is then the system’s propensity to linearly damp, or amplify, small

perturbations about these nonlinearly stable states, where the state is assumed to nearly univer-

sally reside. From an ecological standpoint, this is problematic because even an attractive stable

fixed point may be of little relevance if the state trajectory toward the stable states is constantly

perturbed by environmental noise. Further, the nonlinear trajectories of the ecosystem may

oscillate widely, at times resulting in very low populations at which ecosystem collapse by lin-

ear responses to imposed perturbations can occur independently of whether or not the system

possesses nonlinearly stable configurations. The fate (growth or decay) of imposed ecological

anomalies far from any resting state can thus be of great ecological interest, yet is not often

emphasized in the ecological literature. Demonstrating the potentially precarious dynamical

balance at rapidly changing states that are the antithesis of fixed points, and comparing their

stability properties to those of fixed points, jointly constitute our second main objective here.

In this paper, we demonstrate both of the above technical limitations of eigenvalue based

stability analysis in the context of a canonical ecological system, paying close attention to wide

technical accessibility. The paper’s key message is that for high-dimensional systems—systems

whose state is given by an N-vector (N> 1) and not a scalar (N = 1)—eigenvalues alone rarely

tell the whole stability story, and that for a more complete understanding of the full stability

status of the analyzed system, carefully considering eigenvector geometry is essential. We also

advance a simple and readily available alternative stability analysis framework [26]. Let us now

introduce briefly the limitation of eigenvalue based stability decisions.
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Consider an unconsumed (ungrazed) grass population x (in kg ha-1) evolving nonlinearly

under the standard logistic model (e.g., [33]),

dx
dt
¼ gxðxÞ¼

def
rx 1 �

x
k

� �
ð1Þ

(where we use “evolving” not in its biological sense of species evolution, but in its dynamical

systems sense, the changing system state as it progresses in time under its governing dynam-

ics). In Eq (1), t is time and the leftmost term is thus grass rate of change, γx is the x-dependent

rate of grass growth, controlled by the carrying capacity k and by r, the intrinsic resource

unlimited grass growth when x� k (the fastest grass growth possible, attained when resident

grass cover is well below the carrying capacity). Initial grass population evolution in time is

shown in Fig 1a (where again “evolution” refers not to biological species evolution, but to the

changes the system state exhibits in time under the repeated cumulative impact of the system’s

governing dynamics).

Now imagine that at some point during the evolution of this ecosystem under its governing

equation, an external disturbance arises by, e.g., a dry spell, inducing a population change.

Denoting this population perturbation x0
0

(x0
0
< 0 following a drought), the full grass popula-

tion at any subsequent time is x ¼ �x þ x0, where �x is the expected grass cover based on the

Fig 1. A 1-dimensional grassland example. Panel a shows grass population as a function of time starting

from 0.3 kg ha−1. Panel b shows the stability criterion derived in the text, rð1 � 2�x=kÞ. The time point at which

the initial instability transitions to subsequent stability by crossing the neutrality line (dashed in panel b) is

shown by a gray vertical line, and the value at which it crosses the population curve is indicated by the

horizontal line from the crossing point to t = 0.

https://doi.org/10.1371/journal.pone.0178235.g001
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nonlinear dynamics, i.e., d�x=dt ¼ rð1 � �x=kÞ. The stability question addresses the fate of the

perturbation at some time of interest τ after the perturbation arose. To avoid confusion,

throughout this paper we use t to denote time of nonlinear evolution of the state vector x (of

which the above x is a one-dimensional special case) since the initial state x0¼
def xð0Þ at t = 0,

and τ to measure time of linearized growth of x0 since its excitation by an externally imposed

perturbation as x0 at τ = 0. The stability questions are thus: Will x0
0

linearly decay, allowing x to

return to its unperturbed value �x over a reasonably short period of linearized evolution τ? Or

alternatively, will x0
0

grow, forcing the population onto an altogether different trajectory?

To answer this, we expand the right hand side of Eq (1) in a Taylor series,

dx
dt
¼

d�x
dt
þ

dx0

dt
¼ gxð�x þ x0Þ ¼ gxð�xÞ þ

dgx

dx

�
�
�
�

�x

x0 þ
1

2

d2gx

dx2

�
�
�
�

�x

x02 þ ::: ð2Þ

where “. . .” denotes cubic or higher order terms. Because at least near its inception the pertur-

bation is small, x02 � x0 � �x, and we can truncate the series after the first order,

d�x
dt
þ

dx0

dt
� gxð�xÞ þ

dgx

dx

�
�
�
�

�x

x0 ð3Þ

Invoking d�x=dt ¼ gxð�xÞ introduced above, this reduces to

dx0

dt
�

dgx

dx

�
�
�
�

�x

x0 ¼ r 1 �
2�x
k

� �

x0 ð4Þ

In this one-dimensional case, stability is thus straightforward: stability for rð1 � 2�x=kÞ < 0,

instability for rð1 � 2�x=kÞ > 0, as shown in Fig 1b.

The key issue we wish to illuminate in this paper is that this simplicity is lost in higher

dimensional systems such as most real ecosystem. That is, while the eigenvalues are always an

essential part of the stability story, in most ecosystems of fundamental and practical interest

they by no means tell the whole story. Instead, eigenvector geometry is also essential. To be

sure, the stability parameter of the above one dimensional example has an N-dimensional ana-

log, the N eigenvalues of the linearized operator, the Jacobian (the N-dimensional analog of

the scalar dγx/dx above). Nonetheless, tempting though it may be to use eigenvalues as the sole

arbiter of stability even for N> 1 dimensional systems, this can often mislead into expecting

stability where linearized perturbation growth is in fact expected. Using the lowest dimen-

sional and thus simplest example necessary to demonstrate the points, the remainder of the

paper demonstrates the limitations of eigenvalue based stability analysis in N> 1 dimensions

and the ameliorating potential of careful consideration of eigenvector geometry.

Methods

An unambiguous discussion requires an ecologically relevant, suitable testbed model widely

familiar to ecologists. We choose one with venerable history (e.g., [34–37]) that is compactly

manageable and mechanistically comprehensible, yet that exhibits the relevant characteristics

necessary for demonstrating the points.

The model describes a grazed grassland comprising an herbivore species subsisting on one

grass type in one location. Slightly modified from [38], the governing equation is

dx
dt
¼

gx � rx

gy � ry

0

@

1

A¼
def

rxð1 � x=kÞ � axy=ðbþ xÞ

aexy=ðbþ xÞ � dy

 !

¼
def FðxÞ ð5Þ
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the 2D generalization of Eq (1). In Eq (5), x = ( x y )T is the state vector holding the resident

grass and herbivore mass densities in kg ha−1, t is time, and γx and γy (ρx and ρy) denote x-

dependent rates of grass and herbivore growth (removal by grazing and death) respectively. We

use three partially overlapping sets of parameter values ({r, k, a, b, e, d}, reported in S1 Table).

Because all other technical details are standard, we relegate them to appendices, as follows.

S1 Appendix offers further details of Eq (5), S2 Appendix describes the solution of the nonlin-

ear equations over t = [0, 10] years, and the nontrivial fixed points are derived in S3 Appendix.

Finally, because the crux of the matter is ecosystem stability analysis, in S4 Appendix we derive

the Jacobian of Eq (5)’s F(x) (the 2D analog of dγx/dx in Eq (4)), and then use it to derive the

governing equation of perturbation growth (Eq (3) of S4 Appendix, the 2D analog of Eq (4)).

Asymptotic vs. Transient stability: The key role of non-self-

adjointness

Traditionally, stability is categorically decided based on a single criterion (e.g., [39]): if the

eigenvalue with the largest real part (which we denote λmax<) satisfies <(λmax<)< 0 (i.e., its

real part is negative), the system is said to be stable. Rarely explicitly stated, yet absolutely

essential is that this must be modified to “asymptotically stable for t!1” [17, 21–31].

To demonstrate the limitations of the exclusive reliance on eigenvalues for finite times τ�
1, we use the linear perturbation equation

dx0

dt
� Jj�x x0 þ fðtÞ ð6Þ

derived in S4 Appendix. Because we are interested in the linearized evolution of individual

perturbations, we envision the forcing term f(t) as the origin of the perturbations, the mecha-

nism by which the state is locally displaced from the nonlinear flow. Once a specific perturba-

tion has arisen, however, its fate is determined by the locally valid linearized dynamics, not

subsequent forcing. Consequently, below we omit f, but Farrell and Ioannou [26–28] present a

fully developed general theory of the statistical time-integrated response of nonnormal systems

to continuous full spectrum stochastic forcing and the variance maintenance consequences of

this response.

Taking the time integral of the unforced linearized dynamics (Eq (3) of S4 Appendix with f

= 0) over [0, τ], and using eigenvalue/eigenvector decomposition,

x0ðtÞ ¼ eJtx0
0
¼ EΔE� 1x0

0
ð7Þ

Here x0
0

is the initial perturbation, the initial condition for the linearized dynamics that the rel-

evant f realization has excited at τ = 0, not to be confused with the initial condition for the non-

linear evolution x0¼
def
ðxo; y0Þ at t = 0 (S2 Appendix). In Eq (7), eJτ is the propagator [21–23,

26–28], which is expressed in the rightmost product in terms of the eigenvectors J and eJ share

(the columns of E) and growth factors (the nonzero diagonal elements of the diagonal matrix

Δ, satisfying Δii = eλiτ, where λi is the ith eigenvalue of J). Thus the mapping of x0
0

onto x0(τ) by

the dynamics is done by a series of modes,

x0ðtÞ ¼ EΔE� 1x0
0
¼ e1½ðe�1 x0

0
Þel1t� þ e2½ðe�2 x0

0
Þel2t� ð8Þ

where we make explicit use of this system’s specific N = 2 (with the trivial generalization of the

right hand series in general comprising N terms), where e1,2 are the two columns of E (the

eigenvectors of both J and its matrix exponential), and where e�i is the ith row of E−1, so that

the parenthetical term is a scalar product of the projection of the initial perturbation on the

mode e�i x0
0
, and the modal growth eλiτ.

Expanded view of ecosystem stability: A grazed grassland case study
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This representation is the origin of the focus on the eigenvalues as the deciding stability cri-

terion, because as τ!1, the eigenvectors become unimportant for the evolution of the per-

turbation magnitude kx0(τ)k. To see why, note that in this limit, the perturbation is essentially

unimodal, because with enough time, the disparity in eigenvalues combined with the exponen-

tial evolution renders the amplitudes of all trailing modes (not corresponding to λmax<) negli-

gibly small. Then,

x0ðtÞ � e1ðe�1 x0
0
el1tÞ ð9Þ

and thus x0(τ) always parallels ê1, with magnitude entirely determined by eλ1τ (because the

other contribution, e�
1

x0
0
, is time-invariant). The τ!1 limit is thus implied despite being

rarely explicitly acknowledged by the exclusive reliance on the eigenvalues to determine

stability.

To analyze stability for often more pertinent finite times [15, 31], we again follow, e.g.,

[26–28] and decompose the propagator using the singular value decomposition, SVD [40, 41]

x0ðtÞ ¼ eJtx0
0
¼ UDVHx0

0
ð10Þ

where U and V are N × N unitary matrices (for readers less familiar with the SVD, chapters 5

& 12 of [42] discuss all elements of the algebraic operation and its applications). The orthogo-

nal unit norm columns of U and V (denoted individually ui and vi; throughout the paper,

unless otherwise explicitly stated, we use “norm” as a shorthand for the L2 or Euclidean norm)

are the sets of left and right singular vectors of the propagator, which are two in general dis-

tinct orthonormal bases for the algebraic space containing the state vector, here R2. (Note that

some authors, e.g., [17], refer to these sets as the left and right eigenvectors, because they are

the eigenvectors of eJτ eJHτ and eJHτ eJτ, respectively. Yet because they are not the eigenvectors of

the propagator itself, to clearly distinguish Eqs (7) and (10), here we favor singular.) The (ui,vi)

pair is the ith singular “mode” of the propagator, and the N elements Dii = σi of the N × N diag-

onal matrix D are the singular values of the propagator. While H denotes Hermitian transpose,

in most real physical and biological systems such as the grass–herbivore model, x, F and J are

real, and thus so are all right hand side elements of Eq (10). With this, which we assume below,

H reduces to the transpose, i.e., x0ðtÞ ¼ eJtx0
0
¼ UDVT x0

0
. For such propagators, plotting σ1(τ)

against all τs within a window of interest identifies the global maximum nonnormal growth

[26].

The key limitation of Eq (7) ameliorated by Eq (10) stems from the potential for a nonnor-

mal or non-self-adjoint propagator. A square matrix J (rectangular matrices are never self-

adjoint) is self-adjoint if JJH = JHJ, and non-self-adjoint, or nonnormal otherwise. What is key

to this distinction is that in the rather restrictive case of a self-adjoint J, the eigenvectors are

orthonormal. In that case, Eq (7) can be rewritten as x0ðtÞ ¼ EDEHx0
0
, where we use the fact

that the Hermitian transpose of an orthonormal or unitary matrix (here E) is also its inverse,

EEH = EHE = I. In the self-adjoint case, as EΔEH maps x0
0

onto x0(τ), the action of each eigen-

vector is independent, and the eigenvectors play no role in kx0k growth, so J’s eigenvalues,

especially <[λmax<(J)], tell the whole stability story. However, in the more general case of non-

normal Jacobians, this is only true for the τ!1 asymptotic, after trailing modes have already

died down, but is emphatically not true for finite times. Before we analyze the J of the grass–

herbivore model, we provide a simple explanation.

Algebra of nonnormal growth

In this section, we provide simple insights into the algebraic origins of nonnormal growth that

may arise when using Eq (7) to analyze the linearized stability of a nonlinear ecological

Expanded view of ecosystem stability: A grazed grassland case study
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dynamical system. Yet note that this discussion is obviated by favoring Eq (10) over Eq (7).

The only, but crucial, reason this discussion is necessary is the widespread reliance on eigen-

values of the Jacobian as the arbiter of ecological stability, e.g., [43, 44]. The deep roots and

current ubiquity of this reliance in ecological discourse mean that ecologists are more likely to

intuitively choose Eq (7) over Eq (10), yet ignore the roles E may play. It is this inconsistency

that motivates this paper, and necessitates this section.

Algebraically speaking, nonnormal growth has two related sources, corresponding to the

two appearances of E in Eq (7). The first and typically dominant is E� 1x0
0

(where for compara-

bility, x0
0

is unit norm), the terms in the round parentheses in Eq (8) for N = 2. As the simple

expansion of Eq (8) makes clear, the time-τ perturbation is a linear combination of E’s col-

umns, with scalar coefficients (in square brackets) that combine multiplicatively eigenvalue

based growth or decay eλiτ with the projection of the initial perturbation on the modes. With it,

we can better understand the problem with the exclusive focus on the eigenvalues for analyzing

growth. This focus, or its accompanying disregard of eigenvector contributions to growth,

implies the expectation that because E’s columns and x0
0

are unit norm, kE� 1x0
0
k¼ 1. This is

guaranteed if J is normal, in which case any part of x0
0

that projects on a row of E−1 = EH proj-

ects on no other row of EH. With the more general nonnormal J, kE� 1x0
0
k> 1, because then

the eigenvectors are not mutually orthogonal. The effect of this is best appreciated in the

extreme case of e�
1;2

being nearly mutually parallel, with a strongly acute angle between them.

This means that while they formally span a plane, vectors not along the pair will require

extremely large coefficients to express in terms of this defective basis. For example, consider

x0
0
¼ ð� 1 1Þ

T
=
ffiffiffi
2
p

and

E ¼
1
ffiffiffi
2
p

1 1 � 10� 6

1 1

0

@

1

A: ð11Þ

First, and parenthetically, note that the above example is not perfect because e2 is not exactly

unit L2 norm, but instead satisfies 1 − ke2k � 5 × 10−7; this slightly imperfect E nonetheless

demonstrates the point simply and convincingly. Second, note that the above x0 is exactly and

nearly orthogonal to the first and second columns of the above E (e1 and e2, respectively),

which we choose for powerfully encountering the amplification of initial perturbations by the

mutually non-orthogonal eigenvectors of a nonnormal operator. Evaluating E−1x0 (with x0

given just above Eq (11)), x0 � ð� 2� 106Þê1 þ ð2� 106Þe2 (where the hat in the first term

indicates that e1 is exactly unit L2-norm), with kE−1 x0k � 2.8 × 106, almost 3-million-fold

potential amplification of initial perturbations by eigenvector geometry.

The second source of growth occurring when using Eq (7) for nonnormal systems corre-

sponds to the second appearance of E in the equation. The focus of this, typically secondary,

amplification source is the magnitude of Eĝ, the vector onto which E maps any unit vector ĝ.

That is, whatever growth or decay g ¼ DE� 1x0
0

embodies, there is still the potential for further

growth of ĝ � g= kgk into kEĝ k>k ĝ k resulting from the geometry of combining E’s col-

umns by the elements of ĝ. This amplification is most pronounced for perturbations orthogo-

nal to ones optimally amplified by the first mechanism. Whereas for the first mechanism to

dominate the exciting vector x0
0

has to be nearly orthogonal to the roughly mutually parallel

eigenvectors, the second mechanism dominates when the coefficient vector ĝ nearly parallels

the defective basis. For example, using again the E in Eq (11) but now with g ¼
ð1þ 10� 6 1Þ

T
=
ffiffiffi
2
p

(with the opposite trivial imperfection of kgk − 1 = 5 × 10−7), kEgk �
ffiffiffi
2
p

.

Thus even when most pronounced, this second mechanism is indeed secondary, and is active
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for perturbations nearly parallel the defective basis, for which the first mechanism is less

important.

We conclude the algebraic discussion of the two amplification mechanisms of initial unit

perturbations by the linearized dynamical operator by quantifying their impact in the case of a

more general, unspecified dynamical system whose eigenvectors are a1,2 forming

A ¼
1
ffiffiffi
2
p

1

1

0

@

1

A
cþ s

c � s

0

@

1

A

2

4

3

5 ð12Þ

where A is a special case of the general eigenvector matrix E, c = cos(θ), s = sin(θ), and thus

ka1k = ka2k = 1 and

aT
1

a2 ¼

(
0 for y ¼ 90

�

1 for y ¼ 0
�
:

Fig 2a presents the upper bound on the first and typically (but not for the grass–herbivore

model) dominant amplification mechanism, due to the action of A−1 (with A given by Eq

(12)). By using kA−1k = σmax(A−1) as the definition of the matrix norm, the panel considers the

optimal initial perturbation, and thus presents the maximum expected magnitude growth,

realized when the exciting vector parallels v1, the column of V corresponding to the largest sin-

gular value in the SVD of A; see [23, 26, 27] for a fundamental discussion of this optimal per-

turbation. To limit the vertical extent of the plot, we only show 3˚� θ� 45˚, yet large

amplifications are still apparent for small θs.

The second and typically secondary nonnormal amplification mechanism, due to linearly

combining the eigenvectors, is presented in Fig 2b for the same A (Eq (12)). While we show

maximum possible amplification by either mechanism, note that in practice both optimals can

not by simultaneously realized, as we show in S5 Appendix.

Results

With the parameter sets of S1 Table, the solutions of Eq (5) evolve as presented in Fig 3. To

deemphasize the arbitrary initial state, we omit the first year. The system exhibits weakly

Fig 2. Demonstration of the two sources of amplification of initial perturbations beyond the

eigenvalue based growth or decay. Here, we use the 2 × 2 matrix A (Eq (12)) with unit norm columns (recall

that unless otherwise explicitly stated, we take “norm” to mean the L2 or Euclidean norm). The vertical axes

show the largest singular value of the indicated matrix at the shown θs (i.e., the curves show the most possible

amplification, assuming optimal excitation).

https://doi.org/10.1371/journal.pone.0178235.g002
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damped out-of-phase grass–herbivore oscillations as they evolve toward their respective fixed

points (Eq (2) of S3 Appendix) plotted as horizontal lines in Fig 3.

Stability at the nontrivial fixed points

At the nontrivial fixed point, the Jacobian of the grass–herbivore model with parameter set 1

has a conjugate pair of eigenvalues, λ1,2(J)� 10−4(−10.8 ± 74.3i). Because <[λ1,2(J)]< 0

(which also holds for parameter sets 2 and 3, not shown), the eigenvalue based stability crite-

rion suggests that at its nontrivial fixed point, small perturbations decay at a rate of e<(λmax<)τ

(solid in Fig 4), ensuring that the system returns to the attractive fixed point. At τ = 400 days,

e<ðlmax<Þt ≳ 0:6. To decay to one half its original magnitude, a perturbation requires τ� log

(0.5)/(−10.8 × 10−4)� 643 days, or over 21 months (this τ is not shown in Fig 4, which only

shows 0� τ� 400 days). To decay to 10% the original magnitude, kx0ðtÞk ¼ 0:1 kx0
0
k,

requires τ� 71 months (with similar results for parameter sets 2 and 3). This demonstrates a

key limitation of the eigenvalue based τ!1 analysis; it is unrealistic to expect an ecological

system to be nonlinearly frozen in place for years, allowing perturbations to stately decay.

Instead, with more realistic inclusion of geometrical considerations permitted by using

σmax = D11 based on Eq (10) as the growth criterion (dashed in Fig 4), perturbations not only

fail to decay, but in fact double in magnitude at τ� 180 days, varying slightly among parame-

ter sets yet telling the same story. Thus in this rather typical situation, while incomplete appli-

cation of Eq (7) suggests slow decay of small perturbations about the fixed point, some

perturbations may in fact grow for quite some time, because of the geometry of the eigenvec-

tors, before succumbing to the inexorable eigenvalue based modal decay.

Fig 3. The time evolution of the solution of the grass–herbivore system. We solve Eq (5) using 4th order Runge–Kutta time scheme with the three

parameter sets (S1 Table), with a ans b showing grass and herbivore, respectively. The nontrivial fixed points (Eq (2) of S3 Appendix) are shown as

horizontal lines of corresponding colors. To emphasize the solution phase dependence on parameter choices, in the top (grass) panel we connect by

straight line segments the local minima of the solutions with parameter sets 1 and 3. Panel c shows the full evolution with parameter set 1, from x0 (solid

circle) to year 10 (near the fixed point shown by open square).

https://doi.org/10.1371/journal.pone.0178235.g003
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By searching over a range of τs within a window of interest, we find that the initial perturba-

tion that maximizes finite time growth is the leading right singular vector of eJ184, where 184 is

the time of maximum linearized growth in Fig 4a, vday 184
1 � ð10� 4 1Þ

T
. That is, the most linear-

ized growth on τ� 200 day timescales is excited by perturbations nearly entirely in herbivore

mass, with virtually no changes in grass, which can be easily realized with, e.g., intensified

hunting or herbivore epidemic. Thus at its nontrivial fixed point, the grass–herbivore model is

not stable and decaying, as the eigenvalues suggest, but in fact sustains large, prolonged pertur-

bation growth.

Stability at ecologically critical points

As Fig 3 shows, over t = [18, 26] months grass cover and herbivore population decline percep-

tibly. Because the growth terms in Eq (5) both vanish for x = y = 0, system collapse is of partic-

ular concern then. It is easy to imagine that if at that vulnerable point a fire or a rainless stretch

further undermines the system, collapse may follow independently of the existence of an

attractive fixed point. It therefore makes sense to analyze the system stability in such times as

well. We thus next examine the linear stability of Eq (5) at t = 800 days (when herbivore popu-

lation is minimized), using Eqs (7) and (10).

Using parameter set 1, �x800 � (271 686)T, yielding

J � 10� 4
� 13 � 180

31 0

 !

ð13Þ

(Eq (1) of S1 Appendix) and λ1,2(J)� 10−4(−6.6 ± 73.8i), i.e., <[λmax<(J)]< 0. That is, as the

system evolves under its governing nonlinear dynamics, it fluctuates widely, at times attaining

such states as �x800 where—because of dangerously low population(s)—ecosystem collapse by

stochastic anomalies with linearly growing amplitudes becomes possible. Should the asymp-

totic decay indicated by the above <(λmax<)< 0 lay this concern to rest? Several observations

suggest that this alone does not settle the stability issue.

First, as was true above for the fixed point, at t = 800 days the decay timescale—with pertur-

bation half life of τ� log(0.5)/(−6.6 × 10−4)� 3 years—is also too long for reassurance; too

much is changing in most ecosystems over 3 years to expect the linearization to remain valid.

Fig 4. Evolution of initial perturbations x0
0

about the nontrivial fixed points of the simple grass–herbivore model with

parameter sets 1–3 (a–c, respectively). Solid/squares present growth based on e<[λmax<(J)]τ, i.e., assuming the τ!1 asymptotic.

Dashed/triangles present the growth measure appropriate over finite times, maxi{σi[exp(Jτ)} the largest singular value of the

propagator. The two curve types thus present the stability predictions made by the traditional eigenvalue-based, asymptotically-valid

method and by the alternative method proposed here, respectively. The maximum growth factors and the lead times in days at which

they are realized are indicated. Thin horizontal lines separate the growth region above from the decay (growth<1) region below.

https://doi.org/10.1371/journal.pone.0178235.g004
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Just as important is the nonnormal growth that may arise during that time. This is quanti-

fied by favoring Eq (10) over Eq (7), which for the N = 2 grass–herbivore model is simply

x0ðtÞ ¼ ½s1vT
1

x0
0
�u1 þ ½s2vT

2
x0

0
�u2 ð14Þ

where now the SVD is of the propagator, so that u1,2 and v1,2 are the left and right singular vec-

tors of eJτ. Because σ1 > σ2, the most growth occurs when x0
0

projects most on v1. Taking this to

the limit, the optimal x0
0

is v1 itself, with which

x0ðtÞ ¼ ½s1vT
1

v1�u1 ¼ s1u1 ð15Þ

As Fig 5 shows, these optimal initial perturbations grow to 213% of their initial unit norm by

day 196, likely a more ecologically relevant timescale than the 3 years calculated above for

asymptotic decay. At the precarious t = 800 day state, Eq (10) with τ = 196 days yields v1�

( 0 1 )T, like at the fixed point. This means that at the point in which the nonlinear dynamics

minimize herbivore population, optimal seasonal scale linearized growth occurs when the ini-

tial perturbation comprises only perturbed herbivore biomass, with essentially intact grass

cover. And after 196 days, this v1 becomes σ1u1� 2.1( −1 0.1 )T by the linearized dynamics.

Put simply: if a grass–herbivore ecosystem is at a nonlinear state like �x800, and some external

perturbation then forces the grazer community away from the 686 kg ha−1 expected based on

the nonlinear dynamics, then for every kg herbivore biomass ha−1 added, 196 days later the

grass cover will be 2.1 kg ha−1 lower than what is expected based on the nonlinear dynamics,

with the initial herbivore surplus reduced by 90%. That is, the more excess herbivore now, the

less grass later, with the perturbation amplitude approximately doubling over roughly 200 days

due to energy “leakage” during trophic cascading. This basic logic is straightforward and com-

pelling, yet the leading eigenvalue leads to expecting perturbation decline (Fig 5, solid).

Fig 5. Evolution of initial perturbations x0
0

about the near catastrophe day 800 state of the simple

grass–herbivore model with parameter set 1. As in Fig 4, solid/squares present e<[λmax<(J)]t, the growth

assuming t!1. Dashed/triangles present the growth measure appropriate over finite times, maxi{σi[exp(Jt)}

the largest singular value of the propagator. The maximum growth factor and the lead time in days at which it

is realized are indicated. Because of the near neutrality of the leading eigenvalue, the thin horizontal line

separating the growth and decay regions is barely discernible.

https://doi.org/10.1371/journal.pone.0178235.g005
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A reasonable concern about the above calculation is the validity of the linearization over a

timescale that is a nontrivial fraction of the�2.5 y period of the oscillations the nonlinear tra-

jectory exhibits (Fig 3). That is, because the Jacobian is a strong function of the state, it is possi-

ble that the linearization is used over timespans exceeding its expected utility. We test this

possibility in S5 Appendix, and find the linearization adequate.

Pursuing the ultimate goal of modeling, mechanistic understanding of system dynamics

[31], we now highlight an important role the eigenvalues do play despite their limitations as a

stability criterion that is the main thrust of this paper. The dash-dotted curve in Fig 6 shows

that throughout t 2 [1, 5] years (and beyond, not shown), 1.6� kE−1 v1k � 2.1. That is, all

nonlinear states considered here are capable of ample linearized nonnormal growth by the

first mechanism, projection of initial perturbations on E−1. Yet any linearized nonnormal

growth mechanism can only amplify initial perturbations to the extent permitted by the poten-

tially unyielding eigenvalue-based modal decay. That is, even a hefty kE−1 v1k = 106 will result

in overall damping in the face of, say, e<(λmax<τ) = 10−12. Indeed, despite the afore-mentioned

ample growth by E−1 v1 (dash-dotted), this potential amplification is damped by modal decay

to a variable degree, so that whereas max(kE−1 v1k)� 2.1 (at t = 992 d), max(kΔ E−1 v1k)� 1.7

(at t = 708 d; dashed). Yet further premultiplying Δ E−1 v1 by E (the second nonnormal growth

mechanism; the solid curve) more than offsets the modal loss, increasing the maximum overall

amplification to 2.2 (at t = 720 d). This highlights the importance of the balance between non-

normal amplification on the one hand, and modal damping on the other.

Thus the stability of the modeled grass–herbivore ecosystem is qualitatively similar at the

system’s nontrivial fixed point and when the ecosystem is most vulnerable due to unusually

low populations. In these situations, the ecosystem is not only stable and decaying, as the

eigenvalues suggest, but may also exhibit large, prolonged perturbation growth. And this dif-

ference may well translate to the difference between smooth recovery and system collapse, as

follows.

Fig 6. The various contributions to the overall growth by the propagator. We use parameter set 1, t 2 [1, 5]

years, and τ = 200 days of linearized growth throughout. For all curves, v1 is the same, and is the unit norm

perturbation that optimally excites the full propagator eJ200. The solid curve shows the full impact of the

propagator on the magnitude of the initial perturbation, kEΔE−1v1k. The contributions to this impact by the first

discussed mechanism of nonnormal growth, kE−1v1k, and the modifications of this by the eigenvalues, kΔE−1v1k,

are given by the dash-dotted and dashed curves, respectively. The vertical solid and dashed lines show the time

of grass and herbivore global minima (t = 584 and 800 d, respectively).

https://doi.org/10.1371/journal.pone.0178235.g006
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Let us define “collapse” as zero grass, �x þ x0 ¼ 0, and derive the initial perturbation x0
0

required to arise at t = 800 d to guarantee such collapse after the optimal τ = 196 days. Starting

from Eq (10), x0
196
¼ UDVT x0

0
. We also make use of the fact that x0

0
¼ wv1, i.e., that the opti-

mal initial perturbation parallels the leading right singular vector v1 with some weight w to be

determined shortly. Therefore,

x0
196
¼ wUDVTv1 ¼ ws1u1

ð16Þ

but because we only strive to bring grass to zero, we focus exclusively on the first row,

� �x196 � � 271 ¼ ws1u1;1 ¼) w ¼ � �x196=ðs1u1;1Þ � 128 ð17Þ

where u1,1 is the first element of u1. With this, x0
0
� ð0 128Þ

T
, yielding

UDVTx0
0
þ �x800 ¼ ð0 709Þ

T
, i.e. zero grass, by construction, and a slightly enlarged herbivore

population (recall that �y800 � 686). With no grass for subsistence and more mouths to feed,

widespread herbivores starvation or desperate exodus follows, with complete collapse of the

modeled ecosystem shortly thereafter. The important detail here is that at that precarious

t = 800 d state, all that is required for complete ecosystem collapse is 128 added kg herbivore

ha−1, hardly a fanciful eventuality. Thus whereas the eigenvalue based stability criterion prom-

ises safe ecosystem perpetuation, a modest (128/686 < 19%) herbivore addition—by, e.g.,

inward migration or hunting of herbivore consumers—can readily usher in ecosysten collapse.

How unique are these states in which large potential perturbation growth can occur when

modal stability is firmly in place? This question is answered by Fig 7, showing modal damping

(a) and nonnormal growth (b) as functions of t (horizontal axes). Clearly, throughout the

Fig 7. Modal (a) and nonnormal (b) growth throughout t 2 [1, 10] y. Because the system is at times near neutral, panel a presents 103<(λmax<),

with least damping for τ = 200 d indicated. Panel b shows nonnormal growth (right colorbar) as a function of both t (horizontal) and τ (vertical).

https://doi.org/10.1371/journal.pone.0178235.g007
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shown t range, the system is modally stable, yet can support magnitude doubling because of

nonnormality for 150� τ� 250 days. The answer, that is, is “not unique at all; the rule rather

than the exception”.

Discussion and conclusions

The primary message of this paper is that while eigenvalues are important and revealing, they

by no means tell the full stability story. Yet the least damped eigenvalue is the stability criterion

most likely to be used in ecology [45, 46] (and elsewhere, see applications of this critique to,

e.g., astrophysical magnetohydrodynamics [47, 48], chemistry [49], or the geodynamo [50]).

Far from merely an algebraic curiosity, this can determine the fate of an ecosystem in the

opposite direction to what the leading eigenvalue suggests. Take, e.g., the t = 800 d state of crit-

ically low populations in the grass–herbivore model used in this paper. As the solid-squares

curve of Fig 5 makes clear, the lead eigenvalue is damped, predicting stability or gradual decay

of any initial perturbation at that tricky point. Yet ecosystem collapse is possible, as demon-

strated above.

Potentially suggesting safe stability where ecosystem collapse is distinctly possible, stability

determination based exclusively on the least damped eigenvalue does not serve ecosystem sci-

ence well. By simply favoring the inclusive, more complete Eq (10) over the customary yet

restrictive partial application of Eq (7), this potential pitfall can be easily avoided. That these

two stability analyses may yield diametrically opposite results may have broad implications to

both fundamental ecosystem science and to applied conservation science.
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