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Tissue resident immune system cells in the chicken intestine play a significant role in the
protection against pathogens. However, very little is known about these cells. The current
study was conducted to further characterize chicken intestinal immune system cells.
Furthermore, this study aimed to assess the immune modulatory action of a highly virulent
Clostridium perfringens, a commonly found chicken intestinal microbe, in comparison with
a non-commensal, Lactococcus lactis, on intestine-derived immune system cells. The
results demonstrated varying distribution of innate and adaptive immune cells along the
avian gut-associated lymphoid tissue (GALT) in the duodenum, jejunum, ileum, and cecal
tonsils. In addition, steady-state and tissue-specific presence of CD25+ cells among ab
and gd T-cell subsets was assessed along the intestine. Ex vivo stimulation with C.
perfringens or L. lactis resulted in a significant increase in the frequency of CD25+ T cells
(gd and ab T cells). In addition, significantly more cell death was observed in ex vivo
stimulation with C. perfringens, which was indirectly correlated with a decrease in
macrophage activation based on nitric oxide (NO) production with no effect on
lymphoid cell responsiveness as per intracellular interferon (IFN)-gamma (g) staining. Ex
vivo stimulation with L. lactis activated gd T cells and ab T cells, based on intracellular IFN-g
staining, while it had limited effect on macrophages. However, the ability of gd and ab T
cells to produce IFN-g and the ability of macrophages production of NO was rescued in
the presence of L. lactis. These results demonstrate the potential application of L. lactis, as
a probiotic, against virulent C. perfringens infection in chicken.
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INTRODUCTION

Clostridium perfringens, since its first descriptions by Parish (1961) in poultry (1), continues to be a
persisting problem for the poultry industry (2). In the growing broiler chicken, both avirulent and
highly virulent C. perfringens strains effectively colonize the intestine without causing a disease (3).
However, under certain circumstances, colonization by highly virulent strains leads to necrotic
org February 2022 | Volume 13 | Article 8073431
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enteritis. Infection with an opportunistic and highly virulent C.
perfringens expressing an array of toxins (a-toxin, necrotic
enteritis B-like toxin; NetB and TpeL), in the presence of Eimeria,
is a requirement for mucosal perturbation, loss of intestinal
epithelial integrity, and subsequent translocation of bacteria
through the mucus layer into deeper tissues (4). Furthermore,
necrotic enteritis (NE) pathogenesis can be exacerbated by high
protein diet, wheat and barley diet, or immunosuppression as a
result of viral infections (5). Even as maternal antibody levels
dissipate, the intestinal mucosal barrier and gut-associated
lymphoid tissue (GALT) can protect the growing chickens against
C. perfringens-induced NE (6). However, intestine colonizing NetB
and TpeL-negative C. perfringens strains are not sufficient to elicit a
protective immune response against highly virulent C. perfringens
infection and subsequent progression of NE (3, 7). Therefore,
understanding intestinal immune modulatory mechanisms by
highly virulent C. perfringens, which are poorly understood, is
critical for the development of new preventive strategies to curb
NE (8).

The chicken gastrointestinal tract (GIT) is a key mucosal
barrier made up of defined anatomical segments. These segments
consist of strategically dispersed and positioned GALT (9, 10)
that express pattern recognition receptors (PRR) such as Toll-
like receptors (TLR). TLR recognition of microbe-associated
molecular patterns (MAMPs) shapes both the microbiome
composition (11) and local immune responses to commensal
and invading pathogens (12, 13). Exposure to MAMPs (11) leads
to DC and macrophage maturation, activation, and subsequent
migration to specific areas of the lamina propria (LP) where they
modulate immune responses mounted by GALT cells. C.
perfringens has been shown to alter chicken macrophage
function by engaging TLR4 signaling thereby reducing its
antibacterial activity (14). However, directly crosslinking TLR1.2,
TLR2.1, and TLR15 can improve intestinal responses (15) as well as
invivomacrophageantibacterial functionagainstC.perfringens (14,
16). Activated macrophages and DCs provide the necessary
costimulation for mucosal T-cell maturation (17, 18). Activated
mucosalT cells produce either transforming growth factor (TGF)-b
or interferon gamma (IFN-g), key mucosal cytokines that regulate
effector functions of macrophage and CD8+ T cells (19). Mature
chicken intestinal T cells can directly respond to luminal-derived
MAMPs or TLR ligands (20–22). Therefore, the dynamic
interaction between macrophages and T cells is important in
sustaining the delicate balance between immune activation and
regulation (23).

Understanding the role of macrophages and T cells against C.
perfringens is crucial to establish how the host responds to this
bacterium. Competitive interactions in a TLR2-dependent manner
are suggested to be effective at negating C. perfringens-mediated
inhibition of intestinal antibacterial responses. L. lactis NZ9000
strain, a Gram-positive food-safe bacterium, possesses a surface
capsule rich in LTA motifs (TLR2 ligand) and is free of pathogenic
genes (24).AlthoughL. lactis isnot commonly found inchickens, oral
stimulation has been shown to elicit chicken IFN-g expression in vivo
suggestingadirect effect onmacrophagesorTcells, aThelper1 (Th1)
response (25, 26). In contrast, infectionwithC. perfringens leads to an
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inflammatory process that is directed by a Th2 response (27).
Therefore, the aim of the study was to elucidate the potential
benefit of L. lactis against C. perfringens and to elucidate the
underlying immunological mechanisms of L. lactis in the chicken
intestine. An ex vivo chicken intestinal mononuclear cell stimulation
assay was utilized to define L. lactis immunemodulatory function in
comparison or combinationwithC. perfringens. To that end, chicken
mononuclear cell responses such as nitric oxide and IFN-g
production from the various segments of the small intestine suggest
a potential role for L. lactis to interfere with C. perfringens toxin-
mediated immune suppression.
MATERIALS AND METHODS

Experimental Animals
Day-old-specific pathogen-free mixed sex white leghorn layers,
purchased from the Canadian Food Inspection Agency (CFIA;
Ottawa, Canada), were grouped housed in the same isolation
units throughout the experiment in specific pathogen-free
filtered-air positive pressure rooms. Group housed chickens
(n = 20) had ad libitum access to water and commercial feed.
All animal works were approved and performed according to the
University of Guelph animal care and use committee guidelines.

Reagents and Antibodies
The antibodies mouse anti-chicken KULO1-FITC, mouse anti-
chicken MHC II-PE, mouse anti-chicken CD3z-PB, mouse anti-
chicken CD4-PE-CY7, mouse anti-chicken CD8a-FITC, and
mouse anti-chicken gdTCR-PE were purchased from Southern
biotech, Canada. The following mouse anti-chicken CD25-APC
(Biorad, Canada) and mouse anti-chicken IFN-g biotin and
streptavidin APC were purchased from Life Technologies, Canada.

Reagents
Lipopolysaccharide (stock concentration; 1 mg/ml), phorbol 12-
myristate 13-acetate (PMA stock concentration; 100 mg/ml) and
ionomycin (ION stock concentration; 1 mg/ml) were all
resuspended and stored in DMSO.

Intestinal Tissue Mononuclear
Cell Preparation
Five-centimeter segments of the medial duodenum, jejunum,
ileum, and whole cecal tonsil were harvested from 3-week-old
white leghorn layers and stored on ice in PBS-containing
penicillin (10 U/ml) and streptomycin (10 mg/ml). Each tissue
samples were cut into 1-cm segments and washed three times
with PBS-containing penicillin (10 U/ml) and streptomycin (10
mg/ml). Tissue samples were subsequently digested with
collagenase type 1 (800 U/ml; Millipore-Sigma, ON, Canada)
in 4 ml of HBSS buffer (37°C for 20 min) containing penicillin
(10 U/ml) and streptomycin (10 mg/ml). Whole tissue digests
were applied onto 40-mm BD cell strainers (BD Biosciences, ON,
Canada) and crushed through using the flat end of a 10-ml
syringe plunger. Duodenum, jejunum, ileum, and cecal tonsil cell
suspension were prepared by layering (2:1) onto Histopaque
February 2022 | Volume 13 | Article 807343
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1077 (Millipore-Sigma, Canada) density-gradient centrifugation
and centrifuged at 2,100 rpm (600 × G) for 20 min to allow the
separation of mononuclear cells (28). Buffy coat was
subsequently aspirated from the interface and washed at 1,500
rpm (400 × G) for 5 min in RPMI-1640 with penicillin (10 U/ml)
and streptomycin (10 mg/ml). Mononuclear cells were suspended
in complete RPMI cell culture medium; RPMI-1640 medium
containing 10% fetal bovine serum (Millipore-Sigma, Canada),
penicillin (10 U/ml), and streptomycin (10 mg/ml). Cell number
and viability were calculated using a hemocytometer and trypan
blue exclusion method. Mononuclear cells were suspended in
complete RPMI cell culture medium at a density of 5 × 106 cells/
ml and kept on ice. For all assays, mononuclear cells were seeded
at a density of 0.5 × 106 cells/200 ml RPMI complete medium in
96 well u-bottom plates.

Bacterial Strains and Culture Conditions
Lactococcus lactis subsp. cremoris strain (nisin−/−, NZ9000 strain
fromMoBiTec GmbH, Göttingen, Germany) was cultured in M17
broth (Gibco, Burlington, ON, Canada) and maintained under
anaerobic conditions (30°C and no shaking). The avian highly
virulent C. perfringens (CP4 isolate) strain was cultured in Brain
Heart infusion (BHI) broth (Gibco, Canada) andmaintained under
anaerobic conditions (37.5°C and no shaking). Overnight cell
cultures (OD = 1.215) were washed (4,000 rpm for 10 min) twice
and resuspended in PBS. Bacterial cells prepared in PBS were
enumerated using a spectrophotometer and subsequently titrated
by 10-fold serial dilutions on tryptose sulfite cycloserine (TSC) agar
(anaerobic conditions 37.5°C and no shaking). Bacterial titer in
accordance with OD reading was used to estimate multiplicity of
infection. All bacterial samples were stored until required for
specific treatments.

For stimulation studies, optimized multiplicity of infection
(MOI) was determined by titrating both C. perfringens and L.
lactis (MOI = 0.001, 0.01, 0.1, and 1.0) on intestinal mononuclear
cells to determine an effective treatment concentration that induced
a combination nitric oxide (NO) and IFN-g production with an
effect on cell death. MOI of 1 was considered optimized for these
specific assays.

Nitric Oxide Production Using
Griess Assay
Duodenum, jejunum, ileum, and cecal tonsil mononuclear cells
were seeded in triplicates at a density of 5.0 × 105 cells per well.
Mononuclear cells were cultured with medium alone (vehicle),
lipopolysaccharide (LPS: 1 mg/ml, positive control; Millipore
Sigma, Canada), C. perfringens (1 multiplicity of infection;
MOI), L. lactis (1 MOI), and combination of C. perfringens (1
MOI) and L. lactis (1 MOI) and incubated (41°C and 5% CO2)
for 6 and 18 h. Supernatants were collected, and NO production
was measured by Griess assay (Promega, Madison, WI, USA),
according to the manufacturer’s protocol.

Flow Cytometry
Ex Vivo Stimulation Assay
Duodenum, jejunum, ileum, and cecal tonsil mononuclear cells were
seeded in triplicates at the density of 5.0 × 105 cells per well.
Frontiers in Immunology | www.frontiersin.org 3
Mononuclear cells were cultured with medium alone (vehicle), LPS
(1mg/ml, positive control;Millipore Sigma,Canada), or PMA(50ng/
ml)plus ION(1mg/ml),C.perfringens (1MOI),L. lactis (1MOI), and
combination of C. perfringens (1 MOI) and L. lactis (1 MOI) and
incubated (41°C and 5%CO2) for 18 h. All medium contained Golgi
plug and Golgi stop to facilitate intracellular cytokine staining.

Apoptosis Assay
To determine the effects of C. perfringens on cell apoptosis,
mononuclear cells were stained after 18 h with Annexin V-FITC
(BD Pharmingen, Mississauga, ON, Canada) and 7-AAD
(ThermoFisher Scientific, Mississauga, ON, Canada) in Annexin
V staining buffer. Apoptotic and dead cells were acquired on a BD
FACS Canto II, and data were analyzed using FloJo software.

Intracellular IFN-g
Eighteen hours post-treatment, mononuclear cells were stained
with 7-AAD and subsequently fixed for 30 min using the
fixation/permeabilization kit (BD Bioscience, Mississauga, ON,
Canada). Cells were incubated in fixation and permeabilization
buffer for 30 min at 4°C, blocked (20 min at 4°C) with 1% bovine
serum albumin (BSA) followed by incubation (20 min at 4°C)
with anti-cIFN-g-biotin (ThermoFisher Scientific, Canada). Cells
were washed twice in staining buffer (1% BSA) and stained with
streptavidin-APC (ThermoFisher Scientific, Canada) for 20 min
at 4°C in staining buffer. Mononuclear cells were washed twice in
staining buffer and incubated with a mouse anti-chicken CD3z-
PB, mouse anti-chicken CD4-PE-CY7 or mouse anti-chicken
CD25-PE-CY7, mouse anti-chicken CD8a-FITC, and mouse
anti-chicken gdTCR-PE (Southern Biotech, Canada). All cells
were acquired on a BD FACS Canto II, and the data were
processed by FlowJo V10 software.

Statistical Analysis
Graph Pad Prism 8 for windows was utilized to generate graphs
and perform statistical analysis. All data are presented as mean +
SD and analyzed by unpaired t-test. Results were considered
statistically significant at *p < 0.05.
RESULTS

Ex Vivo Treatment With L. lactis Improves
Responsiveness of Macrophages
Chicken small intestine macrophage (KULO1+MHC II+)
frequency was analyzed in the duodenum, jejunum, ileum, and
whole cecal tonsils of 3-week-old layer chickens. A representative
FACS dot plot and gating strategy, from cecal tonsil samples, to
define the frequency of macrophages in the duodenum, jejunum,
ileum, and cecal tonsils is shown (Figure 1A). The results
demonstrated that the duodenum contains significantly (p <
0.0005) more macrophages compared with the jejunum, ileum,
and cecal tonsil (Figure 1A). No differences were observed in the
frequency of macrophages between the jejunum, ileum, and cecal
tonsils. The absolute numbers of macrophages within
the intestinal segments were also quantified (Figure 1A).
February 2022 | Volume 13 | Article 807343
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The results demonstrated significantly (p < 0.0005) higher
numbers of macrophages within the duodenum when
compared with the jejunum and cecal tonsils (Figure 1A). No
differences were observed in the frequency of macrophages
between the duodenum and ileum. The ileum contained
significantly (p < 0.001) higher numbers of macrophages when
compared with cecal tonsils (Figure 1A).

Next, intestinal mononuclear cells were stimulated to evaluate
their response to C. perfringens and L. lactis at 6 h (Figure 1B) and
18 h (Figure 1C) post-stimulation (hps). The results demonstrated
no significant difference in NO production at 6 hps in all treatment
groups comparedwithunstimulated control (Figure 1B).However,
at 18 hps, NO production was significantly (p < 0.005) increased
from small intestinal mononuclear cells stimulated with C.
perfringens only or L. lactis only compared with unstimulated
control (Figure 1C). There was a lack of NO production from
duodenummononuclear cells treated with C. perfringens. Jejunum
mononuclear cells became activated following C. perfringens
treatment based on NO production when compared with
duodenum (p < 0.05). Treatment with L. lactis enabled the
activation of duodenum mononuclear cells in the presence of C.
perfringens leading to similar NO production when compared with
L. lactis-treated cecal tonsil mononuclear cells (Figure 1C).

Identification of CD25+ Mononuclear
Cells in Various Segments of the
Chicken Small Intestine
Next, steady-state and site-specific frequency of CD25+
mononuclear cells within CD3z+CD4+/CD8a+ ab and
CD3z+CD8a+ gd T cells was evaluated. A representative FACS
dot plot and gating strategy, from cecal tonsil samples, to define the
Frontiers in Immunology | www.frontiersin.org 4
frequency of CD25+ mononuclear cells in duodenum, jejunum,
ileum, and cecal tonsils is shown (Figure 2A). Themethod of tissue
digestion and lymphocyte isolation likely leads to isolation of both
intraepithelial and lamina propria T lymphocytes. Presence of
CD3z was used to phenotypically define T cells (CD3z+CD4+/
CD8a+ ab and CD3z+CD8a+ gd T cells). Within the CD3z+ cells
that are TCR gd+, our results demonstrated that the highest
frequency and absolute number of gd T cells was in the ileum
(Figures 2B, E). The duodenum had the lowest frequency and
absolute number of gdTcellswhen comparedwith the jejunum(p<
0.005), ileum (p < 0.0001), and cecal tonsil (p < 0.05) (Figures 2B,
E). Negative gating strategy for CD3z+TCRgd-T cell was used to
define CD3z+TCRab+ T cell that were either CD4+ or CD8a+.
CD8a+ ab T cells were the main ab T-cell subset found along the
avianGITwith the highest absolute numbers (p < 0.0001) observed
between the duodenum, jejunum, and ileum to that of cecal tonsils
(Figure2G). Therewasnodifference in the frequencyofCD8a+ab
T cells between each intestinal segment (Figure 2D). However,
CD4+ ab T cells were less abundant than CD8a+ ab T cells. The
frequency and absolute number of CD4+ ab T cells was
significantly higher (p < 0.001) in the cecal tonsils compared with
the duodenum, jejunum, and ileum (Figures 2C, F). To further
differentiate the identified T-cell subsets, CD25 was used to define
specific subsets within CD3z+CD4+/CD8a+ ab and
CD3z+CD8a+ gd T cells. The results demonstrated with regard
to CD3z+ T cells, CD25+ gd T cells were significantly (p < 0.01)
more abundant in the duodenum compared with the jejunum,
ileum, and cecal tonsil (Figure 2H). In comparison with the cecal
tonsils, significantly lower (p < 0.05) absolute number of CD25+ gd
Tcellswas detected (Figure2K).However, this subset represented a
minor population of gd T cells that reside in the intestine (<0.8% in
A

B C

FIGURE 1 | Ex vivo induction of NO production by C perfringens treatment of intestinal monocyte/macrophages. The frequency of small intestine mononuclear cells
isolated from 3-week-old layer chickens (n = 8) were analyzed using flow cytometry. (A) Dot plots demonstrating the gating strategy utilized to define the frequency
and absolute numbers of monocyte/macrophages (KULO1+MHC II+) within the duodenum, jejunum, ileum, and cecal tonsils. The respective small intestine
mononuclear cells were stimulated with medium alone (vehicle), LPS (1 mg/ml), C perfringens (1 MOI), L. lactis (MOI = 1), and combination of C perfringens (MOI = 1)
and L. lactis (MOI = 1). Supernatants were collected at (B) 6 and (C) 18 h poststimulation and NO concentration were quantified. Paired t-test was used to assess
normal distribution and test significance. *p < 0.05, ***p < 0.0005 and ****p < 0.0001 indicates a statistically significant difference. The mean ± SD value are shown
from three independent experiments performed in triplicates. Du, duodenum; Je, jejunum; Il, ileum; CT, cecal tonsil.
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FIGURE 2 | Site-specific differences in the frequency of CD3+ and CD25+ mononuclear cells along the avian small intestine. Small intestine mononuclear cells were
isolated from the duodenum, jejunum, ileum, and cecal tonsils of 3-week-old layer chickens (n = 8). Live cells were defined based on 7-aminoactinomycin D staining
(7AAD-). (A) Dot plots demonstrating the gating strategy utilized to define the frequency of (B) CD3z+CD8a+ gd T cells, (C) CD3z+CD4+ ab T cells, (D)
CD3z+CD8a+ ab T cells (H) CD3z+CD8a+CD25+ gd T cells (I) CD3z+CD4+CD25+ ab T cells, and (J) CD3z+CD8a+CD25+ ab T cells in the duodenum, jejunum,
ileum, and cecal tonsil. Absolute numbers of (E) CD3z+CD8a+ gd T cells, (F) CD3z+CD4+ ab T cells, (G) CD3z+CD8a+ ab T cells (K) CD3z+CD8a+CD25+ gd T
cells (L) CD3z+CD4+CD25+ ab T cells, and (M) CD3z+CD8a+CD25+ ab T cells in the duodenum, jejunum, ileum, and cecal tonsil. Paired t-test was used to
assess normal distribution and test significance. *p < 0.05, **p < 0.001, ***p < 0.0005, and ****p < 0. 0001 indicated a statistically significant difference. NS indicates
no significant difference. The mean ± SD value are shown from six individual layer chickens at 3 weeks of age with staining performed in triplicates Du, duodenum;
Je, jejunum; Il, ileum; CT, cecal tonsil.
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gd T). In ab T cells, the results presented here demonstrated no
significant difference in the frequency of CD4+CD25+ ab T cells
(Figure 2I) or CD8a+CD25+ ab T cells (Figure 2J) between the
duodenum, jejunum, ileum, and cecal tonsil. Based on absolute
numbers,CD4+CD25+abTcellsweremore abundant (p<0.01) in
the cecal tonsil compared with the duodenum and jejunum
(Figure 2L). CD8a+CD25+ ab T cells were incrementally higher
from the proximal (duodenum) to distal small intestine (cecal
tonsil), but no significant differences were observed between the
specific intestinal sites (Figures 2J, M). In addition, CD4+CD25+
ab T cells were significantly more abundant (p < 0.01) based on
frequency compared with CD8a+CD25+ ab T cells.

Ex Vivo Stimulation With L. lactis and C.
perfringens Differentially Modulates the
Frequency of CD25+ Small Intestine
Mononuclear Cells
Small intestinal mononuclear cells were stimulated ex vivo with L.
lactis (MOI = 1) only, C. perfringens (MOI = 1) only, or L. lactis
(MOI = 1) in combination with C. perfringens (MOI = 1). Cell
surface expression of CD25was assessed at 18 hps (Figure 3). PMA
and ION were utilized as positive control and medium alone as
vehicle (unstimulated). A representative FACS dot plot and gating
strategy, from ileumsamples, todefineCD25+ cells poststimulation
in the duodenum, jejunum, ileum, and cecal tonsils is shown
(Figure 3A). The results demonstrated that stimulation with
PMA and ion led to a significant increase (p < 0.001) in cell
surface expression of CD25 in gd T cells (Figure 3B), CD8+ ab
(Figure 3C), and CD4+ ab (Figure 3D) T cells when compared
with vehicle-stimulated cells. Duodenum and jejunum gd T cells
comparedwith ileum and cecal tonsil cells weremore responsive to
ex vivo stimulation with C. perfringens leading to a signification
increase (p < 0.05) in cell surface expression of CD25 in gd T when
compared with vehicle-treated cells (Figure 3B). Both ileum and
cecal tonsil gd T cells demonstrated a lack of responsiveness to ex
vivo stimulation with both L. lactis and C. perfringens when
compared with vehicle-treated cells (Figure 3B).

With respect to CD8a+ ab T cells, ex vivo stimulation with L.
lactis or C. perfringens alone and L. lactis in combination with C.
perfringens induced a significant increase (p < 0.05) in cell surface
expression of CD25 in jejunum and ileum CD8a+ ab T cells
when compared with vehicle-treated cells (Figure 3C). However,
ex vivo stimulation with L. lactis, C. perfringens, and L. lactis in
combination with C. perfringens had no effect on cell surface
expression of CD25 in duodenum and cecal tonsil CD8a+ ab T
cells when compared with vehicle-treated cells (Figure 3C). In
CD4+ ab T cells, the results demonstrated a significant increase
(p < 0.05) in cell surface expression of CD25 in CD4+ ab T cells
stimulated ex vivo with L. lactis or C. perfringens alone when
compared with vehicle in all sites of the small intestine (Figure 3D).

Ex Vivo Stimulation With L. lactis Elicits
Small Intestinal Mononuclear Cells
IFN-g Production
IFN-g is a key cytokine secreted by activated (ab and gd) T cell
(29). Small intestinal mononuclear cell activation, based on IFN-
Frontiers in Immunology | www.frontiersin.org 6
g production, was assessed in response to ex vivo stimulation
with L. lactis (MOI = 1), C. perfringens (MOI = 1) only, or L.
lactis (MOI = 1) in combination with C. perfringens (MOI = 1). A
representative FACS dot plot and gating strategy, from jejunum
samples, to define IFN-g+ cells in the duodenum, jejunum,
ileum, and cecal tonsils is shown (Figure 4A). The results
demonstrated that stimulation with PMA and ion led to a
significant increase (p = 0.05) in IFN-g+ cells among gd T cells
(Figure 4B), CD8+ ab T cells (Figure 4C), and CD4+ ab
(Figure 4D) T cells when compared with vehicle-stimulated
cells. T cells were observed to be more hyporesponsive to C.
perfringens treatment in contrast to L. lactis based on the
frequency of IFN-g+ cells. Analysis for frequency of IFN-g+
cells indicate that L. lactis, in contrast to C. perfringens, is a
strong inducer (p < 0.01) of gd (Figure 4B) and ab (Figures 4C,
D) T-cell ability to produce IFN-g. The results demonstrated that
ex vivo stimulation with C. perfringens did not result in cellular
activation based on no changes in the frequency of IFN-g+ gd T
cells (Figure 4B) and IFN-g+ ab T cells (Figures 4C, D) when
compared with vehicle-treated cells in the duodenum, jejunum,
ileum, and cecal tonsil.

In gd T cells, there was a significant increase (p < 0.01 and p <
0.001) in the frequency of IFN-g+ gd T cells from the jejunum,
ileum, and cecal tonsil-stimulated ex vivo with L. lactis when
compared with C. perfringens or vehicle-treated cells
(Figure 4B). However, ex vivo stimulation with C. perfringens
had no effects on the frequency of small intestinal IFN-g+ gd T
cells. The combination of ex vivo stimulation with L. lactis and C.
perfringens together elicited gd T-cell activation, particularly in
the duodenum due to the significant increase (p < 0.01) in IFN-
g+ gd T cells when compared with vehicle-treated cells
(Figure 4B). ab T cells from the duodenum, jejunum, ileum,
and cecal tonsil were responsive to ex vivo stimulation with L.
lactis based on the significant increase (p < 0.01) in the frequency
of CD8a+IFN-g+ ab T (Figure 4C) and CD4+IFN-g+ ab T
(Figure 4D) cells compared with vehicle-stimulated cells. In
addition, the results demonstrated that ex vivo stimulation with
L. lactis in combination with C. perfringens resulted in a
significant increase (p < 0.01) in the frequency of both
CD8a+IFN-g+ ab T (Figure 4C) and CD4+IFN-g+ ab T
(Figure 4D) cells compared with vehicle- or C. perfringens-
treated cells. Differential responses were observed in C.
perfringens-stimulated ab T cells (Figures 4C, D). The results
demonstrated that ex vivo stimulation with C. perfringens
resulted in a significant increase (p < 0.01) in jejunum and
cecal tonsil CD8a+IFN-g+ ab T cells (Figure 4C) and jejunum,
ileum, and cecal tonsil CD4+IFN-g+ ab T cells (Figure 4D)
when compared with vehicle-treated cells.

Ex Vivo L. lactis Stimulation Limits C.
perfringens-Induced Apoptosis of Small
Intestinal Mononuclear Cells
C. perfringens is well documented to express an array of toxins
that can modulate both cellular activation and induce necrotic
and apoptotic signaling in epithelial cells (30). Small intestinal
mononuclear cells isolated from the duodenum, jejunum, ileum,
February 2022 | Volume 13 | Article 807343
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and cecal tonsil were stained with 7AAD and Annexin V at 18 h
post-ex vivo stimulation with C. perfringens (MOI = 1), L. lactis
(MOI = 1), or a combination of C. perfringens (MOI = 1) and L.
lactis (MOI = 1) or vehicle (PBS) only. LPS (1 mg/ml) was used as
reaction control. The percentages of live cells (7AAD−Annexin
V−), apoptotic cells (7AAD−Annexin V+) and dead cells
(7AAD+Annexin V− + 7AAD+Annexin V+) were determined
using flow cytometry. A representative FACS dot plot and gating
strategy, from cecal tonsil (CT) samples, is shown demonstrating
gating strategy for duodenum, jejunum, ileum, and cecal tonsil
mononuclear cells (Figure 5A). The results demonstrated that ex
vivo stimulation with C. perfringens led to a significant increase
(p = 0.0001) in both dead and apoptotic mononuclear cells as
isolated from the duodenum, jejunum, ileum, and cecal tonsil
when compared with vehicle- or LPS-treated cells (Figure 5B).
However, ex vivo stimulation with L. lactis in combination with
C. perfringens resulted in a significantly lower (p < 0.01)
frequency of both dead and apoptotic mononuclear cells from
Frontiers in Immunology | www.frontiersin.org 7
the duodenum, jejunum, ileum, and cecal tonsil when compared
with C. perfringens only treated cells (Figure 5B). Ex vivo
treatment with L. lactis tended to increase both the frequency
of dead and apoptotic mononuclear cells from the duodenum,
jejunum, ileum, and cecal tonsil but was not significant when
compared with vehicle- or LPS-treated cells (Figure 5B).
DISCUSSION

In the food technology sector, L. lactis has been successfully
applied to limit Listeria monocytogenes (31) and Staphylococcus
aureus (32). Due to its designated food-safe status, L. lactis has
been applied in various animal models (32–34), including in
chickens, as an oral vaccine vector against avian influenza virus
(AIV), Newcastle disease virus (NDV), and infectious bronchitis
virus (IBV) (24, 35, 36). L. lactis has received little attention with
respect to its potential intestinal modulatory activities in poultry
A B

D

C

FIGURE 3 | Ex vivo induction of CD25+ small intestinal mononuclear cells by both C perfringens and L. lactis. Small intestine mononuclear cells (n = 6) were isolated
from the duodenum, jejunum, ileum, and cecal tonsils. Cells were stimulated with medium alone (vehicle), PMA (50 ng/ml) plus ION (1 mg/ml), C perfringens (1 MOI),
L. lactis (MOI = 1), and combination of C perfringens (MOI = 1) and L. lactis (MOI = 1). Mononuclear cells were analyzed at 18 h poststimulation by flow cytometry for
surface expression of CD25. (A) Dot plots and density plot demonstrating the gating strategy utilized to define the frequency of (B) CD3z+CD8a+CD25+ gd T cells,
(C) CD3z+CD8a+CD25+ ab T cells, and (D) CD3z+CD4+CD25+ ab T cells from the duodenum, jejunum, ileum, and cecal tonsil. Paired t-test was used to assess
normal distribution and test significance. *(p < 0.05), **(p < 0.001) and ***(p < 0.0005) indicates a statistically significant difference. The mean ± SD value are shown
from three independent experiments performed in triplicates. Du, duodenum; Je, jejunum; Il, ileum; CT, cecal tonsil.
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production systems (24) as it is not considered to be commensal
(37). Clear direct evidence in a mouse inflammatory model
indicates that L. lactis NZ9000 can reverse intestinal
inflammatory processes (38). Considering that C. perfringens
primary infection as an opportunistic bacteria requires intestinal
inflammation and injury for progression of NE, application of
beneficial bacteria such as L. lactis with anti-inflammatory activity
(38) in chickens can provide insights for induction of a protective
innate and adaptive immunes response against C. perfringens (15).

Distinct pathogenic avian C. perfringens strains have the ability
to produce a wide array of toxins such as a-toxin, NetB, and TpeL,
which constitute the underlying mechanisms for lesions associated
with NE (6, 38). Loss of intestinal epithelium in cases of avian NE
is a direct consequence of disrupting the lamina propria cellular
activities, extracellular matrix, and epithelial intercellular junctions
(39). The highly virulent C. perfringens strain utilized in this
experiment actively secretes NetB, TpeL, and a-toxin with
known function in disrupting the GALT and intestinal physical
barrier (40). In a mouse infection model, a-toxin has been shown
Frontiers in Immunology | www.frontiersin.org 8
to effectively modulate macrophage activation (41) with limited
impact on its replication (42). In chickens, NetB and TpeL affect
cellular morphology leading to pore formation resulting in cell
death (4, 30, 43). No NE is observed in chickens infected with C.
perfringens strain lacking NetB and TpeL (30). Therefore, a direct
relationship exists between NetB, TpeL, and progression of NE.
Our results provide further insight into this relationship. In fact, ex
vivo treatment of intestinal mononuclear cells with C. perfringens
did lead to significantly more mononuclear cell death than
untreated cells or L. lactis only treated cells. NetB, TpeL, and a-
toxin may be able to directly modulate immune system cells.
Previous studies have demonstrated that probiotics are able to
modify their microenvironment which is not conducive for
growth of potentially competing bacteria. L. lactis is well known
to produce antimicrobial substances such as lactic acid and acetic
acid (24) in addition to nisin. The L. lactis cremoris used in this
study is a nisin knockout therefore elucidating to other
mechanism of antimicrobial effects. These antimicrobial
substances can potentially affect the pH of the culture system
A B

D

C

FIGURE 4 | Ex vivo L. lactis treatment elicited intracellular IFNg expression in intestinal mononuclear cells. Small intestine mononuclear cells (n = 6) were isolated
from the duodenum, jejunum, ileum, and cecal tonsils. Cells were stimulated with medium alone (vehicle), PMA (50 ng/ml) plus ION (1 mg/ml), C perfringens (1 MOI),
L. lactis (MOI = 1), and combination of C perfringens (MOI = 1) and L. lactis (MOI = 1). Cells were harvested at 18 h poststimulation, and data were analyzed for
frequency of IFNg+ cells using flow cytometry. (A) Dot plots and density plot demonstrating the gating strategy utilized to define the frequency of (B)
CD3z+CD8a+IFNg+ gd T cells, (C) CD3z+CD8a+IFNg+ ab T cells, and (D) CD3z+CD4+IFNg+ ab T cells. Paired t-test was used to assess normal distribution and
test significance. *p < 0.05, **p < 0.001, ***p < 0.0005, and ****p < 0.0001 indicate a statistically significant difference. The mean ± SD value are shown from three
independent experiments performed in triplicates. Du, duodenum; Je, jejunum; Il, ileum; CT, cecal tonsil.
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and decrease toxin function. Similarly, in chickens, lactobacillus
probiotic bacteria have been demonstrated to change the pH of the
milieu that led to a decreased in C. perfringens proliferation and
toxin production (8). In accordance with previous observations,
the fact that treatment together with L. lactis could limit C.
perfringens-induced cell death demonstrates a potential role in
either limiting toxin production or their functional activity.
Current work in our lab is attempting to elucidate further L.
lactis cremoris antimicrobial mechanisms against avian pathogens
such as C. perfringens.

Although not yet fully elucidated, it is likely that avian
macrophages are highly susceptible to C. perfringens-derived
toxins including a-toxin. In fact, our results demonstrate that
macrophages make up more than 40% of all immune system cells
that populate the chicken intestine. The duodenum was more
populated by macrophages in comparison with the jejunum,
ileum, and cecal tonsil. The avian C. perfringens has been shown
to alter a chicken macrophage cell line function by engaging TLR4
signaling thereby reducing its antibacterial activity and increasing
inflammatory processes (14). It is well established that human T
cells in the presence of M1 macrophages or DC secrete a large
amount of IFN-gwith little IL-4, IL-5, and IL-10 (44). However, this
mechanism is unclear in the chicken mucosal immune system (45).
This study also provides further evidence that ex vivo treatment with
C. perfringens could effectively limit primary intestinal macrophage
activation based on NO production even after 18 h of culture. This
is supported by the fact that stimulation with L. lactis on its own or
in the presence of C. perfringens increased intestinal macrophage
activation. L. lactis can be immunogenic whereas macrophages
Frontiers in Immunology | www.frontiersin.org 9
might be unresponsive to presence of C. perfringens when
compared with L. lactis. Lack of cellular activation can be either
due to an increase in C. perfringens-induced cell death or cellular
unresponsiveness. The possibility based on our observation and that
of others that C. perfringens immune modulation by suppressing or
redirecting innate cell activation cannot be excluded (46). Innate cell
activation is crucial for adaptive immune system cells such as T cell.

In this study, the results presented demonstrate that a
substantial portion of intestinal T cells expressed CD25. The
interleukin-2 receptor alpha chain (also called CD25) is
considered a determinant of T-cell functional ability. Several
cytokines secreted by monocytes and macrophages trigger T-cell
activation and induction of CD25 expression. CD25 defines two
major T-cell subsets, effector T cells based on IFN-g expression
and regulatory T cells (Treg) that are expressing TGF-b (47, 48).
One of the limitations of avian research is diversity of antibodies
for extensive phenotypic analysis of avian T cells (28). As such,
dual staining of IFN-g and TGF-b is a limiting part of defining and
differentiating CD25+ T-cell subsets. In this study, CD25+ T cells
define the intestinal mononuclear cells with potential for either an
effector or regulatory role. Mature, differentiated T cell express
TLRs and can directly respond to MAMPS. Direct stimulation
with TLR agonists can promote more effective T-cell-mediated
immunity. In mice, activated T cell, IFN-g expressing cells, can
either support B-cell activation, T-dependent B-cell activation, or
enhance the mucosal barrier against invading microbes by
supporting innate cells such as macrophages (49). Intestinal
IFN-g is a key mucosal mediator. The IFN-g signaling pathway
coordinates several biological responses, primarily involved in host
A

B

FIGURE 5 | Ex vivo L. lactis treatment improves small intestinal mononuclear cells resistance to C perfringens-induced apoptosis. Small intestine mononuclear cells
(n = 6) isolated from the duodenum, jejunum, ileum, and cecal tonsils were stimulated with medium alone (vehicle), LPS (1 mg/ml), C perfringens (1 MOI), L. lactis
(MOI = 1), and combination of C perfringens (MOI = 1) and L. lactis (MOI = 1). Gut mononuclear cells harvested at 18 h poststimulation were stained with 7AAD
(dead cell marker) and Annexin V (early apoptotic marker). (A) Dot plots demonstrating the gating strategy utilized to define live (7AAD-Annexin V-), dead (7AAD
+Annexin V+), and apoptotic (7AAD-Annexin V+) mononuclear cells from the (B) duodenum, jejunum, ileum, and cecal tonsil. Paired t-test was used to assess
normal distribution and test significance. *p < 0.05, **p < 0.001, and ***p < 0.0005 indicate a statistically significant difference. The mean ± SD value are shown from
three independent experiments performed in triplicates.
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defense and immune surveillance by enabling “classical” activation
of human macrophages (M1) and cytotoxic CD8+ T cells (50).
Through TLR-mediated signaling, some probiotics, in chicken,
may alter cytokine production by promoting nuclear export of
NF-kB or interferon regulatory factor (IRF) 1 which leads to
expression of Th2 proinflammatory cytokines such as IL-4 and IL-
10 or Th1 cytokines such as IFN-g, respectively (51), cytokines that
work in opposing fashions. C. perfringens strains are encapsulated
by different combination of atypical LTA motifs thereby altering
their immunogenicity. TLR stimulation may be limited to either
TLR2 or TLR4 and not TLR21. It is possible, in chickens, that
highly virulent C. perfringens strains are least immunogenic in
terms of innate sensing (52). In vivo experiments have also
demonstrated that C. perfringens-induced TLR signaling in
chickens is not sufficient to elicit cytokine expression such as
IFN-g due in part to an increase in IL-4 and IL-10 cytokine
expression (14, 22). As demonstrated in this study based on
intracellular IFN-g staining in T cells, the results presented here
demonstrated that ex vivo stimulation of intestinal mononuclear
cells with C. perfringens did not elicit T-cell activation. It is likely
that C. perfringens is a poor immunogen in part due to its cellular
structure but also the functional role played by the vast array of
toxins (NetB, TpeL, and a-toxin) it produces. Treatment with L.
lactis on its own elicited cellular activation based on detection of
intracellular IFN-g in gd T cells and ab T cells. L. lactis is not
common to chickens but is immunogenic, demonstrating that
TLR crosslinking is effective at eliciting a T-cell response. More
importantly, treatment with L. lactis in combination with C.
perfringens led to cellular activation based on detection of
intracellular IFN-g in gd T cells and ab T cells when compared
with C. perfringens-stimulated cells or stimulated cells. Taken
together, these results are consistent with observation that an
ability for L. lactis to limit cell death, in a similar manner as
probiotic bacteria, can increase T-cell responsiveness to
stimulation, even in the presence of C. perfringens.

Expression of CD25 is often associated with regulatory T
(Treg) cells that are known to inhibit IFN-g+ T-cell effector
responses. In contrast, IFN-g+ can activate Treg but limit their
ability to secret TGF-b but not IL-10 (53). Here, we demonstrate
that a subset of chicken intestinal (duodenum, jejunum, ileum,
and cecal tonsil) CD8+ gd T cells and CD4+ ab T cells expressed
CD25. Recently, chicken cecal tonsils and spleen CD25+ T cell
have been shown to have a regulatory function with the ability to
express IL-10 and TGF-b thereby limiting effector T-cell
functions such as proliferation and cytokine production (47,
48). The results of the present study demonstrated that ex vivo
treatment of chicken intestinal mononuclear cells with a highly
virulent C. perfringens bacteria led to an increase in expression of
CD25 in T cells but not IFN-g, an indication for two functionally
distinct T-cell subsets. In mice, presence and recognition of
colonic Clostridia is essential for induction and maintenance of
tissue-resident CD25+ cells with regulatory (TGF-b+) function
(54). By contrast, in mice, the presence of commensal or
nonpathogenic bacterial DNA was shown to limit Treg
conversion (55). In chickens, infection with a highly virulent C.
perfringens led to a decrease in intestinal TGF-b mRNA
Frontiers in Immunology | www.frontiersin.org 10
expression but an increase in IL-10 (27). CD25+ Treg cells can
express IL-10 to suppress cellular activation. In contrast, IFN-g+-
expressing T cells can activate CD25+ Tregs in turn limiting their
ability to produce IL-10 but increase TGF-b expression which
could be critical to limit C. perfringens-induced NE. During
infection with C. perfringens, cell death induced by NetB, TpeL,
and a-toxin is a key factor for NE progression. Immune
unresponsiveness and a lack of TGF-b expression, essential for
tissue remodeling and repair, likely due to induced expression of
IL-10 in intestinal epithelial and immune system cells, can
exacerbate NE. In addition, our results demonstrate that L.
lactis treatment also increased the frequency of CD4+CD25+
ab T cell and CD8+CD25+ gd T cells ex vivo. Therefore, de novo
induction of CD25+ T cell could be essential for macrophage
function and subsequent effector T-cell (IFN-g+) activation.

Improving intestinal health is the most important issue
currently being tackled by the poultry industry. Here, we have
shown that L. lactis can directly activate mucosal gd and ab T
cells based on intracellular IFN-g staining. These effects were
associated with limiting C. perfringens-induced cell death and
promoting macrophage activation. Taken together, this body of
work demonstrates the potential feasibility of L. lactis application
against C. perfringens as a modulator of intestinal immune
responses in the chicken.
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Pathobionts by the Gut Microbiota. Nat Immunol (2013) 14(7):685–90.
doi: 10.1038/ni.2608

12. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, zum Büschenfelde K-
HM. Tolerance Exists Towards Resident Intestinal Flora But is Broken in
Active Inflammatory Bowel Disease (IBD). Clin Exp Immunol (2008) 102
(3):448–55. doi: 10.1111/j.1365-2249.1995.tb03836.x

13. Bar-Shira E, Sklan D, Friedman A. Establishment of Immune Competence in
the Avian GALT During the Immediate Post-Hatch Period. Dev Comp
Immunol (2003) 27(2):147–57. doi: 10.1016/S0145-305X(02)00076-9

14. Wang B, Hussain A, Zhou Y, Zeng Z, Wang Q, Zou P, et al. Saccharomyces
Boulardii Attenuates Inflammatory Response Induced by Clostridium
Perfringens via TLR4/TLR15-MyD8 Pathway in HD11 Avian Macrophages.
Poultry Sci (2020) 99(11):5356–65. doi: 10.1016/j.psj.2020.07.045

15. Yitbarek A, Echeverry H, Brady J, Hernandez-Doria J, Camelo-Jaimes G,
Sharif S, et al. Innate Immune Response to Yeast-Derived Carbohydrates in
Broiler Chickens Fed Organic Diets and Challenged With Clostridium
Perfringens. Poultry Sci (2012) 91(5):1105–12. doi: 10.3382/ps.2011-02109

16. Lu Y, Sarson AJ, Gong J, Zhou H, ZhuW, Kang Z, et al. Expression Profiles of
Genes in Toll-Like Receptor-Mediated Signaling of Broilers Infected With
Clostridium Perfringens. Clin Vaccine Immunol (2009) 16(11):1639–47.
doi: 10.1128/CVI.00254-09

17. Quinteiro-Filho WM, Brisbin JT, Hodgins DC, Sharif S. Lactobacillus and
Lactobacillus Cell-Free Culture Supernatants Modulate Chicken Macrophage
Activities. Res Vet Sci (2015) 103:170–5. doi: 10.1016/j.rvsc.2015.10.005

18. Barjesteh N, Behboudi S, Brisbin JT, Villanueva AI, Nagy É, Sharif S. TLR
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