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Background: Renal cell carcinoma (RCC) is associated with poor prognostic outcomes.
The current stratifying system does not predict prognostic outcomes and therapeutic
benefits precisely for RCC patients. Here, we aim to construct an immune prognostic
predictive model to assist clinician to predict RCC prognosis.

Methods: Herein, an immune prognostic signature was developed, and its predictive
ability was confirmed in the kidney renal clear cell carcinoma (KIRC) cohorts based on The
Cancer Genome Atlas (TCGA) dataset. Several immunogenomic analyses were
conducted to investigate the correlations between immune risk scores and immune cell
infiltrations, immune checkpoints, cancer genotypes, tumor mutational burden, and
responses to chemotherapy and immunotherapy.

Results: The immune prognostic signature contained 14 immune-associated genes and
was found to be an independent prognostic factor for KIRC. Furthermore, the immune risk
score was established as a novel marker for predicting the overall survival outcomes for
RCC. The risk score was correlated with some significant immunophenotypic factors,
including T cell infiltration, antitumor immunity, antitumor response, oncogenic pathways,
and immunotherapeutic and chemotherapeutic response.

Conclusions: The immune prognostic, predictive model can be effectively and efficiently
used in the prediction of survival outcomes and immunotherapeutic responses of RCC
patients.
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BACKGROUND

The prevalence of renal cell carcinoma (RCC), a lethal urogenital
cancer, ranks third after prostate and bladder cancers (1–3). In
2020, about 73,750 new RCC cases were diagnosed, with
approximately 14,830 deaths in the USA (3). Nowadays, a
range of treatments, such as surgery accompanied with or
without postoperative adjuvant therapy, chemotherapy,
immunotherapy, and target therapy, have been developed for
RCC. Although these options have certain therapeutic effects, the
overall prognosis of RCC patients remains dismal, especially in
the late-stage RCC (4).

Over recent decades, the development of immunotherapy has
revolutionized cancer treatment paradigms and has been
recognized as a promising therapeutic frontier (5–7). For
example, immune checkpoint blockade (ICB) is a new
therapeutic strategy for several cancer types, such as breast
cancer (8, 9), melanoma (10, 11), and lung cancer (12, 13).
ICB has also evolved in RCC and showed certain practical
application value through the years based on the phase III
CheckMate 025 study, whether or not patients have been
previously treated (14, 15). In addition, accumulating evidence
has also proven that the tumor immune microenvironment
(TIME), which encompasses immune cells, fibroblasts,
extracellular matrix, endothelial cells, and various cytokines, is
associated with tumor progression and metastasis (16–19). In
2017, Chevrier et al. depicted an in-depth Immune Atlas of Clear
Cell Renal Cell Carcinoma by applying mass cytometry for the
high-dimensional single-cell analysis of kidney primary Tumors
(20). In addition, an increased number of studies have proved
that multiple immune cells, including CD8+ T cells, CD4+ T cells
and NK cells et al, have been associated with ccRCC tumor (21,
22). An in-depth understanding of TIME is critical to identifying
potential immunotherapeutic targets for RCC. However, the
majority of the studies have only evaluated gene expressions in
the prediction of survival rates for RCC patients, and most of
these biomarkers only reveal the status of TIME in some aspects
(23, 24). Hence, a comprehensive immune-based model might
provide an in-depth insight into the association between
prognosis and TIME in RCC.
Abbreviations: RCC, renal cell carcinoma; KIRC, kidney renal clear cell
carcinoma; DEGs, differentially expressed genes; ccRCC, clear cell renal cell
carcinoma; CMAP, connectivity map; ssGSEA, single sample gene set
enrichment analysis; GSEA, gene set enrichment analysis; NES, normalized
enrichment score; IS, immune cells; TS, tumor cells; ICB, immune checkpoint
blockade; TIME, tumor immune microenvironment; TME, tumor
microenvironment; TMB, tumor mutation burden; TCGA, The Cancer Genome
Atlas; GEO, Gene Expression Omnibus; TCIA, the cancer immune group atlas;
IRGs, immune-related genes; ImmPort, Immunology Database and Analysis
Portal; DE-IRGs, differentially expressed immune-related genes; FDR, false
discovery rate; LASSO, least absolute shrinkage and selection operator; ROC,
receiver operating characteristic curves; C-index, concordance index; DCA,
decision curve analysis; ES, ESTIMATE scores, TP, tumor purity, SS, stromal
scores; IS, immune scores; CYT, cytolytic activity; PD, progressive disease; SD,
stable disease; PR, partial response; CR, complete response; IPS,
immunophenoscore; GDSC, Genomics of Drug Sensitivity in Cancer; PCA,
principal component analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; BP, biological process; CC, cellular component; MF,
molecular function; PAC, antigen-presenting cell; OS, overall survival.
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In the current study, we established an immune prognostic
signature model for RCC using the training cohort and further
confirmed the effectiveness of the prognosis model in the testing
and the entire cohort. Additionally, the associations between the
risk score subtypes and immune checkpoints, antitumor
immunity, antitumor response, oncogenic pathways, immune
cell infiltration, and tumor mutation burden (TMB) were
explored. Also, the models’ ability for the prediction of
chemotherapeutic and immunotherapeutic responses was
evaluated. Finally, we screened out two compounds that could
improve the prognosis of RCC.
MATERIALS AND METHODS

Data Acquisition as Well as Preprocessing
Transcriptional expression profiles, mutation patterns, and
related clinical data for KIRC patients were retrieved from the
Cancer Genome Atlas (TCGA) cohort (https://cancergenome.
nih.gov/). Immune-associated genes (IRGs) were derived from
the Immunology Database as well as Analysis Portal (ImmPort)
database (25). The immunophenoscore (IPS) for RCC patients
were retrieved from the cancer immune group atlas (TCIA)
(https://tcia.at/home). In addition, the advanced urothelial
cancer database of administered anti-PD-L1 therapy was
downloaded using the R package “IMvigor210CoreBiologies”
(version 1.0.0) (26). The malignant melanoma dataset that
received anti-PD-1 and antiCTLA4 therapy were obtained
from the GSE91061 cohort. All data were subjected to
background correction and logarithmic conversion using
R software.

Differentially Expressed Immune-Related
Genes (DE-IRGs) and Functional
Enrichment Analyses
Differential gene expression analysis between tumor and
corresponding normal tissues in KIRC were screened based on
the count data for TCGA kidney cancer cohort using the R
package “DESeq2” (27), according to the screening criteria (log2|
fold change| >2, P-value <0.05). The IRGs involved in
oncogenesis were provide by IMMPORT website. Then, DE-
IRGs were identified by the intersection between DEGs
and IRGs.

The R package “clusterProfiler” was used for Gene Ontology
(GO) as well as Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of these significant DE-
IRGs and their visualization (28). Next, we defined the pathways
and terms using false discovery rate (FDR) ≤0.05 as
statistically significant.

Establishment of the Immune-Related
Risk Score
Among 538 KIRC with mRNA expression data, 517 patients with
the overall survival (OS) data were retained for further analyses.
First, 70% of samples were randomly drawn and grouped as
training cohort to develop a prognostic risk model, and the other
October 2021 | Volume 12 | Article 762120
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30% of samples comprised the validation set, which was used in
evaluating the model’s predictive ability and robustness in the
entire cohort. Then, DE-IRGs were screened out by univariate
Cox proportional hazard regression through the “coxph” R-
function from the “survival” package (29). Subsequently, the
least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was carried out to select the prognostic genes
using the R package “glmnet” (30). Finally, the immune-
associated risk score was calculated using LASSO Cox
regression hazard regression − retrieved regression coefficients
to multiply expression levels of genes (the risk score = mRNA
expression levels of gene a × coefficient a + mRNA expression
levels of gene b × coefficient b + ……+ mRNA expression levels
of gene n × coefficient n).

In addition, by setting the median of risk score as the cutoff
value, the patients were classified into a high-risk group and a
low-risk group. To establish the prognostic accuracy of the
established model, we used Kaplan–Meier survival curve
analysis, concordance (C)-index, log-rank test in addition to
time-dependent receiver operating characteristic curves (ROC)
and XGBoost algorithm.

Independent Prognostic Value of the
Immune-Associated Prognostic Signature
Multivariate Cox regression analysis with the forward stepwise
procedure was performed to investigate if the risk score is an
independent prognostic factor. The immune-associated risk
score and other clinical variables with P <0.05 were identified
as independent prognostic risk factors.

Establishment and Validation
of the Nomogram
To develop a prognostic signature for 1-, 3-, and 5-year survival
rates, a nomogram was constructed using the identified
independent prognostic variables, such as stage, age, and risk
score (31). Moreover, the C-index, calibration curve, decision
curve analysis (DCA), and ROC analysis were performed to
determine its predictive accuracy and discriminatory capacity
(32). The C-index was evaluated using a bootstrap method
involving 1000 resamples (33). The C-index values, dependent
on the nomogram’s predictive ability, ranged from 0.5 (no
discrimination) to 1 (perfect discrimination). The consistency
between the predictive survival rate and the actual survival rate in
unknown samples was assessed using calibration curves.
Additionally, DCA (34) was used to evaluate the clinical utility
and the net benefits of the nomogram as it takes both
discrimination and calibration into consideration. Finally, the
area under the receiver operating characteristic (ROC) curve
(AUC) was also determined for each variable to evaluate the
discriminative performance of the nomograms.

Immune Cell Proportion Analyses and
Immune Related Features
To explore immune cell abundance in KIRC tissues,
CIBERSORT (35) was employed to evaluate the proportions of
22 immune cell types using a deconvolution algorithm by the R
Frontiers in Immunology | www.frontiersin.org 3
package with default parameters. In addition, the ESTIMATE
scores (ES), tumor purity (TP), stromal scores (SS), and immune
scores (IS) for each KIRC sample were evaluated using the
ESTIMATE algorithm (19) of the “estimate” package. The
cytolytic activity (CYT) index is a geometric mean of mRNA
expression levels of GZMA and PRF1, and was utilized to assess
the intratumoral immune cytolytic T-cell activities (36).

Immunotherapy and Chemotherapeutic
Response in Risk Score Subtype
As immune checkpoint molecules are widely explored in the
immunotherapeutic studies of multiple cancers, programmed
cell death 1 (PDCD1, also referred to as PD-1), CD274 molecule
(also referred to as PD-L1), and cytotoxic T-lymphocyte protein
4 (CTLA4) were used to evaluate the associations between risk
scores and immunotherapeutic efficacies. The urothelial cancer
dataset (IMvigor210) comprising of administered anti-PD-L1
therapy was used to establish the therapeutic benefits between
high- and low-risk score subtypes using four treatment
categories: progressive disease (PD), stable disease (SD),
complete response (CR), and partial response (PR).

IPS is a machine learning-based scoring system applied for
the prediction of patients’ responses to immune checkpoint
inhibitor (ICI) treatment based on the weight average Z scores
representing immune-related genes expression in cell types (37).
High IPS scores reflect increased immunogenicity.

As chemotherapy and targeted therapy are widely used to
treat clear cell renal cell carcinoma (ccRCC), risk scores were
used to predict the drug sensitivity based on half-maximal
inhibitory concentrations (IC50) for each KIRC patient from
the Genomics of Drug Sensitivity in Cancer (GDSC) website (38)
using the R package “pRRophetic” (39–44). The common target
drugs, such as Cisplatin, Gefitinib, Gemcitabine, Sorafenib,
Sunitinib, Vinblastine, Vinorelbine, and Vorinostat, were
selected for ccRCC.

Tumor Mutational Burden (TMB),
Connectivity Map (CMAP) and Molecular
Docking Analysis
KIRC patients’ somatic variants data were analyzed and
visualized by “maftool” R package (45) to identify the
mutation burden of KIRC in the high- and low-risk scores.
Then, the TMB of each patient was calculated as follows:
mutations/million bases.

Next, to identify the potentially small molecules related to this
signature, genes in the model were assessed via CMAP analysis.
Thus, the positive mean represented that these selected drugs
may share similar functions with the model, while the negative
mean indicated that these drugs could improve the prognosis of
RCC. Herein, we screened compounds by setting the criteria as
P <0.05.

Moreover, the crystal structure of the protein was obtained
from RCSB Protein Data Bank. The three-dimensional structures
for all compounds were downloaded from PubChem database
using MOL2 format. The molecular docking calculations were
conducted using Schrodinger and Pymol 2.1 software.
October 2021 | Volume 12 | Article 762120
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Statistical Analysis
The differences between variables were determined by chi-square
as well as Student’s t-tests. For baseline clinical data, the
Wilcoxon test and the Kruskal–Wallis were utilized to evaluate
the significant differences between two or multiple groups,
respectively. The Kaplan–Meier survival curves were compared
using the log-rank test. P<0.05 indicated statistical significance. R
4.0.3 and SPSS 26.0 software were used for all analyses.
RESULTS

Identification and Functional Analyses of
DE-IRGs
All 517 KIRC samples with OS information were split into training
(367 patients) and test groups (151 patients). Between the training
and validation cohorts, no significant differences were detected
among most of the clinical characteristics (Table 1).

With the cutoff value |log2 fold change (logFC)|>2 and adjusted
P<0.05, 953 DEGs were filtered, of which 539 genes were
significantly elevated, while 414 genes were significantly
suppressed in tumor samples compared to normal samples
(Figures 1A, B). Moreover, principal component analysis (PCA)
results (Figure 1C) revealed that KIRC samples clustered
separately from normal samples. Subsequently, the intersection
between DEGs and immune-associated genes retrieved from the
ImmPort database was determined, and 98 DE-IRGs were selected
and visualized on a Venn diagram (Figure 1D).

These 98 DE-IRGs were further utilized in functional
enrichment analyses, including KEGG and GO analyses. Based
Frontiers in Immunology | www.frontiersin.org 4
on GO analysis, in the biological process (BP), these DE-IRGs
were enriched in cell chemotaxis, leukocyte chemotaxis,
lymphocyte chemotaxis, positive regulation of cell adhesion,
and T cell activation (Figure 2A). In the cellular component
(CC) category, the DE-IRGs were mainly enriched in the
cytoplasmic vesicle lumen, plasma membrane’s external side,
platelet alpha granule, platelet alpha granule lumen, and vesicle
lumen (Figure 2B). Regarding molecular function (MF), these
DE-IRGs were enriched in cytokine receptor binding, growth
factor activity, receptor ligand activity, cytokine activity, and
signaling receptor activator activity (Figure 2C). Regarding
KEGG pathways analysis, these DE-IRGs were mainly involved
in the calcium signaling pathway, chemokine signaling pathways,
cytokine-cytokine receptor interactions, Ras signaling pathways,
and viral protein interactions with cytokine receptors and
cytokines (Figure 2D).

Establishment and Validation of
Prognostic Immune Score Model
All 367 KIRC samples in the training cohort were utilized in a
prognostic model establishment. First, univariate Cox regression
analysis was carried out to explore the association between DE-
IRGs and the OS outcomes for KIRC samples. Among 98 DE-
IRGs, 47 genes were selected. To avoid overfitting, we further
conducted the LASSO Cox regression analysis with minimized
lambda (Figures 3A, B). A total of 14/47 genes were used to
establish the prognostic immune score model using the
following formula: risk score = (SAA1 × 0.08215) + (IL20RB ×
0.07643) + (TNFSF14 × 0.09743) + (ESRRG × -0.09743) +
(FGF21 × 0.23324) + (IFNG × 0.05956) + (CTLA4 ×
0.01439) + (KLRK1 × 0.00717) + (IL11 × 0.01639) + (GDF6 × -
TABLE 1 | The clinical characteristics of KIRC patients.

Variables Group Total set (n = 517) Training set (n = 367) Testing set (n = 151) P value

Vital status Alive 361 249 111 0.136
Dead 156 118 38

Survival time 1054.797 1046.125 1070.073 0.815
Clinical Stage I 257 189 68 0.233

II 54 36 19
III 123 80 43
IV 83 62 21

T stage T1 262 192 70 0.637
T2 65 46 20
T3 179 122 57
T4 11 7 4

N stage N0 233 166 67 0.348
N1 15 8 7
NX 269 193 77

M stage M0 413 286 128 0.144
M1 78 59 19
MX 26 22 4

Grade G1 13 11 2 0.478
G2 225 161 65
G3 204 146 58
G4 75 49 26

Gender Male 339 236 104 0.32
Female 178 131 47

Age <65 326 233 94 0.791
≥65 191 134 57
October 2021 | Volume 12 | Article
 762120
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0.02484) + (BMP7 × 0.05433) + (GNLY × 0.11780) + (AVPR1B ×
-0.06460) + (CXCL11 × 0.03907) (Figure 3C).

Based on the above calculated formula, the risk scores for
every patient in the training set were computed. Then, with the
median risk score as the basis, patients were allocated into the
high- and low-risk groups. The high-risk patients exhibited
significantly poor OS outcomes compared to low-risk patients
(P=1.398E-10) (Figure 4A). As illustrated in Figure 4B, the
AUCs of risk scores for 1-, 3-, and 5-years were 0.725, 0.723, and
0.745, respectively, in the training group. The distribution of the
risk scores, survival time, survival status, and the expression of 14
OS-associated DE-IRGs for KIRC patients in the training cohort
are displayed in Figures 4C–E. The model’s C-index was 0.698
(95% confidence interval (CI): 0.647–0.750, P=6.849E-14). To
further explore whether the prognostic model was independent
of other clinical elements, such as grade, age, T stage, and clinical
stage, univariate and multivariate Cox regression analyses were
conducted (Table 2). The risk score was confirmed as an
independent prognostic factor (HR=2.699, 95% CI: 1.716–
4.243, P<0.0001).

In addition, a quantitative strategy for the prediction of the
prognostic outcomes of patients was established by constructing
a nomogram that integrated the risk scores as well as other
independent clinical prognostic factors for OS (Figure 4F).
Then, the nomogram’s performance was determined using the
ROC curve, C-index, calibration curve, and decision curve
Frontiers in Immunology | www.frontiersin.org 5
analyses. The AUCs of the nomogram were 0.828, 0.783, and
0.774 for 1-, 3-, and 5-year survival times, respectively
(Figure 4G). The C-index was 0.762 (95% CI: 0.720–0.804,
P=1.800E-34). Based on the calibration curve, the training
cohort predicted that 1-, 3-, and 5-year survival probabilities
were good (Figure 4H). For the decision curve, the nomogram
exhibited a higher net benefit than other schemes to predict the
OS (Figure 4I).

To delineate the robustness and versatility of the immune
score model, the risk score in the training cohort was validated in
the testing and entire cohorts. The participants in the testing and
entire cohorts were grouped into high- and low-risk score
subtypes using the same formula. The findings in the testing
and entire datasets were similar. The Kaplan–Meier survival
curves revealed poor survival rates for the high-risk group in the
testing (P=3.58E-8) (Figure 5A) and the entire cohorts
(P=3.616E-12) (Figure 6A). The AUC for 1-, 3-, and 5-years
are 0.858, 0.842, and 0.857 in the testing group (Figure 5B) and
0.736, 0.727, and 0.746 in the entire group (Figure 6B). The
survival data, risk score, scatterplots, and gene expression pattern
distributions in the testing and entire cohorts are shown in
Figure 5C–E and Figures 6C–E. The C-indices of the model
were 0.835 (95% CI: 0.782–0.888, P=1.034E-35) and 0.709 (95%
CI: 0.666-0.752, P=7.520E-22) in the testing and entire cohorts,
respectively. Univariate and multivariate Cox regression analyses
for clinicopathological parameters were carried out in the testing
C D

A B

FIGURE 1 | Differentially expressed immune-associated genes. (A) Heatmap of top 10 up- and down-regulated genes between normal and tumor tissues. (B) Volcano
plot for DEGs between normal and tumor tissues. (C) PCA plot of the data. (D) Venn diagram for intersections between DEGs and IRGs.
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and entire cohorts. Also, the risk score was an independent
prognostic indicator of OS in KIRC patients (Table 2). To
improve the prognostic immune score model, the nomogram
system was established based on testing and entire cohorts
(Figure 5F and Figure 6F). The AUC of our nomogram for
predicting 1-, 3-, and 5-year OS was 0.9, 0.875, and 0.891,
respectively, in the testing cohort and 0.858, 0.808, and 0.787,
respectively, in the entire cohort (Figure 5G and Figure 6G). The
C-indices of the nomogram in the testing and entire cohorts were
0.859 (95% CI: 0.809–0.909, P=4.980E-45) and 0.786 (95% CI:
0.752-0.821, P=4.201E-59), respectively. Finally, the calibration
curves and decision curves for 1-, 3-, and 5-year survival
probabilities were established (Figures 5H, I and Figures 6H,
I). These findings indicated that the nomogram has excellent
predictive performance in all cohorts.

Associations Between DE-IRGs
Signature and Clinical Characteristics
of KIRC Patients
Next, we further investigate the association between clinical
characteristics, including tumor burden, age at diagnosis, gender,
grade, clinical stage, T stage, and the prognostic risk signature. A
significant correlation was established between high-risk score and
a high tumor burden (P=9.87E-08), male gender (P=0.03),
advanced grade (P=2.54E-09), higher stage (P=8.85E-11), and T
stage (P=5.6E-08) (Figure S1). Additionally, no statistical
Frontiers in Immunology | www.frontiersin.org 6
significance was observed between < 65-year-old group and
>65-year-old group (P=0.1). Subsequently, we also assessed
whether the model could assess the survival probability in
subgroups exhibiting varying clinical patterns. The prognostic
model could be utilized for the prediction of survival
probabilities for various clinicopathological parameters (P<0.05)
(Figure S2).

Immune Cell Proportions Between
High- and Low-Risk Score Patients
Using the CIBERSORT algorithm, 22 immune cell types were
determined in each KIRC sample between high- and low-risk
score subtypes. The proportions of 22 immune cells and their
distribution in tumor samples are illustrated in Figure 7A and
Figures 7B, C, respectively. Compared to the low-risk group, the
high-risk score group exhibited significantly elevated
proportions of plasma cells, T cells CD8+, T cells follicular
helper, T regulatory cells (Tregs), and M0 macrophages
(P<0.05) (Figures 7C, D). Conversely, the proportions of
macrophages M1, activated natural killer (NK) cells, naïve B
cells, macrophages M2, resting NK cells, monocytes, T cells
CD4+ memory resting, and resting mast cells in the high-risk
score subtype were remarkably elevated compared to those in the
low-risk score subtypes (P<0.05) (Figures 7C, D). In addition, in
22 immune cell types, high plasma cells, Tregs, follicular helper T
cells, and monocytes M0 level were remarkably correlated with
C D

A B

FIGURE 2 | Enrichment analysis of DE-IRGs. (A) Visualization of top 5 enriched GO analysis in BP. (B) Visualization of top 5 enriched GO analysis in CC. (C) Visualization
of top 5 enriched GO analysis in MF. (D) Visualization of top 5 enriched KEGG pathways.
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poor OS outcomes (P=0.01, 0.0019, <0.0001, and 0.031,
respectively), while the increase in activated dendritic cells was
related to better OS (P=0.0079) (Figure S3). Figure S4 displayed
a weak or moderate correlation between the levels of various
tumor-infiltrating immune cells and the risk score.

Immune Landscape in KIRC Patients
Subsequently, the associations between risk score and some
immune-associated features were assessed. The cGAS-STING
Frontiers in Immunology | www.frontiersin.org 7
pathway has been shown to be a key signaling pathway in
antitumor immunity and cancer therapeutics (46–48). Thus,
four key genes (TBK1, IRF3, MB21D1, and TMEM173) in the
cGAS-STING signaling pathway, three immune checkpoint
molecules (PD-L1, CTLA-4, and PD-1), CYT, and the results
of ESTIMATE algorithm (SS, IS, ES, and TP) and risk score were
investigated. Figure 8A shows that the risk score values are
correlated with the immune score, tumor purity, TBK1,
ESTIMATE score, IRF3, stromal score, MB21D1, PD-1, and
C

A B

FIGURE 3 | LASSO regression analyses and a forest plot describing Cox regression model findings of 14 immune-associated genes. (A) Partial likelihood deviance
with changing of log (l) plotted by LASSO regression in 10-fold cross-validations. Vertical dotted lines were described at the optimal values using minimum criteria
and the 1-SE criteria. (B) The LASSO coefficient profiles for 14 DE-IRGs in the 10-fold cross-validation. (C) Forest plot representing correlations between the
expression levels of 14 DE-IRGs and overall survival outcomes in the training dataset. HR, 95% CI, and P-values were evaluated by LASSO regression analyses.
** means P < 0.01.
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C

D

E

GF

H

I

A B

FIGURE 4 | Constructing an immune risk score predictive model using the training set. (A) Kaplan–Meier curves for OS outcomes in the training cohort
grouped into high- and low-risk score groups. (B) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes. (C) Distribution of risk
scores of the training cohort. (D) Vital statuses for patients in high- and low-risk patients. (E) Expression patterns for 14 immune-associated genes in high-
and low-risk score cohorts. (F) A nomogram for the estimation of 1-, 3-, and 5-year OS probabilities in the training cohort. Risk scores and other independent
prognostic factors are incorporated in the model. (G) Time-dependent ROC curves for the prediction of 1-, 3-, and 5-year survival rates using the nomogram.
(H) Calibration plot of nomogram in the training cohort according to the agreement between predicted and observed 1-, 3-, and 5-year outcomes. The
model’s ideal performance is shown by dashed lines. (I) Decision curve analysis for 1-, 3-, and 5-year risk using the nomogram. Black line represents the
hypothesis that no patient died at 1-, 3-, and 5-years.
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CTLA-4. Figure S5 showed significant differences in the CYT,
immune score, ESTIMATE score, stromal score, and tumor
purity based on the Wilcoxon test between the two risk score
subtypes (P<0.0001). Importantly, the expression of IRF3,
MB21D1, TMEM173, PD-1, and CTLA-4 was elevated in the
high-risk than in the low-risk score subtype.

To further characterize immune cell infiltration, 28 immune
cell signatures (25, 49–53) from diverse resources were
investigated based on the single sample gene set enrichment
analysis (ssGSEA) algorithm. As shown in Figure 8B, 23
immune subpopulations (multiple T cell signatures, including
T helper cells, central memory CD8+ T cells, and activated CD T
cells) were enriched in high-risk patient cohort, whereas only two
subpopulations (immature dendritic cells and neutrophils) were
enriched in the low-risk patient group. Furthermore, DEGs
between low- and high-risk groups were determined by gene
set enrichment analysis (GSEA) using two MeSH terms
(gene2pubmed and gendoo) to explore their immune-related
functions. The DEGs were enriched in multiple immune-
associated terms, including CD4-CD8 ratio, immune tolerance,
lymphocyte cooperation, lymphocyte count, immunologic
memory, and T-cell antigen receptor specificity in gendoo and
gene2pubmed (Figures 8C, D).

Correlation Between Risk Score Model
and T Cell Infiltrations, Antitumor
Immunity, Antitumor Responses, and
Oncogenic Pathways
Several studies have shown that cDC1 cells play a central role in
the initiation of antitumor CD8+ T cells and driving tumor-
specific CD+8 T cells by activating CXCL10 (54–57). Some
studies (57–59) also clarified that the two key chemokines
(CCL4 and CCL5) are the key modulators of cDC1
recruitment into tumors via activating CCR5 expression.
Moreover, chemokines CXCR3, CXCL9, and CXCL10 have
Frontiers in Immunology | www.frontiersin.org 9
been documented on T cell infiltration and NK cell
recruitment (60). Thus, we investigated the expression level of
CCL4, CXCR3, CXCL9, CCL5, and CXCL10 between high- and
low-risk subtypes and the correlations between these genes and
the risk score. The high-risk group patients exhibited higher
expression levels compared to low-risk patients (P<0.05)
(Figures S6A–E). Moreover, strong positive correlations were
established between risk scores and CXCR3, CCL5, CXCL9,
CCL4, and CXCL10 (P<0.05) (Figures S6F–J).

Moreover, we explored the association between risk scores, T
cell infiltrations, and antitumor response scores (BATF3_DC,
IFNA, IFNG, IL_1_speed, T ce l l_ infi l t ra t ion_1, T
cell_infiltration_2, TFNA, and TNFa_speed) determined by
ssGSEA from the corresponding TME gene signatures (57, 61).
For the high-risk group, the ssGSEA scores for T cell infiltrations
and antitumor responses were significantly elevated compared to
the low-risk group, as determined by the Wilcoxon test (P<0.05)
(Figure S7A). A strong positive correlation was established
between risk scores and ssGSEA scores save to BATF3_DC
(P<0.05) (Figures S7B–I). Conclusively, high-risk score
patients exhibited elevated T cell infiltration levels.

The differences in the normalized enrichment score (NES)
value of 10 oncogenic pathways between low- and high-risk
groups were calculated using ssGSEA algorithm; also, the
correlation between the NES value and the risk score was
evaluated. Compared to the low-risk group, cell cycle and TP53-
related pathways exhibited significantly elevated NES values in the
high-risk patient group, whereas the Hippo-, NRF2-, PI3K-, RAS-,
and TGF-b-related pathways in the high-risk patient group had
lower NES value (P<0.05) (Figure S8A). The correlations between
the risk score and the NES value in the cell cycle (P=1.44e-12) and
TP53-related (P=0.024) pathways were found to be positive
(Figure S8B). Nevertheless, we also observed that the NES value
of the Hippo-, NRF2-, PI3K-, RAS-, and TGF-b-related pathways
had a negative correlation with the risk score (Figure S8B).
TABLE 2 | Univariate and multivariate Cox regression analysis.

Variables Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Training set
Age (≥65 vs <65) 1.595 (1.106~2.301) 0.012 1.518 (1.044~2.29) 0.0291
Grade (G3+4 vs G1+2) 2.427 (1.601~3.679) <0.001 1.264 (0.803~1.990) 0.3109
T stage (T3+4 vs T1+2) 3.108 (2.143~4.508) <0.001 1.986 (1.028~3.915) 0.0514
Stage (III+IV vs I+II) 4.066 (2.749~6.015) <0.001 5.384 (2.551~11.369) <0.001
Risk score (high vs low) 3.678 (2.372~5.703) <0.001 2.699 (1.716~4.243) <0.001
Testing set
Age (≥65 vs <65) 2.015 (1.061~3.826) 0.032 2.737 (1.412~5.305) 0.003
Grade (G3+4 vs G1+2) 5.956 (2.311~15.350) <0.001 2.318 (0.788~6.821) 0.127
T stage (T3+4 vs T1+2) 5.279 (2.543~10.957) <0.001 2.443 (0.321~18.575) 0.127
Stage (III+IV vs I+II) 5.265 (2.480~1.177) <0.001 1.510 (0.199~11.461) 0.69
Risk score (high vs low) 10.371 (3.656~29.418) <0.001 7.991 (2.684~23.786) <0.001
Total set
Age (≥65 vs <65) 1.674 (1.220~2.298) 0.001 1.734 (1.262~2.383) 0.001
Grade (G3+4 vs G1+2) 2.887 (1.987~4.196) <0.001 1.766 (1.189~2.622) 0.005
T stage (T3+4 vs T1+2) 3.468 (2.500~4.811 <0.001 1.352 (0.722~2.530 0.346
Stage (III+IV vs I+II) 4.248 (3.012~5.993) <0.001 3.903 (2.018~7.549) <0.001
Risk score (high vs low) 3.358 (2.316~4.868) <0.001 2.424 (1.648~3.563) <0.001
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FIGURE 5 | Validating immune risk score prognostic predictive model in the testing set. (A) Kaplan–Meier curves for OS outcomes in the testing cohort divided by
high- and low-risk score groups. (B) The time-dependent ROC curves for predicting 1-, 3-, and 5-year survival outcomes using this signature. (C) Risk score
distribution in the testing cohort. (D) Vital statuses of patients in high- and low-risk patients. (E) Expression patterns for 14 immune-associated genes in the high-
and low-risk score cohorts. (F) Nomogram developed for the prediction of probabilities for 1-, 3-, and 5-year OS outcomes in the testing cohort. Risk scores and
other independent prognostic factors were incorporated in the nomogram. (G) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes
using the nomogram. (H) Calibration plot of nomogram in the training cohort according to the agreement between estimated and observed 1-, 3-, and 5-year
outcomes. Dashed lines represent the nomograms’ ideal performance. (I) Decision curve analysis for 1-, 3-, and 5-year risk using the nomogram. Black line
represents the hypothesis that no patient died after 1-, 3-, and 5-years.
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FIGURE 6 | Validating the immune risk score prognostic predictive model for the entire set. (A) Kaplan–Meier curves of the OS outcomes in the entire cohort divided
as high- and low-risk score groups. (B) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes using this signature. (C) Risk score
distributions for the entire cohort. (D) Vital statuses for high- and low-risk group patients. (E) Expression patterns for 14 immune-associated genes in the high- and
low-risk score cohorts. (F) Nomogram for the prediction of the probability of 1-, 3-, and 5-year OS outcomes in the entire cohort. Risk scores and other independent
prognostic factors were incorporated into the model. (G) Time-dependent ROC curves for prediction of 1-, 3-, and 5-year survival outcomes using the nomogram.
(H) Calibration plot of nomogram in the training cohort according to the agreement between observed and predicted 1-, 3-, and 5-year outcomes. The models’ ideal
performance is shown by the dashed lines. (I) Decision curve analysis for 1-, 3-, and 5-year risks using the nomogram. Black line represents the hypothesis that no
patient died after 1-, 3-, and 5-years.
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Therapeutic Benefit of the Risk Score
Recently, ICB therapies have exhibited striking clinical benefits.
However, the main challenge faced by ICB therapies is the
limitation of effective predictive markers with only a few
patients showing therapeutic response. Herein, the urothelial
cancer database (IMvigor210) consisting of anti-PD-L1 therapy
and the malignant melanoma database (GSE91016) administered
with anti-PD-1 and-CTLA-4 therapy were used to investigate the
association between risk score and immunotherapeutic benefits.
Figures 9A–F and Figures S9A–C showed the distribution of
clinical and molecular characteristics (immunotherapy response,
binary response, immune phenotype, immune cells (IC) level,
and tumor cells (TC) level and correlation with risk scores
between high- and low-risk groups in the IMvigor210 cohort
and GSE91061 cohort separately. For the immunotherapy
response, the risk score of RCC with CR/PR were significantly
lower than those of RCC with SD/PD, as assessed by the chi-
squared test (IMvigor210 dataset: P<0.001, GSE91061 dataset:
P=0.036) (Figure 9A and Figure S9C). The violin plot further
revealed that the risk scores in CR/PR were lower than those in
SD/PD, as assessed by the Wilcoxon test (IMvigor210 cohort:
Frontiers in Immunology | www.frontiersin.org 12
P=1.3e-08, GSE91061 cohort: P=0.0075) (Figure 9C and Figure
S9B). Strikingly, Kaplan–Meier curves showed that high-risk
score patients exhibited worse prognosis compared to the low-
risk score patients in IMvigor210 (P<0.0001) (Figure 9G) and
GSE91061 cohort (P=0.00016) (Figure S8D). In addition,
IMvigor210 and GSE91061 were used to plot a time-dependent
ROC. The current results displayed that the AUCs of our model
for OS were 0.61 at 6 months, 0.673 at 12 months, and 0.729 at 18
months in the IMvigor210 cohort (Figure 9H) and 0.746 at 12
months, 0.712 at 18 months, and 0.753 at 24 months in the
GSE91061 cohort (Figure S9A).

To further expand this study, the machine learning-based
score (IPS) was determined to predict patients’ response to ICI
treatment. Four subtypes of IPS values (CTLA4_neg_PD1_neg,
CTLA4_pos_PD1_neg , CTLA4_neg_PD1_pos , and
CTLA4_pos_PD1_pos) were carried out to predict the KIRC
patients’ responses to anti-CTLA4 and anti-PD1 treatment. We
found that relative probabilities to response to anti-PD1 were
elevated in high-risk score patients (P=0.023), and the similar
results were obvious in the combination treatment of anti-PD1
and anti-CTLA4 (P=2.24e-04) (Figure 10A). In addition, CTLA-
C
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FIGURE 7 | Immune cell proportion analyses in the TCGA cohort between high- and low-risk score patients. (A) Overall view of relative proportions of immune cell
infiltrations for 22 immune signatures. (B) Boxplots for 22 immune cell proportions in the TCGA cohort. (C) Boxplots for different immune cell infiltrations in the high-
and low-risk score patients. Significance: ns≥0.05, ∗<0.05, ∗∗∗<0.001, and ∗∗∗∗<0.0001. (D) Immune cell heatmap for patients in the high- and low-risk score
subtypes. Only immune cells whose non-zero proportions exceeded half in all samples were plotted.
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4 and PD-1mRNA expression levels in the high-risk score group
were significantly elevated compared to the low-risk score
patients (P=1.07e-14 and P=2.02e-15), whereas no obvious
difference was detected in the PD-L1 mRNA expression level
between high- and low-risk patients (P=0.603) (Figure 10B).
This phenomenon was consistent with the concept that high
expression of ICI genes had a poor prognosis. Owing to the
complex environment between immune infiltration and ICI
genes, we further examined whether immune infiltration had
consequences on the clinical prognosis in ICI genes. Figure 10C
shows that low-risk score patients with high PD-1 exhibited
better clinical outcomes compared to high-risk score and high
PD-1, and the outcomes of low-risk score patients with low PD-1
were superior to those of high-risk score patients and low PD-1
levels (P<0.0001). Also, patient groups showed similar findings,
and survival patterns were yielded using risk score and PD-L1 or
CTLA4 (P<0.0001) (Figures 10C).
Frontiers in Immunology | www.frontiersin.org 13
The responsive predictive values of the risk score to
chemotherapy and target-therapy were also investigated by the
IC50 of eight drugs. The estimated IC50 values of Cisplatin,
Gemcitabine, Sorafenib, and Vinorelbine in high-risk patients
were significantly elevated compared to low-risk patients, which
indicating the high-risk patients showed a stronger drug
resistance (P<0.05) (Figures 11A, B). Similarity, patients with
high-risk group were associated with increased sensitivity to
Gefitinib, Vinblastine, and Sunitinib relative to low-risk patients
(P<0.05) (Figures 11A, B).

Risk Score and TMB
Next, we analyzed the gene mutations of each KIRC patient. The
waterfall chart showed the top 20 genes with the highest
mutation frequencies: VHL, PBRM1, SETD2, MTOR, TTN,
MUC16, KDM5C, BAP1, HMCN1, DNAH9, LRP2, ATM,
ARID1A, CSMD3, DST, KMT2C, ERBB4, SMARCA4, USH2A,
C D

A B

FIGURE 8 | Immune landscape of risk score in the TCGA cohort. (A) Correlations between risk score, levels of expression of PD-L1, CYT, TBK1, IRF3, MB21D1,
CTLA-4, PD-1, and TMEM173, immune score, stromal score, ESTINATE score, and tumor purity in the TCGA cohort. (B) Volcano plots for immune cell sub-population
enrichment in high- and low-risk patients according to NES scores from ssGSEA. (C) Gene set enrichment analyses described the MeSH terms correlated with risk
score using gendoo term in the TCGA cohort. (D) Gene set enrichment analysis described the MeSH terms correlated with the risk score using gene2pubmed term in
the TCGA cohort.
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FIGURE 9 | Therapeutic benefits of risk scores calculated by our model. (A) Bar graphs illustrate the distribution of the clinicopathological parameters for IMvigor210
dataset in high- and low-risk patients based on chi-square test. (P=4.8008E-08, P=4.8008E-08, P=0.3305, P=6.0E-6, and P=1.6023E-59, respectively). (B)
Waterfall plot illustrates the risk score distributions for patients exhibiting different immunotherapeutic responses in the IMvigor210 dataset. (C) Violin plot illustrates
the risk score distributions for patients exhibiting different anti-PD-L1 immunotherapies in IMvigor210 dataset. (D) Violin plot illustrates the risk score distributions for
patients exhibiting different immune phenotypes in the IMvigor210 dataset. (E) Violin plot illustrates the risk score distributions for patients with varying IC levels in the
IMvigor210 dataset. (F) Violin plot illustrates the risk score distributions for patients with varying TC levels in the IMvigor210 dataset. (G) Kaplan–Meier curves for OS
outcomes in the IMvigor210 cohort assigned into high- and low-risk score groups. (H) Time-dependence ROC curves of anti-PD-L1 immunotherapy response
prediction at 0.5-, 1-, and 1.5-year survival rate in the IMvigor210 dataset. Significance: ns≥0.05, ∗∗∗<0.001, and ∗∗∗∗<0.0001.
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and PCLO (Figure 12A). Subsequently, the TMB for each sample
was determined and was found to be higher in the high-risk
patients (P=0.037) (Figure 12B) and related to shorter OS
(P=0.023) than in low-risk patients (Figure 12C).

Prediction of High- and Low-Risk Scores
by XGBoost Algorithm
XGBoost is an efficient and reliable machine learning classifier
based on gradient boosting, designed to solve data science
challenges accurately and rapidly in bioinformatics (62, 63).
Using this approach, a classifier that could predict high- and
low-risk score groups for KIRC patients based on expression
levels of 14 selected genes was constructed for the training
cohort. SHAP dependency plot and the importance of 14
features were visualized in Figures 13A, B to evaluate the
contribution of each feature towards prediction. Figure 13C
showed that the AUC of the training cohort was 100%. Then,
classification model performance was assessed using the testing
and entire total cohorts (Figures S10A, B and Figures 13C).
Taken together, the middle cutoff value might be suitable to
classify KIRC patients.
Frontiers in Immunology | www.frontiersin.org 15
Identification of Potential Small
Molecule Drugs
According to CMAP analysis, 10 small molecule drugs with
highly significant correlations are listed in Table 3. Among
these, Finasteride, Biperiden, Merbromin, Cefamandole,
Fludrocortisone, and Vincamine displayed a high negative
correlation and potential to improve the prognosis of RCC.
Subsequently, the SAA1 gene contributing to the model
according to the feature importance was docked with these 10
compounds (Table 4). Next, we identified the compounds except
for Orphenadrine that showed a high binding affinity against the
target protein due to their binding energy <-5 kcal/mol. Moreover,
the three-dimensional structure of top two high-affinity
compounds combined with SAA1 is shown in Figures S11A, B.
In SAA1-merbromin complex, due to multiple phenylene rings
and active groups, merbromin forms hydrogen bonds with activity
groups of amino acids, such as GLN-66, ARG-25, and TRP-53,
indicating that merbromin could match well with SAA1 protein.
Similarly, the SAA1-Cefamandole complex can be formed by
multiple interactions, such as the cooperation of hydrogen
bonding and multiple p-p stacking interactions. Hence, these
C
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FIGURE 10 | Responses to immune checkpoint inhibitors. (A) Violin plots illustrate the relative probabilities for anti-PD-1 and anti-CTLA-4 treatment responses
between high- and low-risk groups. (B) Violin plots for expression levels of PD-1, CTLA-4, and PD-L1 between high- and low-risk patients. (C) Kaplan–Meier curves
for OS outcomes among four groups, according to risk score and PD-1, CTLA-4, and PD-L1.
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two compounds were both regarded as potential SAA1 inhibitors
that could improve the prognosis of RCC.
DISCUSSION

Epidemiological evidence indicated that the incidence of RCC
had a continually increasing trend with high mortality (64, 65).
Clinical decision-making tools were effective prognostic
biomarkers to predict the survival outcomes of RCC patients,
rendering them a viable choice for clinicians. To date, the
prognostic prediction of RCC patients relies on the TNM
staging system according to the clinical practice guidelines
(66). However, this system failed to taken the influence of gene
level of RCC into consideration and made it not always able to
predict the patients accurately. In recent years, IRGs have
gradually gained attention with in-depth studies on immune-
escape and immunotherapeutic mechanisms. Hence, an
immune-related prognostic system is an urgent requirement
for a supplementary TNM staging system.

Next, we screened for immune-associated DEGs in RCC. To
minimize the potential for overfitting, 14 genes established the
prognostic immune signature and were validated in TCGA
through the univariate Cox proportional hazard regression and
LASSO Cox analysis. Subsequently, we confirmed the
Frontiers in Immunology | www.frontiersin.org 16
independent predictive roles of this signature. Then, a
personalized, predictive nomogram with a risk score was
developed, which served as a predictive indicator; the signature
encompassed a total of 14 IRGs. Among these, SAA1, TNFSF14,
FGF21, IFNG, BMP7, and IL11 are biomarkers for predicting
RCC outcomes (67–72). For example, as a member of the serum
amyloid A family of apolipoproteins, SAA1 can increase the
invasive capacity of tumor cells in RCC by inducing MMP-9
expression (73), which make it serve as a biomarker for the
diagnosis and prognosis of advanced and metastatic renal cell
carcinoma. In addition, as a member of the IL-6 family of
cytokines, IL-11 exerts pleiotropic oncogenic activities may by
stimulating angiogenesis and metastasis, which make it become
an independent indicator of poor prognosis in RCC (71). The
other IRGs, such as IL20RB, ESRRG, GDF6, were reported to be
involved in the regulation of carcinogenesis (74–76) but not yet
investigated in RCC. Moreover, some IRGs were also involved in
TIME. For example, NKG2D receptor, KLRK1, is expressed in
NK cells and activated CD8+ T cells, involved in innate immune
responses (77). In some studies also identified GNLY as the first
lymphocyte-derived alarmin protein to promote antigen-
presenting cell (APC) recruitment, activation, and antigen-
specific immune responses (78). CTLA-4 is a negative
regulator and modulates T cell activation, and induces
tolerance (79). CXCL11 is activated by IFN-g and IFN-b and
A
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FIGURE 11 | Immunotherapeutic and chemotherapeutic responses for high- and low-risk patients. (A) Boxplots illustrate the immunotherapeutic and
chemotherapeutic responses of Cisplatin, Gefitinib, Gemcitabine, and Sorafenib in the high- and low-risk patients. (B) Boxplots illustrate the immunotherapeutic and
chemotherapeutic responses of Vinblastine, Vinorelbine, Vorinostat, and Sunitinib in the high- and low-risk patients. Significance: ns≥0.05, ∗<0.05, ∗∗<0.01,
∗∗∗<0.001, and ∗∗∗∗<0.0001.
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can stimulate immune cells by promoting Th1 polarization and
enhancing the antitumor immunity (80). To sum up, these IRGs
may affected the prognosis and treatment of RCC by
influencing TIME.

Herein, some self-validation processes, including the
associations between risk scores and immune cell proportions,
T cell infiltrations, antitumor immunity, antitumor response,
GSEA analysis, and oncogenic pathways, were conducted
to identify the risk score effectiveness in characterizing
the immune landscape features of RCC patients. For
immunotherapeutic development, anti-PD-1, anti-CTLA-4,
Frontiers in Immunology | www.frontiersin.org 17
and anti-PD-L1 treatment have been under intensive focus in
solid tumors. Nevertheless, a small number of patients respond
to such treatment, and some studies (81–83) pointed out that
PD-L1 and PD-1 expression levels are not reliable biomarkers to
predict ICI treatment. Hence, it is necessary for clinicians to
develop a reliable tool for appropriate patient selection in
immunotherapy. Based on these findings, we established that
the risk score is a robust immune classifier for classifying RCC
patients in different subtypes. Moreover, we also demonstrated
that high-score patients were more immunotherapeutically
suitable compared to patients in the low-risk score group.
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FIGURE 12 | Correlations between risk scores and TMB. (A) OncoPrint displays the mutation profile of top 20 frequently mutated genes. Each column represents
individual patients and mutated genes arranged by mutation rates. The right shows the mutation percentage, and color-coding indicates the mutation type. (B)
Boxplot shows the difference of TMB between high- and low-risk patients. (C) Kaplan–Meier curves for OS divided by the high TMB group and the low TMB group.
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FIGURE 13 | Prediction results from the XGBoost algorithm. (A) SHAP contribution dependency plots for the training cohort. (B) Importance of 14 features of the
training cohort. (C) ROC curve for XGBoost algorithm for the prediction of high- and low-risk patients in training, testing, and entire cohorts.
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Targeted therapy is currently the main treatment strategy for
metastatic RCC. Thus, it is necessary to identify patients with the
potential to benefit from targeted therapy for RCC. Interestingly,
our data showed that high-risk patients had a high sensitivity to
Gefitinib, Vinblastine, and Sunitinib compared to low-risk score
patients, who exhibited high sensitivity to Cisplatin, Sorafenib,
Gemcitabine, and Vinorelbine. These responses could be
attributed to the differences in the drug target. In addition, the
TMB values of the high-risk score patients were elevated
compared to those of the low-risk score patients. This finding
was consistent with the concept that elevated TMB values
are associated with a high probability of satisfactory
immunotherapeutic outcomes (84, 85).

Nevertheless, the present study had some limitations. First,
although our model exhibited precise predictive capability to
predict the survival of RCC patients, multiple large external
Frontiers in Immunology | www.frontiersin.org 19
cohorts of patients with RCC are also needed to further validate.
Secondly, only the median risk score was used to classify the RCC
patients into high- and low-risk score subtypes. An optimal
cutoff of the risk score is essential for the stratification of RCC
patients. Although our model had been correlated with immune
cells, the mechanism underlying poor prognosis is unclear,
requiring additional experimental and theoretical studies on
immune cells in RCC to further understand their functional role.
CONCLUSIONS

Taken together, our proposed immune prognostic, predictive
model could be used as a robust classifier for the prediction of
survival outcomes and individual treatment guidance of adjuvant
chemotherapy and anticancer immunotherapy for RCC.
TABLE 3 | The results of CMAP analysis.

rank Cmap name mean n enrichment p specificity

1 cetirizine 0.62 4 0.902 0.0001 0
2 finasteride -0.385 6 -0.791 0.00016 0
3 orphenadrine 0.499 6 0.779 0.00028 0
4 biperiden -0.516 5 -0.83 0.00034 0.0204
5 merbromin -0.524 5 -0.807 0.00062 0.0081
6 natamycin 0.572 4 0.849 0.00074 0
7 sulfathiazole 0.515 5 0.785 0.00104 0
8 cefamandole -0.478 4 -0.834 0.00137 0
9 fludrocortisone -0.308 8 -0.63 0.00144 0.0704
10 vincamine -0.539 6 -0.699 0.00171 0.0177
Octobe
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TABLE 4 | The selected compounds of docking results.

Name Compound Structure Target Binding Energy (kcal/mol) Combination Type

merbromin SAA1 -7.85 Hydrogen bonds, Hydrophobic interactive, p-stacking

cefamandole SAA1 -7.43 Hydrogen bonds, Hydrophobic interactive, p-stacking

fludrocortisone SAA1 -7.35 Hydrogen bonds, Hydrophobic interactive

cetirizine SAA1 -7.26 Hydrogen bonds, Hydrophobic interactive, p-stacking

finasteride SAA1 -7.09 Hydrogen bonds, Hydrophobic interactive

vincamine SAA1 -6.96 Hydrogen bonds, Hydrophobic interactive

sulfathiazole SAA1 -6.01 Hydrogen bonds, Hydrophobic interactive

biperiden SAA1 -5.61 Hydrophobic interactive, p-stacking

natamycin SAA1 -5.35 Hydrophobic interactive, p-stacking

orphenadrine SAA1 0 0
icle 762120
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