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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) epidemic had a significant impact on daily life in many nations and 
global public health. COVID’s quick spread has become one of the biggest disruptive calamities in the world. In 
the fight against COVID-19, it’s critical to keep a close eye on the initial stage of infection in patients. 
Furthermore, early COVID-19 discovery by precise diagnosis, especially in patients with no evident symptoms, 
may reduce the patient’s death rate and can stop the spread of COVID-19. When compared to CT images, chest X- 
ray (CXR) images are now widely employed for COVID-19 diagnosis since CXR images contain more robust 
features of the lung. Furthermore, radiologists can easily diagnose CXR images because of its operating speed and 
low cost, and it is promising for emergency situations and therapy. This work proposes a tri-stage CXR image 
based COVID-19 classification model using deep learning convolutional neural networks (DLCNN) with an 
optimal feature selection technique named as enhanced grey-wolf optimizer with genetic algorithm (EGWO-GA), 
which is denoted as CXGNet. The proposed CXGNet is implemented as multiple classes, such as 4-class, 3-class, 
and 2-class models based on the diseases. Extensive simulation outcome discloses the superiority of the proposed 
CXGNet model with enhanced classification accuracy of 94.00% for the 4-class model, 97.05% of accuracy for the 
3-class model, and 100% accuracy for the 2-class model as compared to conventional methods.   

1. Introduction 

COVID-19 is a disease caused by the respiratory ailment known as 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a 
pathogen strain that had spread to more than 200 countries in the pre-
vious year. On March 11th, 2020, the World Health Organization 
(WHO) labelled the outbreak a pandemic. The manifestations of COVID- 
19 include causing respiratory problems, heart infections, resulting in 
fatalities, which seriously threaten the health of the entire world. In 
around December 2019, in the City of Wuhan, located in the People’s 
Republic of China, the pathogen was originally recorded in humans, 
which expeditiously crossed the continent perimeters due to persistent 
mobilities among nations. COVID-19 has adversely impacted the world 
economy. According to research, the COVID-19 virus has a higher af-
finity for the lung, which severely impairs its function and quickly 
mutates before the patient is properly diagnosed, resulting in leading 
medication [1,2]. The situation is set to be more precarious as symptoms 
mimic the common flu as reported in cases emerging from Southeast and 
Central Asia. As per the experts [3], the incubation period of the 

pathogen is roughly 1 week. The infected person can unintentionally 
transmit the disease as the patient becomes the carrier during the in-
cubation period. The pathogen is highly infective, and the transmission 
is more rapid than detection [4]. See (Fig. 1). 

However, there are some disagreements stated by the general health 
research community regarding the precise answers to these queries and 
they are currently under scrutiny. COVID invades the lungs and impairs 
the tissues of the host. Some subjects may not exhibit symptoms in the 
early stages, whereas the majority of the population is febrile and ex-
hibits symptoms such as cough. Other manifestations include sore 
throats, headaches, and body aches. Presently, the disease is rampant 
due to the scarcity of rapid detection techniques. There were numerous 
fatalities in 2020 all over the world. The binding affinity of the pathogen 
to the lungs and respiratory tract is higher, which serves as the medium 
for the rapid spread of the disease. This process results in inflammation, 
causing the filling of discharged fluid into the air sacs, which reduces 
oxygen intake. Doctors and other healthcare providers are facing a sig-
nificant challenge to the early and accurate detection of the pathogen to 
decrease the mortality rate. In addition to this, global climate change has 

* Corresponding author. 
E-mail addresses: anandbabu.gopathoti@gmail.com (A. Gopatoti), vijihicet@gmail.com (P. Vijayalakshmi).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2022.103860 
Received 30 January 2022; Received in revised form 17 May 2022; Accepted 4 June 2022   

mailto:anandbabu.gopathoti@gmail.com
mailto:vijihicet@gmail.com
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2022.103860
https://doi.org/10.1016/j.bspc.2022.103860
https://doi.org/10.1016/j.bspc.2022.103860
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.103860&domain=pdf


Biomedical Signal Processing and Control 77 (2022) 103860

2

already had adverse effects in the form of other diseases on the popu-
lation, and this dual impact is unfathomable. At present, the contagion is 
escalating globally [5]. The majority of cases were reported in North 
America, Europe, and Southeast Asia. Globally, over 468 million 
confirmed cases and over 6 million fatalities have been documented as 
of March 20, 2022. Further investigations into a potent screening pro-
cedure are sacrosanct for diagnosing and quarantining infected patients. 
Healthcare professionals and researchers are striving to enhance the 
plan of treatment and the capacity test via the execution of multi- 
functional evaluation to stop the spread of disease and fatalities. 
Several modalities to detect the virus exist. Some of them are reverse 
transcriptase-polymerase chain reaction (RT-PCR) test [6], CXR image 
[7,8], rapid antigen [9], computed tomography (CT) scan [10], and 
serological test [11], etc. 

In the recent past, the most fruitful diagnostic modality was RT-PCR 
in the detection of pathogens, but it has some restraints such as pro-
longed duration of detection and a lower detection rate. Scrupulous 
requirements in labs and multiple elements of the testing contribute to 
the downsides [12,13]. Scientists have been making decent efforts to 
overcome these restraints of RT-PCR investigations, i.e., to enhance the 
detection of pathogens. In October 2020, WHO recommended chest 
imaging as a profound diagnostic modality based on the accuracy with 
which it detects clinical symptoms of recovered people post-infection 
[14]. There are other types of diagnostic tests, which include chest 
MRI, ultrasound, CXR, CT, and tissue extract of the lung by needle bi-
opsy, which are proving to be efficacious. In this case, CT has a higher 
sensitivity for early pneumonic alteration, illness development, and 
alternative diagnosis; intravenous contrast medium was required for 
pulmonary thromboembolism diagnosis. Further, CT scans are not 
enough to identify COVID-19 due to loss of features. Thus, this imaging 
should be used in conjunction with clinical and laboratory tests. In 
addition, COVID-19 was identified from the peripheral and posterior 
lungs by performing ground glass opacities (GGO) based bilateral dis-
tribution with or without consolidation. However, the CT screening 
failed to extract the accurate GGO features. Furthermore, both the 
Italian Society of Radiology (SIRM) and the American College of Radi-
ology (ACR) did not promote CT as a screening tool for COVID-19 
detection, instead recommending it only for symptomatic patients 
with particular clinical criteria. Therefore, CXR is widely suggested by 
ACR and SIRM to diagnose COVID-19. The viable speed, the economic 
aspects and the lucidity for the radiologists make CXR a favored tool for 
emergency cases and treatment. 

Currently, CXR is a substantial tool to detect the disease in contrast to 
CT imaging, which has a tedious process for developing images and, 
moreover, the scanners are expensive, hence unavailable in underde-
veloped countries. Furthermore, pregnant women and children are 

subjected to hazards like high radiation [15]. Instead, CXR imaging 
remains a vital aspect in many epidemiological and medical situations 
due to the wide range of its availability [16,17]. Nevertheless, some 
irregularities were spotted in the images drawn from the CXR of infected 
populations, which were elucidated in previous research [18]. Machine 
learning methodologies [19,20] are exceptionally popular in healthcare 
applications. In the recent past, image or object recognition and classi-
fication tools like CNN, along with deep learning (DL) algorithms, have 
been utilized in diagnosis, especially of cancers, through image classi-
fication. To generate segmentation, two extensive convolutional resid-
ual networks were proposed by Li and Shen [21], which were 
classification results and feature extraction from skin lesions. The 
refinement of classification results was based on the lesion index 
calculation unit. A quotient of 0.912 precision was achieved in diag-
nosing cancer resulting from DL frameworks. Liao et al., [22] proposed a 
multitask DL methodology to improve diagnostic capabilities for twelve 
different types of cancer when expression data are insufficient. Never-
theless, the comparison of performance with pre-existing similar works 
was not done by the authors. A study conducted by Yoo et al., [23] in 
which prostate cancer was detected in 427 subjects by an automated 
CNN-based method using an MR imaging technique, namely DWI 
(diffusion weighted magnetic resonance imaging), The skin cancer 
categorization was illustrated by Esteva et al., [24], which was based on 
129,450 clinical skin lesions and 3374 dermoscopic images via a pre-
trained Inception V3 CNN model. The images utilising pixels and disease 
label inputs were the tools which assisted the comprehensive CNN 
training. Medical imaging, in conjunction with artificial intelligence, has 
played a significant role. The configuration and deployment of tools 
associated with AI for image classification of the contagion within a 
short period of time with limited data could be utilized on an urgent 
basis to equip the fight against the pandemic. Recently, it was discov-
ered by radiologists that the DL instituted in AI was handy in the 
detection of tuberculosis by CXRs, which is analogically useful to iden-
tify lung aberrations pertaining to COVID-19, which could aid clinicians 
to determine the disposition of treatment confined to at-risk COVID-19 
patients. The contribution of medical imaging as a predominant source 
of information was confirmed by many proficient, which is now serving 
as a tool for validating the early diagnosis of the contagium and sup-
plemented integration of AI to chest imaging can assist in delineating the 
complications of COVID-19. The predominantly adapted imaging tech-
nique by hospitals to diagnose COVID-19 infection is the CXR modality, 
specifically in Spain as the first image-based perspective. The protocol 
specifies that if a clinical conjecture with regard to infections occurs 
after the physical exam of a subject, a specimen of nasopharyngeal 
exudate is drawn for conducting RT-PCR accompanied by the imaging of 
CXR film. The PCR interpretation is a tedious process which takes 

Fig. 1. WHO released a map of COVID-19-related death rate throughout the world (source: WHO).  
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several hours. Therefore, for an expedited clinical assessment, the data 
revealed from the CXR mimics a predominant role. This leads to the two 
conclusions that the patient could be sent home while the results of the 
etiological analysis could be awaited, which is based on the normal 
readings of CXR and a stable clinical condition. In the event that the CXR 
film exhibits disease findings, the subject will be hospitalized for close 
observation. By and large, the abnormal or normal findings on the CXR 
determine the clinical decision whether to discharge the patient or to 
retain the patient in the hospital for further evaluation. Furthermore, 
given the recent increase in new COVID-19 cases and the resumption of 
everyday activities throughout the world, the need to contain the 
pandemic should be underlined even more. In medical analysis, it is 
constantly vital to improve effectiveness in illness diagnostic perfor-
mance; even a small increase in accuracy may have a significant impact. 
In order to achieve improved accuracy, optimum feature selection ap-
proaches such as heuristics and metaheuristics are commonly used for 
feature extraction and selection. Evolutionary computation techniques 
have recently gained a lot of consideration as a vital metaheuristic 
family member. Moreover, several feature extraction and selection al-
gorithms were used in medical diagnosis applications [25–27]. As a 
result, the goal of this paper is to build an efficient feature selection 
approach called EGWO-GA that is combined with deep CNN for 
improved diagnosis of CXR images. The novel contribution of this work 
is as follows:  

• Introducing a tri-stage CXR image-based COVID-19 classification 
model using DLCNN with an optimal feature selection technique 
named EGWO-GA.  

• Implementation of the 4-class CXGNet model for classifying the 
normal, Pneumonia viral, Pneumonia bacterial, and COVID-19 
classes. In addition, the implementation of the three-class CXGNet 
model for classifying the normal, Pneumonia, and COVID-19 classes. 
In addition, the implementation of the 2-class CXGNet model for 
classifying the COVID-19 and normal classes  

• The CXR dataset is regrouped based on 4-class, 3-class, and 2-class 
models, and all CXGNet models are trained with these individual 
datasets.  

• Performance evaluation shows the proposed CXGNet model resulted 
in superior performance as compared to the existing classification 
methods for all models and diseases. 

The rest of the article is as follows: Section 2 describes the related 
work of CXR image classification done so far. Section 3 explains the 
proposed methodology. Section 4 deals with the simulation results and 
discussion of existing and proposed classification models for CXR im-
aging. Section 5 concludes the proposed work with possible future di-
rections followed by references. 

2. Related work 

In the recent past, the virus was subjected to a nomenclature of 
COVID-19 by the WHO, which had been spreading intrusively in several 
countries around the globe. Primary manifestation of the disease is 
analogous to that of the pneumonia classes, which is distinguished by 
molecular assays like genetic testing and imaging investigations, i.e., CT, 
CXR etc. Accelerated pathogen detection contributes to disease 
containment. Further, CXR and CT Chest are the radiology methodolo-
gies that play a pivotal role in diagnosing the disease. The perspective of 
diagnostic systems pertaining to imaging is widely varied, ranging from 
the process of feature generation to representation learning. The DLCNN 
is a prominent and effective approach for diagnosing COVID-19 from 
archived images. Numerous assessments have been conducted to weight 
the recent contributions to the detection of COVID-19 contagion 
[28–30]. For instance, a CNN was implemented, which was hinged on a 
module referred to as the Inception network [31]. CT images were 
assorted into 3 categories: bacterial pneumonia, COVID-19 and normal, 

which are classified by a re-oriented version of the ResNet50 pre-trained 
network [32]. CNN was used to assemble images of the CXR modality 
that had been pre-trained to high level attributes [33]. The spotting of 
COVID-19 cases was made possible by the installation of these attributes 
into the support vector machine (SVM). Furthermore, four subsets of 
non-COVID-19, COVID-19, bacterial infection, viral infection, and 
normal CXR images were administered with a CNN framework called 
COVID-Net [34]. The assessment [35] functioning of trailblazing CNN 
architectures recommended previously for medical image classification 
was based on the CXR image manifestations of normal incidents, 
pneumonia, and COVID-19 disease. The study in [36] aimed at detection 
of COVID-19 using CXR imaging using the advantages of DL-based de-
cision tree classifier, where the authors employed three DL-based CNN 
models for binary decision trees, which classify the CXR images as 
abnormal or normal. If it is abnormal, then it classifies the tuberculosis 
or non-tuberculosis and also classifies the abnormality as COVID or non- 
COVID. Bacellar et al., [37] developed a pretrained set of DL models like 
Inception, VGG, EfficientNet, and ResNet with continuative to computer 
vision AI systems. In addition, they have also designed a web application 
that enables the users or hospitals to upload the CXR scans for the 
purpose of detecting the COVID-19 presence within them. Sahlol et al., 
[38] implemented hybrid DL models for COVID-19 classification from 
CXR datasets by unifying the Inception architecture and the marine 
predators’ algorithm, where the first one is for extracting the features 
and the latter one is for selecting the optimal features from extracted 
features. The study addressed [39] the recognition of CXR scans from 
pneumonia and normal cases induced by other viruses, where an effi-
cient ML classifier has been employed with the usage of global image 
feature extraction and the attainment of features from both spatial and 
transform domains, unlike most of the existing ML models. Sen et al., 
implemented the COVID-19 detection scheme from chest CT images 
using an approach of bi-modular hybrid module [40], where CNN ar-
chitecture is employed for the extraction of features and then a bi-stage 
feature selection model (i.e., a combination of guided feature selection 
and the dragonfly algorithm) has been utilised for finding the optimal 
features. Finally, an SVM classifier is used to classify the non-COVID-19 
and COVID-19 CT images. 

Osman et al., [41] recommended a combined scheme of locality 
weighted learning with a self-organization map for COVID-19 identifi-
cation from CXR datasets. Hosny et al., [42] suggested the portable 
design and development of the COVID-19 diagnosis mechanism using a 
Raspberry Pi Linux embedded system for the requirements of minimal 
memory. They have employed both local and global feature extraction 
techniques such as local binary pattern and multi-channel fractional 
order Legendre Fourier moments. Recently, a 2-stage CXR classification 
system using deep-CNN has been developed for detecting the abnor-
malities and textual feature extraction that can be associated with 
particular COVID-19 virus signatures [43]. Munuswamy et al., [44] 
proposed FractalCovNet for lesion region localization by segmenting the 
CXR images with the integration of U-Net and fractal blocks. Further-
more, the same FractlCovNet is incorporated with a transfer learning 
approach for the classification of COVID-19 from CXR images. Ozturk 
et al., [45] proposed the DarkNet, which consists of a you-only-look- 
once (YOLO) network for object detection. Furthermore, the DarkNet 
contains 19 layers with convolution and MaxPooling layers. However, 
this method suffers from high computational complexity. Khan et al., 
[46] proposed CoroNet, which is developed by DLCNN models with the 
Xception architecture. However, the CoroNet resulted in reduced accu-
racy in multi-class classification on the standard COVID-19 dataset [47]. 
Wang et al., [48] proposed CT scan-based COVID-19 detection using a 
feedforward neural network (FFNN). Initially, features are extracted 
from CT images using a wavelet Renyi entropy approach. Then, FFNN 
was used to perform the classification operation, and a three-segment 
biogeography-based optimization approach was also developed to 
reduce the losses generated in the network. Yu-Dong Zhang et al., [49] 
developed the 5-layer DLCNN model with two fully connected blocks 
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and three convolution blocks. However, this method considers the 
dataset with a smaller number of images, which means it cannot be 
useful in practical scenarios. Wang et al., [50] developed a 12-layer deep 
fractional max pooling neural network. However, all these conventional 
models were not considered for optimal feature extraction with multi- 
class classification methods, which resulted in reduced classification 
performance. 

On reviewing the analysis, the evidence suggests that in spite of the 
achievements of DL in the detection of COVID-19 from CT and CXR 
images, the precision of ML and DL models is affected by data impurities 
(e.g., overlapping classes). Moreover, the classification system perfor-
mance of the above literature can be further enhanced by consolidating 
an optimal feature selection algorithm with improved classification 
precision. 

3. Problem statement 

The best method for detecting COVID-19 is RT-PCR. This manual 
process is laborious, and the requirement for specialized kits is an 
important factor which is prone to deficiency in inaccessible areas of a 
country due to socio-economical and geological barriers. Instead, the 
rapid antigen test detects antigens of the pathogen in specimens drawn 
by a nasal swab, but this procedure is subjected to higher incidences of 
false negatives. The serological test functions by detecting the antibodies 
produced by the immune system in response to parasites in the blood 
sample extracted from the patient. Nevertheless, the investigation only 
detects the IgG and IgM antibodies, which are produced after and during 
recovery, and so do play a key role in early detection. The CXR and CT 
scan utilize the spectrum of electro-magnetic ranges which are invisible 
for the detection of an anomaly, which adds to preliminary detection 
and provides high clinical relevance. In view of this proposal, we will 
discover the new computer-aided diagnosis for CXR tests that are 
economical, and the results are relatively comprehensible. The CXR tests 
are handy, consisting of a compact version with an unknown risk of 
radiation. Contrastingly, patients under CT imaging are more prone to 
the risk of radiation, they are expensive, require expertise for handling, 
and are non-portable, which in conclusion provides a conjecture that 
CXR is more preferable than CT scans. 

4. Proposed methodology 

The proposed CXGNet model uses CXR images as input to detect 
COVID-19. The test images are first preprocessed, with undesirable parts 
removed to identify the region of interest (ROI). The proposed CXGNet 
model can detect pneumonia diseases as well. The proposed CXGNet 
model also takes into account the EGWO-GA based feature extraction 
and feature selection approach. This technique is capable of extracting a 
sufficient number of retrieved characteristics to reliably identify COVID- 
19. The best characteristics are then combined and sent into the DLCNN 

classification model as input. The testing and training phases of the 
proposed CXGNet design are depicted in Fig. 2, which is also represented 
by an algorithm in Table 1. The dataset contains different types of CXR 
images, including low-quality, speckle-affected, and high-quality im-
ages. These strategies might be used to successfully overcome input 
image quality restrictions. Following that, EGWO-GA was utilized to 
extract disease-specific features from the CXR images. Finally, the 
DLCNN classifies the different types of diseases presented in the CXR 
images. Further, the proposed work is implemented as a tri-phase model 
such as 4-class, 3-class, and 2-class CXGNet models to classify the mul-
tiple diseases. To perform the simulations, these three models are indi-
vidually trained and tested using three diverse dataset combinations. 

4.1. Image preprocessing 

Image preprocessing is a key step in the classification process, which 
is used to remove the noise and enhance the low quality CXR images. 
This work utilised the random undersampling based preprocessing 
method and extracted the ROI of CXR images. The ROI is used to remove 
unnecessary text and machine annotations from surrounding CXR im-
ages. The ROI was established by concentrating on the lung region area, 
which is used to acquire useful information in the focused area. A 
rectangle box is used for focus, and the rectangle is then used to produce 
a mask. The region outside the ROI was assigned as zero using logical 
indexing, and the region inside the ROI is enhanced. In order to maintain 
precise data while decreasing distortion and noise in the CXR, random 
under-sampling was recommended for this effort. While resampling any 
noise in a CXR, resampling algorithms preserve important information. 
Information-preserving resampling algorithms are best for extracting 
significant features from noisy CXR images. Using speckle-affected im-
ages, they were used to evaluate resampling performance throughout 
the testing phase. Edge information may be preserved and enhanced 
while noise is reduced via anisotropic diffusion resampling. The edge 
information, as well as noise, is detected by the gradient operator. For 
strong speckle and low contrast CXRs, this approach detects noise 
gradient changes that may extend beyond the edge gradient. These 
changes destroy more of the edge information than the noise, which 
makes resampling less accurate. 

4.2. Feature extractor 

Features Extraction plays a significant research area in computer 
science based on image processing with medical image diagnostic ap-
plications. The extraction and selection of subset characteristics of fea-
tures is a tough task. As the size of features increases, the computational 
complexity of the network also increases. Features are not the lower 
dimension of input images. The features are the statical attributes in the 
vector format. Sometimes, features can be solitary values, which hold 
the pixel information. Feature extraction and selection is a meta-heu-
ristic application that selects the most relevant and informative features 
while avoiding noisy and redundant characteristics. When the search 

Fig. 2. Proposed CXGNet model block diagram for CXR image classification.  

Table 1 
Proposed CXGNet model for CXR image classification.  

Input: Train dataset, Test image 
Output: Predicted class, Quantitative Evaluation 

Step 1: Perform the DLCNN training procedure and develop the trained features from 
the train dataset. 

Step 2: Apply test CXR image to random under sampling-based preprocessing, so 
noises, size mismatches presented in the dataset will be removed. 

Step 3: Apply EGWO-GA meta-heuristic optimization on the pre-processed outcome 
for extracting the features and selecting the optimal features. 

Step 4: Perform the DLCNN testing procedure, which compares the test features with 
pre-trained dataset features. 

Step 5: The DLCNN model classifies the predicted class of test image and then perform 
the quantitative evaluation for measuring the various metrics.  
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space gets excessively large, feature selection becomes a difficult and 
complicated challenge. Recently, bio-optimization approaches have 
been introduced for reducing the complexity of systems by extracting 
the best features. The flowchart of the EGWO-GA flowchart for 
extracting features and selecting optimal features is shown in Fig. 3. 

The EGWO-GA algorithm is a bio-inspired metaheuristic, which was 
developed by understanding the hunting mechanisms, leadership hier-
archy, and social behavior of grey wolves. Generally, the wolves live as a 
group in their social behavior, and each group contains a multiple of 
four levels of wolf population. In this group, alpha (α) wolves are the 
most dominant members. Then beta (β) and delta (δ) wolves are the 
middle dominant members, and finally omega wolves are the least 
dominant members. These wolves function together, and under beta 
wolf leadership, they will start the hunting mechanism. The mathe-
matical model of an EGWO-GA has three stages: encircling, hunting, and 
attacking the prey. 

4.2.1. Encircling prey 
Encircling prey is the initial step of the hunting of wolves. The grey 

wolf will change its position automatically based on the prey position in 
the search space. To describe the operation of encircling mathemati-
cally, three coefficients are derived as follows: 

Dα
̅→

= | C1
̅→

.Xα(t)
̅̅̅→

− X(t)
̅̅→

|, Dβ
̅→

= | C2
̅→

.Xβ(t)
̅̅→

− X(t)|
̅̅ →

, Dδ
̅→

= | C3
̅→

.Xδ(t)
̅̅→

− X(t)
̅̅→

|

(1) 

Here, the position vector of grey wolf is indicated by the X(t)
̅̅→

with A→, 
C→ and D→ as its coefficient vector with respect to each current iteration 
(t). Then, the alpha position vectors is indicated by X1

̅→, beta X2
̅→ and 

delta position vectors is indicated by X3
̅→. They are calculated as follows: 

X1
̅→

= Xα
̅→

− A1
̅→

.Dα
̅→

, X2
̅→

= Xβ
̅→

− A1
̅→

. Dβ
̅→

, X3
̅→

= Xδ
̅→

− A1
̅→

. Dδ
̅→ (2)  

X(t)
̅̅→

=
X1
̅→

+ X2
̅→

+ X3
̅→

3
(3) 

From the above equation, it is observed that the position vectors play 
a crucial role in the feature selection procedure. If the dominant wolves 
reach near to the grey wolves, then the grey wolves will run away from 
their original position based on the average weights of delta, beta, and 
alpha. Here, the best features are selected by the alpha wolves as it’s 
nearer to prey in social hierarchy. Then, the alpha wolf is treated as the 
leader. The beta and delta wolves contain the lowest probability of 
features. Hence, in Eq. (3), alpha positions are dominant as their weights 
are much larger than the other wolves’ weights, respectively. 

The hunting and searching processes are performed by the alpha 
wolves, whereas monitoring operations are performed by the beta 
wolves, and finally the less important role is played by the delta wolves, 
respectively. The dominant grey wolves surround the prey in the social 
hierarchy manner. It means the alpha is number one in position as it is 

Fig. 3. Flowchart of EGWO-GA feature extraction and optimal feature selection.  
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nearest to the grey wolves, then the beta is ranked as the second position 
as it is nearer to the pack after the alpha. And finally, delta is ranked in 
third place. 

All wolves have the power to shift their position and leadership levels 
depending on the location of the prey. The omega wolves are handled as 
position-movable wolves in this process. This phenomenon can be uti-
lized for the purpose of best feature selection with multi-objective 
optimization. To implement this, fitness functions are developed by 
using the minimum or maximum position update. During the searching 
procedure, the temporary prey is selected, and COVID-19 features are 
selected. But, during the hunting procedure, accurate prey is selected, 
and based on the prey, accurate COVID-19 features are selected prop-
erly. As the locations of the omega wolves change, the positions evalu-
ated in Eq. (3) must be changed on a regular basis based on the new 
weights. The GA is added to the EGWO algorithm for this weight update 
process. The following is a description of the procedure:  

• When the hunt begins, the wolf closest to the prey is treated as the 
alpha, and the other wolves are ignored. The alpha wolf changes its 
position and starts looking for new prey based on what it sees.  

• If the features are retrieved, the alpha weight is set to 1.0 at the start 
of the search, and the weights of other wolves are set to zero at the 
same time. These initialization weights can change themselves based 
on where the prey is and what features are available.  

• During the final state, the delta, beta, and alpha have equal weight 
and encircle the prey based on perfect features. All the wolves start 
the prey-based feature searching operation from the beginning to the 
end with automatic wolf rank updation.  

• It means beta replaces the position of alpha and delta replaces the 
position of beta, and finally the original alpha finds the features 
respectively based on the cumulative iteration number (iter). As per 
this principle, as the original alpha receives identifies the prey, then 
its weight is reduced and beta and delta wolves’ weights are 
increased respectively. Thus, all of the weights are summed up and 
the result is the outcome as 1. 

Thus, Eq. (3) is changed according to the perception of GA. The 
above-mentioned hypothesis is mathematically formulated as follows: 

X(t + 1)
̅̅̅̅̅→

= w1 X1
̅→

+w2 X2
̅→

+w3 X3
̅→ (4)  

w1 +w2 +w3 = 1 (5) 

Here, w1, w2 and w3 indicates the weights of alpha, beta and delta, 
which are optimized by using GA. 

4.2.2. GA based crossover and mutation 
The crossover operation integrates information from several solu-

tions to produce a new offspring, which is a process of producing novel 
solutions from the already presented population. The crossover pro-
cedure broadens the population’s variety and improves exploitation 
potential. For a number with N bits, a single point crossover, cpi, i =
0toN − 1 is chosen at random. Further, the offspring of the three rec-
ommended solutions (w→1, w→2, and w→3) of weights and feature indexes 
comprises of the first solution’s pre-cpi part followed by the second so-
lution’s post-cpi segment. The crossover process is represented by the 
equation below. 

offspring = [ w1
̅→(section < cpi)+ w2

̅→(cpi > section), w2
̅→(section

< cpi)+ w3
̅→(cpi > section), w3

̅→(section < cpi)+ w1
̅→(cpi

> section)] (6) 

The mutation operator makes a random alteration to one or more 
components of the offspring. This is used to keep the convergence from 
happening too soon. The mutation process is used to improve the posi-
tion of a particular solution around a set of randomly chosen leaders. 

The coordinates are then updated using a random point mpi, i = 0toN − 1 
as the offspring number with N bits, which is picked at random. The 
mutation process is represented by the equation below. 

g1
→, g2

→, g3
→= Mutation(offspring) (7) 

Here, g1
→, g2

→, g3
→ represents the crossover and mutation processes and 

reflect the revised location. To conclude, this part presents two alter-
native changes to the original GWO. The initial adjustment pushes the 
parameter a to vary exponentially, hence increasing the number of 
exploration iterations. The second change is to apply the crossover and 
mutation processes to the G→1, G→2, and G→3 solutions to get the revised 
positions of g1

→, g2
→, g3

→. The exploration process is aided by the crossover 
operator, whereas the exploitation step is aided by the mutation oper-
ator. The proposed EGWO-GA offers greater exploration and exploration 
capabilities than the original GWO, because of combining these en-
hancements. These weights satisfy the weight updation rule 
g1
→ > g2

→> g3
→. Even though, alpha having highest priority, its weight 

decreased from 1 to 0.33 during the searching procedure. Similarly, at 
the same time the weights of the delta and beta raised from 0 to 0.33 
respectively. 

For this purpose, cosine function is used with an angle θ to be varied 
in the range of [0, cos (1/3)] on the weight g1

̅→; and all the weights are 
changed with the cumulative iteration number. If iteration = 0, then 
g2
̅→. g3

̅→→ 0 and similarly If iteration = ∞, then g1
̅→, g2

̅→, g3
̅→→ 1/3 

respectively. Thus, this work introduced the arc-tangent function on 
iteration and results the outcome as angular parameter φ. 

φ =
1
2

arctan(iteration) (8) 

Here, it varied from 0 to π/2. Mathematically cos
( π

4

)
= sin

( π
4

)
=

̅̅
2

√

2 ; if 
w2 increased from 0 to 0.33 along with iteration, then the above- 
mentioned condition. The angular parameter majorly depending on 
iteration and if iteration → ∞ , then θ → arccos(1/3), cos φ and sin θ. 

θ =
2
π.arccos

1
3
.
2
π (9) 

if iteration → ∞,θ → arccos(1/3), = 1/3, Then the weight coefficient 
w2 will be calculated easily. Thus, the new positions by using the new 
weight coefficients are calculated as follows. 

w1* = cosθ (10)  

w2* =
1
2

sinθcosφ (11)  

w3* = 1 − w1 − w2 (12) 

The omega wolves are changed their position based on the directions 
of A→ and controlling parameter a.  

• if A→ > 1, then the grey wolves changed its positions or run-away 
from dominants. At the same time, an omega wolf also changed its 
positions from the prey and creates the more searching space for 
other wolves. This phenomenon is treated as the global feature 
search in optimization.  

• if A→< 1, Then the grey wolves changed its positions much nearer to 
the dominants and finally reaches the prey. This phenomenon is 
treated as the local feature search in optimization. 

The random numbers r1
→ and r2

→ are used to indicate the direction of 
wolves and they are controlled by controlling parameter α and results in 
the coefficient vectors as follows. 

A→= 2αr1
→− α (13)  

C→= 2r2
→ (14) 
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From a maximum value of 2, the regulating parameter (a) an is 
reduced linearly to zero. And it can be calculated by using iteration as 
follows: 

a = 2(1 −
iteration

N
) (15) 

Here, N is maximum iteration number of iteration and N is initialized 
by the users. Finally, the DLCNN architecture requires the greatest and 
most optimum features in order to increase classification accuracy. The 
fitness function is employed in this proposal to create the optimal 
feature selection operation while also increasing classification 
efficiency. 

Fitness = aP+(1 − a)
NN − L

L
(16) 

Here, NN is the total number of features available in the whole 
dataset, L denotes the length of the extracted, selected feature, and P 
denotes classification accuracy. 

4.3. Classification 

Many constraints-related optimization problems and classification 

problems occurring in computer vision applications are solved by using 
DL mechanisms. The DLCNN is one of the best solutions for the classi-
fication process, which extracts the local features from higher inputs and 
combines them into more complicated features at lower levels. The 

Fig. 4. Multiple prediction models of CXGNet. (a) 4-class CXGNet model. (b) 3-class CXGNet model. (c) 2-class CXGNet model.  

Table 2 
Layer wise analysis of CXGNet.  

Class Layer name Layer 
dimension 

Filter 
size 

No. of 
filters 

Parameters  

Same for 
all 
classes 

Conv2D-1 62x62 3x3 32 896 
MaxPooling2D- 
1 

31x31 2x2 32 0 

Conv2D-2 29x29 3x3 64 18,496 
MaxPooling2D- 
2 

14x14 2x2 64 0 

Flatten 1x12544 – – 0 
Dense-1 1x128 – – 1,605,760 

Class-4 Dense-2 1x21 – – 2709 
SoftMax 1x4 – – 0 

Class-3 Dense-2 1x15 – – 2547 
SoftMax 1x3 – – 0 

Class-2 Dense-2 1x10 – – 2394 
SoftMax 1x2 – – 0  
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performance of the DLCNN is also improved by updating the weights 
and kernel sizes with the local connections. Fig. 4 presents the multiple 
prediction models of DLCNN-based CXGNet, which includes the 4-class 
CXGNet, 3-class CXGNet, and 2-class CXGNet models, respectively. 
Table 2 presents the detailed analysis of each layer with layer-wise 
dimension, filter size or kernel size, number of filters, and parameters, 
respectively. Stacked ensemble learning is used to stack the CXGNet 
architecture for performing multi-class classification, which improves 
the results obtained using a single model. All the layers are combined 
together and perform the classification operation as follows: 

4.3.1. Convolutional layer 
The convolution layer is a major operational block in DLCNN, which 

is used to perform the convolution operation between CXR and the 
weight matrix and generate the local features. Here, the weight matrix 
properties depend on the kernel size and activation function. The basic 
relationship between all the pixels of the CXR image is extracted by 
using this layer. The mathematical operation of convolution layer is 
given as follows: 

F(i, j) = (I*K)(i, j) =
∑M

m

∑N

n
I(i + m, j + n)K(m, n) (17) 

In this case, the input image or matrix is denoted by, the 2D filter is 
denoted by with as the filter size, and the 2D feature map output is 
denoted by F. convolution operation is performed between I,K and 
generates the F. The resultant output of the convolution layer is applied 
to the Rectified Linear Unit (ReLU) based activation function, which 
introduces the non-linearity relationship between various features. The 
ReLU considers the threshold value as zero and compares the threshold 
value with the input. If the input feature is less than zero, which results 
in the output being zero, else the output is input. The mathematical 
analysis of the ReLU activation function is indicated as follows: 

f (x) = max(0, x) (18)  

4.3.2. MaxPooling layer 
The MaxPooling layer in the DLCNN environment is used for down- 

sampling purposes, which is used to reduce the input spatial size and 
also reduce the network parameters by factor two. The AvgPool and L2- 
Norm pooling layers were losing the feature characteristics, whereas the 
MaxPooling layer extracts the data by searching the input feature range 
maximum and selecting the best feature properties. 

4.3.3. Flatten layer 
A flatten layer is used to convert the input pooled three-dimensional 

feature map into a column-wise feature map. This architecture contains 
many pooling layers with many pooled feature maps, which are packed 
into a series. So, this layer puts them into one long column sequentially, 
one after the other. This layer is primarily used to consolidate all CXR 
features into a single vector. 

4.3.4. Dense layer 
The dense layer is an output layer, which is used to generate all 

possible interconnections between the previous layer neurons and the 
next layer neurons. So, all the neurons participate in the process of 
classification. The matrix vector multiplication operation is performed 
between the preceding layer neurons’ row vector and the column vector 
neurons of the next layer. 

4.3.5. Classification process-SoftMax classifier 
All the layers presented in the proposed CXGNet architecture are 

stacked up to make a multi-class DLCNN model. The proposed DLCNN 
model includes a SoftMax classifier to reduce the complexity by mini-
mizing the training time, which also classifies the COVID-19 classifica-
tion from CXR. This work increases the filter sizes gradually during the 
training process. To perform the classification operation, the classifier 
consists of a bias vector, weight matrix, and activation function. The 
mathematical relationship between these properties is defined as fol-
lows:: 

Output = ReLU(dot(input, kernel)+ bias) (19) 

This holds the different classified classes of COVID-19. Usually, the 
bias levels and activation function ranges were different for 4-class, 3- 
class CXGNet models, and 2-class CXGNet models and predicted the 
classes based on these bias levels. The four-class CXGNet model contains 
four bias levels, which act as threshold regions and classify the COVID- 
19, Normal, Pneumonia Bacterial, and Pneumonia Viral classes. Simi-
larly, the 3-class CXGNet model contains three bias levels, which act as 
threshold regions and classify the COVID-19, Normal, and Pneumonia 
classes. Finally, the 2-class CXGNet model contains two bias levels, 
which act as threshold regions and classify the COVID-19 and normal 
classes. 

5. Results and discussion 

This work conducted a series of experiments in order to evaluate the 
performance of proposed approach compared to the state of art ap-
proaches. The performance of proposed method evaluated class wise 
and compared with the conventional approaches for each disease, 
respectively. 

5.1. Dataset description 

Datasets play a major role in DL methods. The CXR images are 
collected from two distinct publicly available image databases to 
generate a new dataset [47]. A few COVID-19 CXR samples were 
collected from the Radiological Society of North America (RSNA), which 
is a legitimate source. Further, Pneumonia viral and bacterial-based CXR 
images are collected from Kaggle’s “CXR Images (Pneumonia)” collec-
tion. The simulations are run on 69 COVID-19 images, 73 Pneumonia 
bacterial images, 81 Pneumonia viral images, and 25 normal images. 

Fig. 5. Sample dataset (a), (b) normal; (c), (d) COVID-19.  
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The repeated random subsampling validation method is used to split the 
dataset into 80% for testing and 20% for testing. The dataset is randomly 
divided into training and validation in repeated random subsampling 
validation, commonly known as Monte Carlo cross-validation. Unlikely 
k-fold cross-validation distributes the dataset into random splits rather 
than groups or folds. 

5.2. Subjective performance evaluation 

A comparison of normal and COVID-19 CXR images is shown in 
Fig. 5. The humidity in the lungs is increased due to COVID-19, so the 
CXR based COVID-19 images have more whiteness as compared to the 
normal CXR images. Usually, the radiologists confirm the COVID-19 
disease by monitoring these CXR images through the ground glass 
opacity mechanism. But there is a problem with this method. The 
COVID-19 based CXR scans look similar to the pneumonia disease im-
ages, which can lead to misprediction, misclassification, and improper 
condition analysis. Thus, this work adopted a DL mechanism to over-
come these problems by using computer-aided methods. 

From Fig. 6, it is observed that the proposed CXGNet approach 
accurately predicts and classifies the COVID-19, pneumonia viral, and 
pneumonia bacterial diseases. In Fig. 6, the highest percentage in red 
indicates the predicted class. So, the predicted class has much higher 
values as compared to the undetected classes, which indicates the pro-
posed CXGNet method extracts the accurate disease dependent features 
and those features are matched to that certain class only. 

5.3. Performance comparison 

This section gives the performance comparison of proposed CXGNet 
models such as 4-class, 3-class, and 2-class. In addition, the performance 

of these models is evaluated for each class of diseases using various 
metrics. Furthermore, the class-wise and disease-wise performance of 
the proposed CXGNet approach was also compared with the state-of-the- 
art approaches using recall, precision, F-measure, specificity, and 
accuracy-based performance measures. Table 3 compares the perfor-
mance of the proposed CXGNet with 4-class, 3-class, and 2-class modes. 
The 3-class CXGNet and 4-class CXGNet models contain other 
pneumonia-based diseases, which have an impact on the performance of 
the COVID-19 classification. Thus, it is observed from Table 3, the 2- 
class CXGNet model resulted in superior performance as compared to 

Fig. 6. Few CXR images evaluated by proposed CXGNet method.  

Table 3 
Overall performance comparison of 4-class, 3-class, and 2-class CXGNet.  

Class Recall 
(%) 

Precision 
(%) 

F-measure 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

2-class 
CXGNet 

100 100 100 100 100 

3-Class 
CXGNet 

96.96 94.44 95.38 91.41 97.05 

4-Class 
CXGNet 

92.60 95.31 93.74 94.27 94.00  

Table 4 
Performance comparison of various 4-class models.  

Method Precision 
(%) 

Recall 
(%) 

Specificity 
(%) 

F- 
measure 
(%) 

Accuracy 
(%) 

SOM-LWL  
[41]  

88.27  89.37  86.94  89.13  87.83 

CNN [39]  89.83  90.38  90.28  90.29  88.39 
FOMP [38]  90.29  91.49  91.38  90.39  90.49 
Covid-net  

[34]  
92.60  92.58  93.00  91.83  91.55 

Proposed 4- 
class model 
using 
CXGNet  

95.31  92.60  94.27  93.74  94.00  

Table 5 
Obtained quality metrics of CXR classification using existing and proposed 3- 
class models.  

Method Precision 
(%) 

Recall 
(%) 

Specificity 
(%) 

F- 
measure 
(%) 

Accuracy 
(%) 

Dragonfly 
algorithm  
[40]  

91.38  89.38  89.84  88.47  90.19 

DLH-COVID  
[37]  

92.30  91.94  91.39  89.94  93.29 

FractalCovNet  
[44]  

94.05  92.37  93.94  92.38  94.38 

Proposed 3-class 
model using 
CXGNet  

94.44  96.96  91.41  95.38  97.05  
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the 3-class CXGNet and 4-class CXGNet models. 
Table 4 compares the performance of the proposed 4-class model 

with existing 4-class approaches such as SOM-LWL [41], CNN [39], 
FOMP [38] and Covid-net [34] to evaluate the superiority of the pro-
posed CXGNet method. In Form Table 4, it is observed that the proposed 
4-class model using CXGNet resulted in enhanced classification perfor-
mance with better precision, recall, specificity, F-measure, and accuracy 
of 95.31%, 92.6%, 94.27%, 93.74%, and 94%, respectively. Similarly, 
Table 5 lists the obtained quality metrics and compares the performance 
of the proposed 3-class model using CXGNet with the existing 3-class 
approaches such as the Dragonfly algorithm [40], DLH-COVID [37] 
and FractalCovNet [44]. From Form Table 5, it is observed that the 
proposed 3-class model obtained superior classification performance as 
compared to the existing 3-class models. Table 6 compares the perfor-
mance of the proposed 2-class model using CXGNet with state-of-the-art 
2-class models such as DCNN [43], ResNet18 [36], and DRE-Net [32], 
whereas the proposed 2-class model outperforms the existing 2-class 
models by obtaining 100% precision, recall, F-measure, specificity, 
and accuracy, respectively. 

The comparative methods presented in Table 4, Table 5, and Table 6 
are developed with individual 4-class, 3-class, and 2-class models. 
However, the proposed CXGNet method is employed for all three 
models. Hence, Table 7 lists the obtained quality metrics that are 
developed using existing 2-class, 3-class, and 4-class classification 
models as compared to the proposed CXGNet. From Table 7, it is 
observed that the performance of the proposed CXGNet method is 
improved for each class of performance as compared to the conventional 
DarkNet [45], TL-CNN [35] and CoroNet [46] for all the metrics, 
respectively. 

In addition, the class-wise performance comparison of the proposed 
4-class CXGNet is presented in Table 8, where the COVID-19 detection 
performance is higher as compared to other diseases. Thus, this system is 
perfectly suitable for classifying COVID-19 from CXR images. The sim-
ulations were carried out on the 3-claass dataset using the proposed 3- 
class CXGNet model. The results are presented in Table 9, which gives 
the improved detection performance for individual COVID-19, Pneu-
monia, and Normal classes as compared to the individual classes of 4- 
class CXGNet. 

Further, Table 10 compares the performance of the proposed 4-class 

Table 6 
Performance comparison among 2-class models.  

Method Precision 
(%) 

Recall 
(%) 

Specificity 
(%) 

F-measure 
(%) 

Accuracy 
(%) 

DCNN [43] 91.02 92.39 93.02 93.92 91.23 
ResNet18  

[36] 
92.30 94.28 94.47 92.94 95.38 

DRE-Net  
[32] 

95.89 95.58 95.60 94.38 96.70 

2-class 
CXGNet 

100 100 100 100 100  

Table 7 
Class wise performance comparison of mutual methods for all classes.  

Class Method Precision (%) Recall (%) Specificity (%) F-measure (%) Accuracy (%) 

4-class DarkNet [45] 88.38 90.39 90.38 88.28 90.13 
TL-CNN [35] 89.18 91.49 91.39 90.40 91.92 
CoroNet [46] 90.29 92.58 94.38 92.26 92.93 
CXGNet 95.31 92.60 94.27 93.74 94.00 

3-class DarkNet [45] 88.84 91.39 87.02 90.29 86.37 
TL-CNN [35] 89.46 92.39 92.85 93.38 90.39 
CoroNet [46] 90.38 92.40 93.06 94.69 91.38 
CXGNet 94.44 96.96 91.41 95.38 97.05 

2-class TL-CNN [35] 87.48 83.88 85.57 86.02 87.90 
DarkNet [45] 96.90 92.48 98.08 95.38 92.38 
CoroNet [46] 97.82 94.37 99.00 96.93 96.47 
CXGNet 100 100 100 100 100  

Table 8 
Class wise performance comparison of 4-class CXGNet.  

Class Precision 
(%) 

Recall 
(%) 

Specificity 
(%) 

F-measure 
(%) 

COVID-19 100 100 100 100 
Normal 100 83.33 83.33 90.90 
Pneumonia 

Bacterial 
87.50 93.33 93.75 90.32 

Pneumonia Viral 93.75 93.75 100 93.75 
Average 95.31 92.60 94.27 93.74  

Table 9 
Class wise performance comparison of 3-class CXGNet.  

Class Precision 
(%) 

Recall 
(%) 

Specificity 
(%) 

F-measure 
(%) 

COVID-19 100 100 100 100 
Normal 83.33 100 83.33 90.90 
Pneumonia 

Bacterial 
100 90.90 90.90 95.23 

Average 94.44 96.96 91.41 95.38  

Table 10 
Individual class wise performance comparison of 4-class models.  

class Method Precision 
(%) 

Recall 
(%) 

Specificity 
(%) 

F- 
measure 
(%) 

COVID-19 Covid-net 
[34] 

80 95.38 88.8 87.48 

CoroNet  
[46] 

93.17 98.25 95.6 94.58 

CXGNet 100 100 100 100 
Normal Covid-net 

[34] 
95.1 73.9 80.17 84.38 

CoroNet  
[46] 

95.25 81.5 82.3 90.89 

CXGNet 100 83.33 83.33 90.90 
Pneumonia 

Bacterial 
Covid-net 
[34] 

87.1 93.1 90 91.37 

CoroNet  
[46] 

86.85 85.9 86.3 93.74 

CXGNet 87.50 93.33 93.75 90.32 
Pneumonia 

Viral 
Covid-net 
[34] 

67.0 81.9 73.7 78.78 

CoroNet  
[46] 

84.1 82.1 83.1 85.87 

CXGNet 93.75 93.75 100 93.75 
Average Covid-net 

[34] 
67.0 81.9 73.7 78.78 

CoroNet  
[46] 

84.1 82.1 83.1 85.87 

CXGNet 95.31 92.60 94.27 93.74  
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model with conventional Covid-net [34] and CoroNet [46] approaches. 
It is also proved that the proposed CXGNet method resulted in superior 
performance for each class as the EGWO-GA extracts the disease-related 
features accurately. Fig. 7 presents the training accuracy and training 
loss performance for multiple values of epoch for both 3-class and 4-class 
models, respectively. From the graph, it is observed that as the number 
of epochs is increased, the training accuracy is increased and as the 
number of epochs is increased, the training loss is decreased, 
respectively. 

6. Conclusion 

This article presented a computer-aided detection and classification 
mechanism for COVID-19 using DL methodology from the CXR images, 
which classifies the disease quickly as compared to the standard RT- 
PCR, rapid antigen, and serological tests and reduces the human 
effort. This work developed three different models, such as 4-class, 3- 
class, and 2-class CXGNet models. Here, the 4-class CXGNet model is 
used to classify the normal, COVID-19, Pneumonia viral, and Pneumonia 
bacterial classes. Then, the 3-class CXGNet model is used to classify the 
normal, COVID-19, and pneumonia classes. In addition, the 2-class 
CXGNet model is used to classify normal and COVID-19 diseases. 
Furthermore, the proposed CXGNet model is developed with random 
under-sampling-based data preprocessing, EGWO-GA based optimal 
feature extraction, and selection. The results show that the proposed 
CXNet obtained superior classification performance as compared to the 
conventional methods in terms of all performance metrics for three 
models. 
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