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Stress in extreme environment severely disrupts human physiology and mental abilities.
The present study investigated the cognition and performance efficacy of four divers
during a simulated 480 meters helium–oxygen saturation diving. We analyzed the spatial
memory, 2D/3D mental rotation functioning, grip strength, and hand–eye coordination
ability in four divers during the 0–480 m compression and decompression processes
of the simulated diving. The results showed that except for its mild decrease on
grip strength, the high atmosphere pressure condition significantly impaired the hand–
eye coordination (especially above 300 m), the reaction time and correct rate of
mental rotation, as well as the spatial memory (especially as 410 m), showing high
individual variability. We conclude that the human cognition and performance efficacy
are significantly affected during deep water saturation diving.

Keywords: saturation diving, spatial memory, mental rotation, grip strength, hand–eye coordination, cognition,
helium–oxygen, stress

Introduction

Stress in extreme environments severely affects the body and mind. For instance, during diving
the physical stress (underwater pressure) increases with the water depth (11 atm at 100 m, and 48.6
atm at 480m, for example; Brubakk et al., 2014). This creates inflammation signaling (Matsuo et al.,
2000; Krog et al., 2010), oxidative stress load (Ikeda et al., 2004), extreme tiring experience of body,
stress hormone secretion (Hirayanagi et al., 2003), sleep disruption (Nagashima et al., 2002), and
the psychological stress in mind (Curley et al., 1979; Biersner et al., 1984), resulting in alterations
of divers’ mood, cognition and performance efficacy, which are critical for diving work.

Previous studies reported different results on relevance between deep water diving (more than
300 m) and mental abilities, potentially due to the limited availability of subjects. In one study, it
is found that 360 m helium–oxygen saturation diving did not affect the finger flexibility of divers
(Hamilton, 1976); while another study reported increased finger tremors at 485m diving (especially
after 304 m) in six divers (Berghage et al., 1975). Other studies reported significant variability
across individuals concerning the finger tremors (300 m), which is reduced in professional divers
(Yamasaki et al., 1985). In addition, it is known that the spatial visual capacity is disrupted
by high pressure (300–549 m; Lewis and Baddeley, 1981), and that the cognition is affected
(Carter, 1979). Such mixed results indicate that depth and gas mixture are probably not the only
factors. When exposed to high pressure, divers suffer from not only physical pressure but also
psychological stress, such as anxiety, fear, and rapture during compression, underwater operation,
and decompression.
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The previous Asian record of saturation dive was 450 m Japan,
yet the psychological changes during the dive have not been
investigated. In addition, few studies systemically investigated
the spatial memory, 2D/3D mental rotation, grip strength, and
hand–eye coordination abilities during deep water saturation
dive.We therefore hypothesized that the deep water divingmight
impair these aspects of mental abilities and performance efficacy
when above certain levels of atmosphere pressure. With present
study, we investigated these aspects during the compression and
decompression processes of this 480 m (the new Asian record)
saturation dive.

Materials and Methods

Subjects
Four male professional divers (right-handed, 27–32 years old,
average at 30.3 ± 2.22) were recruited for this study. They
passed strict physical and psychological examinations and were
healthy.

The study is approved by ethic committee of human study in
Zhejiang Sci-Tech University and all subjects provided written
consent for experimental procedures. The procedures followed
the guidelines of human research from ethic committee in
Zhejiang Sci-tech University and Nanjing Normal University.

Experimental Methods
For grip strength measurement, CWJ-1 grip scale (range 0–
100 kg) was provided by Service center from Sports department
of China government. The measurement was performed three
times for each hand, and the maximum value was taken (kg). The
subjects recorded the values for each other.

For hand–eye coordination experiment, 4-hole buttons
(button diameter 12.5 mm, hole diameter 1.5 mm) were used
(three holes blocked). An 80 cm long 1 mm diameter cotton wire
was used. In the test, the subjects were asked to thread the wire
through the remaining button hole to connect as many buttons
as possible in 1 min. The test was repeated three times and the
average was taken.

For 2D mental rotation test, two “R” characters rotated at
45◦/90◦/135◦/180◦ (five questions for each degree, 20 questions
in total) were used (Figure 1A). The subjects were asked to
judge whether the two “R” characters were exactly the same
or in mirror image. The reaction time and correct rate were
recorded.

For 3Dmental rotation test, two 3D images were used for each
question (20 questions in total) as previously described (Shepard
and Metzler, 1971; Figure 1B). The subjects were asked to judge
whether the two images could merge to each other. The reaction
time and correct rate were recorded.

For spatial memory test, the 6 × 6 grids paper printed with
Chinese chess characters were used (Figure 1C). Each paper was
printed with five characters at random grids. The subjects were
asked to remember the name and the place of the five characters
on the paper in 30 s. The experiment was repeated for five times
with different papers each time. The correct rate was recorded.

Simulation of Saturation Diving
The simulation was conducted at the diver living chamber of
500 m saturation diving system at Institute of Naval medicine,
Shanghai, China. The chamber has an internal diameter of 2.2 m
and length 5.5 m and living volume 19.5 m3. The chamber is filled
with helium–oxygen, temperature 31 ± 1◦, moisture 50–70%,
noise lower than 75 dB and light intensity 50–100 lx.

FIGURE 1 | The test materials and the compression procedure. (A) 2D mental rotation, (B) 3D mental rotation, (C) Spatial memory test, (D) The compression
and depression procedures.
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The study was divided into predive, compression, stay,
decompression, and postdive phases. For all tests presented
above, the divers were trained repeatedly to reach a stable
baseline, and the last score was taken as baseline. During the
compression phase, the atmosphere pressure supplied at 0–10 m
was 21% helium–oxygen, and 10–480 m with pure helium.
The rate of pressure increase was at 0.6 m/min for 0–300 m,
0.1 m/min for 301–400 m, and 0.04 m/min for 401–480 m.
The subjects stayed at 300, 400, and 443 m for 7–9 h each.
The compression and depression procedures were described in
Figure 1D.

For cognition tests (spatial memory and mental rotation),
the data was collected at 0 m before, 150/350/410/463 m
during compression, the early/late phase of 480 m stay,
400/308/230/154/83/25 m during decompression, 3 days and
1 month after the test at 0 m.

For grip strength test, the data was collected at 0 m before,
150/270/300/400 m during compression, the early/late phase of
480 m stay, 446/398/357/314/274/230/192/154/119/85/54/25 m
during decompression, 3 days and 1 month after the test
at 0 m.

For hand–eye coordination test, the data was collected at
0 m before, 150/270/300/400/463 m during compression, the
early/late phase of 480 m stay, 400/308/230/154/83/25 m during
decompression, 3 days and 1 month after the test at 0 m.

Statistics
The data is analyzed with SPSS 17.0 software (Chicago, IL,
USA) for database building. The results were tested with
analyses of variances and LSD post hoc test. The data was
normalized to baseline point (100%) for better visualization and
understanding, and to decrease the effects of individual variability
at a small n.

Results

Mental Abilities
2D Mental Rotation
In 2D mental rotation, the correct rates for four divers
(Figure 2A) and average (Figure 2B) exhibited mild changes
during the compression and decompression phases (ranged
85%∼111.11% of baseline). While the reaction times of four
divers (Figure 2C) and the average (Figure 2D) exhibited
greater fluctuations (ranged 67.31%∼151.22% of baseline). There
was also noticeable variability among individual divers. The
correct rates were worse than baseline for diver A, B, and
D (ranged 85%∼100% of baseline), but better for diver C
(ranged 100∼111.11% of baseline). The variability of reaction
time of the four divers was much larger. Reaction times
were negatively affected as compression continued until the
depth of 410 m for diver B, C, and D, but not for diver A
(except the depth of 150 m in compression and 400 m in
decompression).

Repeated variance analyses revealed that the depth had a
significant effect on reaction time [F(14,42) = 4.226, P < 0.05,
η2
p = 0.585], but not on the correct rate [F(14,42) = 0.864,

P > 0.05, η2
p = 0.224]. During the compression phase, the

reaction time continuously increased until 410 m (LSD post hoc
test P < 0.01 when compared to predive).

We further compared the 2D mental rotation ability across
different phases of the experiment (predive, compression, stay,
decompression, 3 days, and 1 month after the dive; Table 1).
Repeated variance analyses revealed that the phase of the
experiment had a significant effect on the reaction time
[F(5,15) = 7.09, P < 0.05, η2

p = 0.703], but not on the correct rate
[F(5,15) = 5.05, P > 0.05, η2

p = 0.138]. LSD post hoc test revealed

FIGURE 2 | The results from 2D mental rotation. (A) Correct rate for four divers, (B) Correct rate on Average, (C) Reaction time for four divers, (D) Reaction time
on average.
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TABLE 1 | 2D mental rotation ability across different phases of the
experiment (X̄ ± SD, n = 4).

Phase Reaction time(s) Correct rate(%)

Predive 48.25 ± 4.92 97.50 ± 5.00

Compression 57.94 ± 4.58 96.88 ± 0.72

Stay 55.00 ± 9.16 97.50 ± 3.54

Decompression 44.42 ± 2.06 98.54 ± 1.72

3 days after 42.50 ± 5.00 97.50 ± 5.00

1 month after 44.75 ± 2.87 100 ± 0.00

that the reaction times of the four divers significantly increased in
the compression phase (when compared to the baseline, P< 0.05)
and returned to the baseline levels during the decompression
phase (P > 0.05 when compared to predive).

3D Mental Rotation
In 3D mental rotation, the correct rates (Figures 3A,B) and
reaction times (Figures 3C,D) of the four divers exhibited
considerable impairment and large variability across individual,
with reaction times ranging 58.0%∼226.0% and correct rates
37.5%∼118.8%. Correct rates of all the four divers declined
as compression processed, while diver C and D were less
impaired than A and B (ranged 77.8%∼105.6%, 84.2%∼105.3%
vs. 37.5%∼118.8%, 56.3%∼100.0%, in compared to baseline).
There was enormous variability on reaction times of four divers.
Only small impairment was detected on diver C during the
compression and decompression but that became a little greater
after the dive, on the contrary, the reaction times of diver A and B
increased throughout the dive until they came back to the surface.
The pattern of reaction time for diver Dwas different from above,

whose reaction time increased as compression was performed but
restored since the depth of 463 in compression.

Repeated variance analyses revealed that the depth had a
significant effect on reaction time [F(14,42) = 3.105, P < 0.01,
η2
p = 0.509], as well as on correct rate [F(14,42) = 3.129,

P < 0.01, η2
p = 0.511]. LSD post hoc test revealed that

during the compression phase, the reaction time continuously
increased and the correct rate decreased until 410 m for
reaction time (P > 0.05 in compared to predive) and
150 m for correct rate (P > 0.05, when compared to
predive).

We further compared the 3D mental rotation ability across
different phases of the experiment (predive, compression, stay,
decompression, 3 days, and 1 month after the dive; Table 2).
Repeated variance analyses revealed that the phase of the
experiment had a significant effect on the reaction time
[F(5,15) = 12.10, P < 0.01, η2

p = 0.801], but not on the correct rate
[F(5,15) = 6.09, P > 0.05, η2

p = 0.465]. LSD post hoc test revealed
that the reaction times of the four divers slightly increased in

TABLE 2 | 3D mental rotation ability across different phases of the
experiment (X̄ ± SD, n = 4).

Phase Reaction time(s) Correct rate(%)

Predive 153.00 ± 21.76 86.25 ± 7.50

Compression 168.38 ± 24.27 70.00 ± 15.24

Stay 160.69 ± 22.48 76.25 ± 13.62

Decompression 160.83 ± 18.87 78.75 ± 15.07

3 days after 109.25 ± 14.06 78.75 ± 21.75

1 month after 107.75 ± 11.79 87.50 ± 10.41

FIGURE 3 | The results from 3D mental rotation. (A) Correct rate for four divers, (B) Correct rate on Average, (C) Reaction time for four divers, (D) Reaction time
on average.
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the compression/stay/decompression phases (when compared to
the baseline, P > 0.05) but decreased significantly after the dive
(P < 0.01 when compared to baseline).

Spatial Memory
The spatial memory ability (Figures 4A,B) of the four divers
exhibited large variability across individuals. The performance
of diver A appears to be stable compared to baseline, except
350–480 m in compression and stay phase ranging from
82.4%∼96.0%. Greater impairment was observed on diver B
and C, which decreased as compression processed until 480 m
(59.1% for diver B and 76.0% for diver C, compared to
baseline). While, the worst performance for diver D was at
the depth of 410 m in compression (72.0% compared to
baseline).

Repeated variance analyses and LSD post hoc test revealed
that the depth has a significant effect on spatial memory
[F(14,42) = 2.809, P < 0.01, η2

p = 0.484], which was significant
impaired during 410–480 m in compression and stay phase
(P < 0.05). During the compression phase, the spatial
memory continuously decreased until 480 m (P < 0.05 in
compared to baseline); while spatial memory returned to
baseline as decompression started (P > 0.05 when compared to
predive).

We further compared the spatial memory ability across
different phases of the experiment (Predive, compression,
stay, decompression, 3 days and 1 month after the dive;
Table 3). Repeated variance analyses revealed that the phase
of the experiment has a significant effect on spatial memory
[F(5,15) = 5.19, P < 0.01, η2

p = 0.634]. LSD post hoc test
revealed that the spatial memory of the four divers slightly

FIGURE 4 | The results from spatial memory. (A) Four divers, (B) Average.

TABLE 3 | Spatial memory ability across different phases of the
experiment (X̄ ± SD, n = 4).

Phase Test results (n)

Predive 4.85 ± 0.30

Compression 4.42 ± 0.34

Stay 4.23 ± 0.59

Decompression 4.73 ± 0.25

3 days after 4.85 ± 0.19

1 month after 4.90 ± 0.20

decreased in the compression phases (when compared to the
baseline, P > 0.05), and significantly decreased in the stay phase
(P < 0.05 to baseline), and returned to baseline level during the
decompression phase (P > 0.05 to baseline).

Performance Efficacy
Grip Strength
The right hand (Figure 5A) and left hand (Figure 5B)
grip strength also showed individual variability (ranged
74.24%∼113.04% of baseline). Both left-hand and right-hand
grip strength of diver B were associated with the depth,
which declined as compression processed and restored during
decompression. While, slight impairment was detected for diver
D. Interestingly, left-hand grip strength of diver C was even
higher than baseline. Furthermore, the best performances of
right-hand grip strength for diver A and C were observed at the
depth of 480 m, as well as best right-hand performance for diver
D (110.4, 104.2, and 109.3% respectively, when compared to
baseline).

Repeated variance analyses revealed that the depth had no
significant effect on right hand grip strength [F(20,60) = 1.029,
P > 0.05, η2

p = 0.255], as well as the left hand grip strength
[F(20,60) = 1.078, P > 0.05, η2

p = 0.264]. In general (Figure 5C),
the depth above 230 m are associated with lower grip strength.

We further compared the grip strength across different phases
of the experiment (Predive, compression, stay, decompression,
3 days, and 1 month after the dive; Table 4). Repeated variance
analyses revealed that the phase of the experiment has no
significant effect on both right [F(5,15) = 0.83, P > 0.05,
η2
p = 0.217] and left hand [F(5,15) = 0.63, P > 0.05, η2

p = 0.173]
grip strength. Both left and right hand grip slightly decreased at
stay and decompression phase.

Hand–Eye Coordination
The hand–eye coordination ability of the four divers during
compression showed similar trends of change (Figures 6A,B),
ranged 68.75%∼118.33%. The lowest values were at 400–480 m.

Repeated variance analyses revealed that the depth
had a significant effect on hand–eye coordination ability
[F(15,45) = 6.50, P < 0.05, η2

p = 0.684]. LSD post hoc test
revealed that During the compression phase, the hand–eye
coordination ability showed no significant changes at 150,
270, and 300 m, and decreased at 410, 463 m (P < 0.05 when
compared to baseline); while during the decompression phase
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FIGURE 5 | The results from grip strength. (A) Right hand for divers, (B) Left hand for four divers, (C) Left and right hand on average, respectively.

TABLE 4 | Grip strength of left and right hand across different phases of
the experiment (X̄ ± SD, n = 4).

Phase Right hand Left hand

Predive 55.50 ± 8.23 52.00 ± 6.98

Compression 54.38 ± 5.32 50.19 ± 5.23

Stay 53.88 ± 4.94 50.25 ± 5.23

Decompression 51.90 ± 4.20 49.46 ± 5.21

3 days after 53.50 ± 7.77 51.00 ± 8.68

1 month after 54.50 ± 5.80 52.25 ± 5.74

TABLE 5 | Hand–eye coordination ability across different phases of the
experiment (X̄ ± SD, n = 4).

Phase Test results (n)

Predive 22.33 ± 2.42

Compression 19.57 ± 1.78

Stay 18.67 ± 1.25

Decompression 21.47 ± 2.63

3 days after 23.08 ± 1.95

1 month after 22.92 ± 3.00

the hand–eye coordination ability restored at 308 m (P > 0.05
when compared to predive).

We further investigated hand–eye coordination ability across
different phases of the experiment (Predive, compression, stay,
decompression, 3 days, and 1 month after the dive; Table 5).
Repeated variance analyses revealed that the phase of the
experiment had a significant effect on hand–eye coordination
ability [F(5,15) = 8.113, P < 0.01, η2

p = 0.730]. LSD post hoc test
revealed that the hand–eye coordination ability of the four divers
slightly decreased in the compression phase (when compared to
the baseline, P > 0.05), and significantly decreased in the stay

FIGURE 6 | The results from hand–eye coordination. (A) Four divers,
(B) Average.

phase (P < 0.05 to predive), and returned to baseline level during
the decompression phase (P > 0.05 when compared to predive).

Discussion

Chronic psychological or physical stress is known to induced
physiological changes in the brain, impairments in cognition,
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sensation of the external world, and general physiological
alterations (Hou et al., 2014, 2015; Tian et al., 2014; Yuan and
Hou, 2015; Yuan et al., 2015). Extreme environment stress has
been known to induce changes in both the body and mind, as
the case of deep water diving with high atmosphere pressure
(Curley et al., 1979; Biersner et al., 1984; Nagashima et al., 2002;
Hirayanagi et al., 2003; Brubakk et al., 2014). In present study
with simulated helium–oxygen saturation diving experiment, we
found that the correct rate of 2D mental rotation was relatively
impaired under the high atmosphere pressure, while the 3D
mental rotation ability was significantly impaired, suggesting that
3D task is more vulnerable to the depth of diving. In addition,
the reaction time of 2D and 3D mental rotation increased with
the depth. The 410 m depth seems to be the changing point
between reaction time increase and becoming stable, potentially
due to the adaption effect. This is in line with previous study
showing that divers react to high pressure as slowing down their
working speed, in order to maintain the working efficacy (30 m,
air diving; Petri, 2003). It is also realized that making a mistake
in performance will result in serious consequences in diving task
(Logie and Baddeley, 1983), and therefore the working speed is
relatively less important.

In addition, the spatial memory was significantly impaired
with compression between 410 and 480 m, showing large
individual variability. Previous study also revealed decreased
visual spatial ability in diving at 300–540 m (Lewis and Baddeley,
1981). Notably, the parietal lobe is known to be involved
in both spatial cognition (Culham and Valyear, 2006) and
mental rotation (Harris and Miniussi, 2003). Whether the high
atmosphere pressure leads to dysfunction of parietal lobe is yet to
be investigated in future studies.

The mental abilities are critical elements determining
the task performance efficacy. We chose the grip strength

and hand–eye coordination ability as the two measurements
as previously described (Lewis and Baddeley, 1981; Logie
and Baddeley, 1983; Petri, 2003). We found that the grip
strength is mildly affected. In previous study with open sea
dive, the high pressure led to increased tremor, decreased
grip strength, decreased speed of steeping, and slower
spontaneous reaction (Vaernes et al., 1987). It is also found
that during the compression, the EEG θ wave significantly
increased, while α, β1, and β2 activity decreased (Bennett
and Towse, 1971), which might explain the changes in grip
strength.

The hand–eye coordination was clearly impaired by the high
pressure environment, which declined continuously to 480 m. In
one study, it was found that the finger flexibility decreased by
2% at 180 m and 10% at 450 m (Rostain et al., 1983); while in
another study with helium–oxygen saturation diving, the authors
reported no changes in finger flexibility at 360 m (Hamilton,
1976). We believe that this might be due to the large individual
differences. Three-hundred meter might be the turning point
of tremor induction, and therefore the decrease in hand–eye
coordination ability.

In summary, we report that the mental abilities and
performance efficacy are significantly impaired during deepwater
helium–oxygen saturation diving.
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