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Abstract
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health.
Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of
disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to
investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers
reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in
postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms,
microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in
screening and diagnosis.
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Introduction

Gestational diabetes mellitus (GDM), one of the most
common pregnancy complications, is defined as diabetes
diagnosed in the second or third trimester of pregnancy
that is not clearly overt diabetes prior to gestation.[1] The
prevalence of GDM varies widely depending on popula-
tion characteristics and diagnostic criteria. In 2017, the
International Diabetes Federation reported that around
21.3 million live births (16.2%) worldwide were affected
by hyperglycemia in pregnancy, including 18.4 million
cases involving GDM. Notably, estimates of the raw
prevalence of hyperglycemia in pregnancy range from
9.5% in Africa to 26.6% in Southeast Asia.[2] Risk factors
for GDM include pre-pregnancy body mass index (BMI),
advanced maternal age, ethnicity, family history of
diabetes, smoking, and perfluorochemicals during preg-
nancy.[3-5] GDM is a cause of morbidity and mortality in
both mothers and infants. Patients with GDM have a high
risk of pre-eclampsia, polyhydramnios, operative delivery,
and birth canal lacerations, while short-term consequen-
ces for offspring include shoulder dystocia, macrosomia,
neonatal hypoglycemia, jaundice, and perinatal mortality.
While GDM usually resolves following delivery, it can
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have a long-term impact on both the mother and the
infant, including increased risks of hyperglycemia, diabe-
tes, obesity, and cardiovascular diseases in the future. This
contributes to the transgenerational cycle of diabetes
and cardiometabolic disorders.[6,7] Therefore, GDM is a
considerable threat to the health of mothers and infants
worldwide, and research on its pathogenesis, early
diagnosis, and intervention is necessary.

Similar to diabetes, GDM development has multiple
mechanisms, including b-cell dysfunction, insulin resis-
tance, adipose tissue dysfunction, gluconeogenesis, gut
microbiota dysbiosis, and oxidative stress.[8] Owing to
this complexity, our current understanding of the
pathogenesis of this disease remains limited.

Biomarkers are quantifiable indicators of the physiological
and pathological status of an organism. They are clinically
useful because they can be used to assess the risk of disease
development in healthy individuals. In the subclinical
phase of diseases, biomarkers serve as screening tools for
diagnosis, the prevention of progression, and monitoring
pharmacological responses to therapeutic interventions.[9]

Many molecular biomarkers for GDM have been
investigated, including metabolites, single-nucleotide
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polymorphisms (SNPs), microRNAs (miRNAs), and
proteins. These biomarkers may complement existing
clinical risk factors to identify women at high risk of
developing GDM during pregnancy as well as type 2
diabetes mellitus (T2D) after delivery. Furthermore, they
provide insights into the pathophysiology of the disease
and reveal the molecular mechanisms underlying the
development of GDM.[10-12] Hence, molecular biomark-
ers have contributed substantially to GDM research in
recent decades.

Metabolomics is the comprehensive analysis of low-
molecular-weight compounds, known as metabolites, in
biofluids, cells, and tissues. As the end products of
metabolic processes, metabolites can reflect the internal
physiological status of an organism, gene expression, and
changes in the response to environmental factors. Due to
the high sensitivity, even subtle changes in metabolic
networks can be detected. Moreover, metabolomics
provides an integrated profile of the biological status,
without considering the effects of individual factors.[13]

The most frequently used experimental technologies in
metabolomics are liquid or gas chromatography–mass
spectrometry (MS) and proton nuclear magnetic reso-
nance (1H NMR) spectroscopy. MS-based approaches
provide high throughput, sensitivity, and versatility, while
NMR-based methods offer an overview of structural
information, dynamic process, and higher reproducibili-
ty.[14,15] Though MS is usually more sensitive than 1H
NMR, the biological fluid in NMR does not require any
physical or chemical treatment prior to the analysis, when
compared with MS-based methods. Furthermore, NMR
does not damage analytes, which is useful when exploring
metabolites in tissues that should be used in further
experiments.[13] Untargeted and targeted profiling are the
main methodologies used for metabolomics. Untargeted
metabolomics allows for studies of metabolites without a
priori information and is therefore suitable for candidate
biomarker discovery, hypothesis generation, and analyses
of metabolic mechanisms. In contrast, targeted metab-
olomics is usually employed for the analysis of specific
metabolites. This type of analysis can be used to validate
biomarkers and study metabolic pathways of interest.[16]

Since samples of biological fluids, such as blood or urine,
can be collected fairly easily, metabolites and their
biological responses to diseases can be easily studied in
detail. Metabolic groups include branched-chain amino
acids (BCAAs), aromatic amino acids, sulfur-containing
amino acids, phospholipids, and other metabolites, which
mainly participate in amino acid, lipid, and carbohydrate
metabolism.[17-19]

SNPs refer to alterations in a single nucleotide in the
genome sequence. While most SNPs do not alter the
function or expression of genes, some influence gene
expression and contribute to diseases. Comparisons of
SNP frequencies between individuals with a disease and
control individuals can reveal candidate loci associated
with the disease.[20] One general approach for these
studies is the candidate gene approach, which is used to
investigate the association between a particular suscepti-
bility gene and a phenotype.[21] Technologies such as
TaqMan assay, SNaPshot, and PCR-restriction fragment
1941
length polymorphismmethods are widely used.[22] For the
reason that each SNP contains limited genetic informa-
tion, a great deal of effort has been devoted to improving
the throughput of genotyping. SNPlex, the Illumina
BeadArray, the SequenomMassARRAY iPLEX platform,
and other SNP genotyping platforms are developed to
serve different purposes.[22,23] SNPs in several genes,
particularly genes responsible for lipid and glucose
metabolism, insulin secretion, and insulin resistance, have
been associated with GDM. These genetic variants are
potential biomarkers; however, individually, they are
likely to lack sensitivity.

miRNAs are specialized short non-coding RNAs approxi-
mately 22 nucleotides in length. Functionally, mature
miRNAs guide the RNA-induced silencing complex to
recognize target mRNAs at 30 untranslated regions, thus
regulating gene expression.[24-26] miRNAs are promising
biomarkers of diseases owing to their high stability in
body fluids and their enrichment in particular tissues.
miRNAs have been associated with GDM and its health
complications and may have diagnostic, prognostic,
and predictive value.[27-29] Three common methods for
miRNA analysis are miRNA sequencing, microarray,
and quantitative real-time PCR (qRT-PCR).[30] miRNA
sequencing utilizes next-generation sequencing for high-
throughput analysis of miRNA. Though it has advantages
of sensitivity, accuracy, and repeatability, it is also time
consuming and costly.[31] Microarray is also a technology
for multiplex analysis of miRNAs. However, the relatively
low sensitivity and specificity of microarray could be a
challenge.[32] qRT-PCR is currently the most widely
used detection technology for miRNAs.[33] Sensitivity,
specificity, and dynamic range of qRT-PCR are considered
as excellent, but it is useable only for miRNAs that have
been previously identified and not suitable for discovery
studies.[34] Despite of its imperfections, qRT-PCR is
the most common method for routine testing in the
clinical laboratory because it is performed on standard
equipment.[35]

Proteomics is the large-scale analysis of peptides or
proteins in cells, tissues, and body fluids and has attracted
substantial attention over the past few decades owing to
the roles of proteins in almost all biological processes.[36]

Four major approaches are involved in quantitative
proteomics, including gel-based, stable isotope labeling,
label free, and targeted proteomics. One-dimensional
gel electrophoresis, two-dimensional polyacrylamide
gel electrophoresis, and difference gel electrophoresis
approaches have been utilized for protein separation in
gel-based proteomics.[37,38] In labeling proteomics, stable
isotope labeling by amino acids in cell culture, isobaric tag
for relative and absolute quantitation, and tandem mass
tag are commonly used.[39] Selected reaction monitoring
and multiple reaction monitoring are MS-based techni-
ques that act as reliable quantitation methods in targeted
proteomics. A triple quadrupole mass spectrometer is
employed to detect and analyze targeted proteins. Using
this instrument, specific peptides representing each of the
targeted proteins are selected based on their mass to
charge (m/z) ratio, and they subsequently fragment into
smaller ions for quantitation analysis.[40,41] Label-free
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proteomics is not restricted to labels and consequently
reduces the overall experimental error. It also enables the
comparison of protein expression among a great number of
samples from various sources. MS has been invaluable for
the revolution of proteomics, for example, stable isotope
labeling coupled with MS-based techniques tremendously
improved sensitivity andproteindetection in comparison to
classical approaches.[42,43] Several proteomics studies have
identified potential biomarkers for GDM and its compli-
cations, although GDM is believed to share a similar
mechanism with T2D. These protein biomarkers, such as
transthyretin, serum retinol binding protein 4, and the
apolipoprotein (Apo) superfamily, are related to insulin
resistance, glycolipidmetabolism, inflammatory pathways,
and oxidative stress.[44,45]

In this review, we searched for studies of metabolites,
SNPs, miRNAs, and proteins in human subjects with
GDM published between January 2010 and September
2021. PubMed was systematically searched using search
terms “gestational diabetes mellitus” or “postpartum
diabetes” combined with “metabolite,” “single-nucleo-
tide polymorphism,” “microRNAs” or “protein” and
corresponding synonyms and associated terms for each
word. Articles published in languages other than English
were excluded. We describe altered biomolecule profiles,
summarize the mechanisms of action of specific bio-
molecules, and discuss their use as biomarkers in the
occurrence and development of GDM and postpartum
diabetes. The main findings are summarized in [Figure 1].
Metabolomics in GDM

The identification of GDM-related metabolic biomarkers is
important for early intervention and may improve our
understanding of the underlying mechanisms. Blood
(plasma and serum), urine, and hair are frequently utilized
in metabolomic studies of GDM. In particular, blood
samples are the most commonly used biofluids because
blood is abundant and highly dynamic; however, sampling
requires invasive procedures.[46] Elevated levels of linoleic
acid, alanine, leucine, lysophosphatidylcholine, tyrosine,
phenylalanine, carnitine, and derivatives of cholic acid have
Figure 1: Biomarkers for GDM and postpartum diabetes. BCAAs: Branched-chain amino
acids; GDM: Gestational diabetes mellitus; HbA1c: Hemoglobin A1c; miRNAs: microRNAs;
SHBG: Sex hormone-binding globulin; SNPs: Single-nucleotide polymorphisms.

1942
beenconsistently reportedamongpatientswithGDM.[47-57]

Incontrast, decreases in serine,[47,58,59] glutamine,[58-60] and
methionine[59,60] have been observed.

Most studies have reported that levels of circulating
BCAAs, which consist of valine, leucine, and isoleucine,
were increased in patients with GDM.[47,48,56] Increased
levels of ketone bodies in GDM inhibit proteolysis and
reduce the oxidation of BCAAs in skeletal muscle; thus,
they are released at low rates from skeletal muscle and are
mostly catabolized in the liver.[61] The activities of BCAA
catabolic enzymes in the liver and adipose tissue are
repressed, contributing to the high blood concentration of
BCAAs.[62] Valine levels were also higher in infants of
mothers with GDM than in infants of healthy mothers.[63]

Among children with GDM, daily intake of BCAAs was
associated with elevated risks of overweight and insulin
resistance; however, this association was not fully
independent of daily energy intake in children.[64] BCAAs
are predictive of GDM and are associated with insulin
resistance.[65,66] It has been proposed that BCAA
metabolism may contribute to insulin resistance because
the accumulation of toxic BCAA metabolites could result
in b-cell mitochondrial dysfunction and high susceptibility
to insulin resistance.[67] Another explanation for the
association was that BCAAs activated the mammalian
target of rapamycin pathway and phosphorylated insulin
receptor substrate 1, thereby interfering with insulin
signaling.[68] BCAAs can also participate in glucose
uptake by increasing the translocation of the glucose
transporter 1 (GLUT1) and GLUT4 to the cell surface.[69]

The area under the curve (AUC) is a typical parameter
used to assess the predictive efficiency of potential
biomarkers. In analyses of blood samples, a b-muricholic
acid-based model had the best performance for the
prediction of GDM, with the highest AUC (>0.95) and
Youden index (>0.80) and a sensitivity of 92.1%
and specificity of 96.3%.[55] b-Muricholic acid is an
intermediate in the metabolism of cholesterol to tauro-
b-muricholic acid in the liver. Tauro-b-muricholic acid is
then exported to the intestine and hydrolyzed to
b-muricholic acid by bile salt hydrolase.[70,71] As a potent
farnesoid X receptor antagonist, tauro-b-muricholic acid
inhibits intestinal farnesoid X receptor signaling, contrib-
uting to improved hepatic steatosis, insulin sensitivity, and
glucose tolerance.[72,73]

While blood provides a snapshot of the metabolic status
of individuals at the time of sampling, urine represents a
summation of process occurring in the hours prior to
sampling.[46] The acquisition of urine samples is non-
invasive; however, the composition and volume depend on
dietary habits and other factors. Women with GDM
showed significant increases in urine levels of seroto-
nin,[19,74] tryptophan,[19,54,75] glucuronide deriva-
tives,[75,76] and phenylalanine.[54,77] Studies have also
identified decreases in metabolites, including ethanol-
amine, lanthionine, 5-methoxytryptamin, threonine,
methionine, methionine sulfoxide, acadesine, carnitine,
argininate, and melatonin.[19,54,60,76] The AUC values for
these factors ranged from 0.718[60] to 0.993,[76] demon-
strating good predictive performance. In one of the studies
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with the highest predictive performance, untargeted and
targeted metabolomics approaches were used to explore
plasma and urine sample metabolites, yielding an AUC for
GDM prediction (combined with BMI) of 0.99.[19]

Another recent study of urinary metabolites in early
pregnancy involving 46 women with GDM and 46 age-
matched individuals without GDMapplied a classification
tree analysis based on saccharopine, dihydroorotate,
nicotinate ribonucleoside, 7,8-dihydroneopterin, phenyl-
glucuronide, lanthionine, and arginine and the AUC for
the prediction of progression to GDM was 0.993.[76]

Hair is easy to obtain in a non-invasive manner and highly
stable for retaining long-term information; thus, it is a
useful source of biomarkers.[78] Analyses of hair samples
are limited; however, increases in 2-aminobutyric acid and
adipic acid have been detected.[79,80] Further studies of
hair samples are needed to confirm these findings and to
identify more differentially expressed metabolites in
women with GDM.

Approximately, 50%–60% of patients with GDM devel-
op dysglycemia (T2D and prediabetes) after delivery;[81,82]

accordingly, a predictive test for this transition may
improve patient management. Increases in BCAAs are
predictors of the incident T2D risk after pregnancy
complicated byGDM.[83-85] Six years after GDM, levels of
BCAAs and the valine metabolite 3-hydroxyisobyturate
were higher in women who developed T2DM, and there
was a tendency for BCAA levels to increase in the impaired
glucose tolerance group.[85] Dudzik et al[86] found that
2-hydroxybutyrate and stearic acid showed the best
discriminative power (AUC of 0.90) for postpartum
diabetes. Elevated levels of 2-hydroxybutyrate, which
result from enhanced lipid oxidation, glutathione synthe-
sis, and a redox imbalance,[86] are associated with insulin
resistance and reduced insulin secretion.[87] These metab-
olite changes may be considered prognostic biomarkers
for the prediction of postpartum diabetes among women
with prior GDM.
Genomic Analysis of GDM

Since GDM shares pathophysiological similarities with
T2D, some T2D-related genes are also important in the
GDM process. The TCF7L2 gene, which is highly
associated with T2D predisposition, encodes a transcrip-
tion factor that operates at the end of the Wnt signaling
cascade not only in b cells but also in other organs,
including the liver.[88] rs7903146, rs4506565, rs7901695,
rs12255372, and rs12243326 in the TCF7L2 gene are
associated with GDM. As the most frequently reported
polymorphism in TCF7L2, rs7903146 was associated
with an increased risk of GDM.[89-95] In addition, patients
with GDM harboring the T risk allele in rs7903146 were
more likely to have early postprandial glycemic control
failure and require insulin therapy during pregnancy.[96]

rs7903146 is located in islet-selective open chromatin,
indicating that the chromatin state at rs7903146 is more
open in chromosomes carrying the T allele, allowing the
binding of regulatory proteins to this locus in human islet
cells.[97] Previous studies have shown that it was related to
impaired insulin secretion, decreased incretin effects, and
1943
hepatic insulin resistance.[98,99] Pilgaard et al[99] found
that risk allele carriers showed an increased proinsulin/
insulin ratio, reduced insulinotropic effects of incretin
hormones, and impaired b-cell responsiveness to glucose.
Cropano et al[100] also revealed that the T allele of
rs7903146 contributed to the development of hypergly-
cemia by altering the proinsulin secretory efficiency and
reducing the ability of insulin to suppress hepatic
endogenous glucose production. The T allele of
rs4506565 was also a risk allele for GDM.[92,93,101]

Pagan et al[101] found that TCF7L2 rs4506565 was
associated with a two-fold increase in the risk of
developing GDM. Pregnant individuals carrying this risk
allele had elevated levels of resistin, a member of the
adipokine family, in the plasma and cord blood.
Additionally, the allele was associated with increased
interleukin (IL)-6 levels, suggesting that it had an effect on
GDM via inflammation.

MTNR1B encodes the melatonin MT2 receptor, also
known as melatonin receptor type 1B. As a member of the
G-protein-coupled receptor superfamily, it affects glucose
intolerance and insulin resistance.[102] Four SNPs in the
MTNR1B gene were frequently reported, including
rs10830963. Most studies of rs10830963 have shown
that the G allele was the risk allele and was correlated with
increased fasting glucose, increased hemoglobin A1c
(HbA1c), and an impaired early insulin response to
glucose.[103-105] Glucokinase (GK) is a tissue-specific
enzyme mainly present in the liver and pancreatic
islets,[106] where glucose is phosphorylated by GK into
glucose-6-phosphate for further glycometabolism.[107]

Individuals carrying the G allele showed higher expression
of MTNR1B via increased FOXA2-bound enhancer
activity and neuronal differentiation 1 (NEUROD1)
binding in islet cells,[108] and melatonin lowered intra-
cellular cyclic adenosine monophosphate (cAMP) levels,
leading to the downregulation of GK expression and
impaired insulin secretion.[105,109] In an analysis of
individuals with a high GDM risk (i.e., with a history
of GDM and/or BMI ≥30 kg/m2), only non-carriers of the
risk allele (i.e., G) benefited from lifestyle interventions,
suggesting that the MTNR1B rs10830963 variant could
modify the efficacy of lifestyle interventions.[110] More-
over, for patients with GDM with a pre-pregnancy BMI
≥29 kg/m2 carrying the rs10830963 G risk allele, a study
reported that despite the medical nutrition therapy and
lifestyle intervention, endogenous insulin secretion was
insufficient to meet the increased insulin demand, and
antenatal insulin therapy initiation may be necessary.[111]

The ADIPOQ gene spans 17 kb on chromosomal region
3q27 and encodes human adiponectin, which is secreted
mainly by adipose tissue. This adipocyte-derived plasma
protein can reverse insulin resistance and increase insulin
efficacy in glucose metabolism.[112] It is related to obesity,
T2D,andmetabolic syndrome.[113] rs1501299, rs2241766,
and rs266729are themost frequent SNPs.Although studies
of rs1501299 have not detected an association with
GDM,[114,115] most studies of rs2241766 have shown that
the G allele was associated with an increased risk of
GDM.[116-119] Several studies have indicated that subjects
with the rs2241766 G allele showed a decrease in
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adiponectin levels and an increase in the insulin resistance
index.[120,121] Considering that rs2241766 is a silent
polymorphism with no impact on the sequence of amino
acids, it is possible that this SNP inactivates the gene by
influencing transcript activity, such as the splicing accuracy
or efficiency.[122] The association between rs266729 and
GDM remains inconclusive.[114,115,123,124] Conflicting
results can be explained by differences in environmental
factors and lifestyle among populations. In addition,
inconsistent detection methods and sample sizes might
have contributed to the differences.

Relatively few studies have evaluated the genetic risk of
postpartum diabetes among women with GDM. Notably,
rs10811661 of CDKN2A/2B and rs1111875 and
rs7923837 of HHEX increased the risk of early conver-
sion (2 months), whereas rs7754840 of CDKAL1
increased the risk of late conversion (more than a
year).[125] Some SNPs associated with postpartum glyce-
mic traits have been identified in women with a history of
GDM. MTNR1B rs10830963 was genotyped in 1025
women with previous GDM, revealing its relationship
with postpartum fasting glucose levels. In a stratified
analysis, the MTNR1B genotype was related to postpar-
tum changes in the 2-hour oral glucose tolerance test
(OGTT) across categories of inadequate, adequate, and
excessive gestational weight gain.[126] Similarly,
rs10830963 and rs1387153 ofMTNR1B were associated
with elevated fasting glucose levels in another study, with
highly significant P values.[90] In a study of 1208 women
with prior GDM, MC4R rs6567160 was not significantly
associated with postpartum fasting glucose but was
positively associated with 2-hour OGTT glucose concen-
trations and increased HbA1c.[127]

The genetic risk score (GRS) is computed as the sum of
unweighted or weighted risk variants. This parameter
combines genetic information for multiple variants and
thereby has high predictive power. Given the relatively
small effect sizes of individual risk loci, the GRS includes
SNPs at independent loci to predict the genetic risk of
diseases. AGRS based on 48 genetic variants showed good
prediction performance for T2D in women with GDM;
women who developed diabetes after GDM pregnancy
had a higher unweighted and weighted GRS (wGRS) than
those who did not meet the diabetes diagnostic criteria.
The risk of diabetes increased as the quartiles of wGRS
increased. The hazard for diabetes incidence was 5.52
times higher in the highest wGRS quartile than in the
lowest wGRS quartile. In a complex clinical model for the
prediction of future diabetes, the c-statistic increased from
0.741 without the wGRS to 0.775 with the wGRS and the
net reclassification improvement index was 0.430.[128]

Another GRS model based on 36 SNPs was also predictive
of pre-diabetes and T2D in women with previous GDM;
when the explained-variance GRS was added to a model
including age and BMI, the AUC increased from 0.6269 to
0.6672, indicating an improved predictive value.[129]
miRNAs in GDM

There is substantial interest in the roles of miRNAs in the
pathogenesis of GDM. In the last few years, a number of
1944
miRNAs that are upregulated in women with GDM
have been identified, including miR-16-5p,[130-132]

miR-19a,[132,133] miR-19b,[132,133] miR-101,[134,135]

miR-137,[136,137] miR-195,[134,138-140] miR-223,[141,142]

miR-330-3p,[28,143,144] miR-342-3p,[134,145] and miR-
657.[146,147] Like many other miRNAs, miR-223 has
been implicated in various physiological and pathological
conditions, including inflammatory disorders,[148,149]

infection,[150,151] and cancer.[152,153] It was downregu-
lated in T2D[154] but was upregulated in the insulin-
resistant heart of patients with T2D.[155] Independent of
phosphoinositide 3-kinase signaling or AMP kinase
activity, miR-223 increased glucose uptake via GLUT4
protein expression in cardiomyocytes.[155] It was specu-
lated that the overexpression of miR-223 in the insulin-
resistant heart is a compensatory mechanism for the
systemic reduction of miR-223.[156] However, miR-223
was upregulated in GDM, and a prediction model based
on miR-223 alone had a better accuracy than that of a
model including the differentially expressed miRNAs
miR-223 and miR-23a, with an AUC value of 0.94 and
accuracy of 0.90.[141] Another model based on miR-223
showed a similar predictive value (AUC= 0.92).[142]

Serum expression of miR-29a was significantly down-
regulated in pregnant women with GDM compared with
healthy women, and its expression decreased ahead of the
elevation of serum glucose.[157] However, the AUC for
miR-29a varied greatly, from 0.658[157] to 0.829.[158] The
knockdown of miR-29a increases the expression of Insig1
gene and subsequently enhances the level of phosphoenol-
pyruvate carboxy kinase 2. As a key enzyme in gluconeo-
genesis and glycolysis, phosphoenolpyruvate carboxy
kinase 2 expressionmay lead to increased glucose level.[157]

miR-29a is not only a potential regulator of serum glucose
but alsoanegative regulatorof cannabinoid type1 receptor.
Overexpressing miR-29a inhibits the expression of proin-
flammatory and profibrogenic mediators, preventing
diabetic glomeruli damage caused by fibrosis.[159]

Other miRNA-related mechanisms contributing to the
pathogenesis of GDM have been discovered. For example,
miR-657 could promote macrophage proliferation,
migration, and polarization toward the M1 phenotype
by downregulating family with sequence similarity 46
member C, thus effectingmacrophage-mediated immunity
and inflammation in GDM.[147] The downregulation of
miR-770-5p could enhance pancreatic b-cell proliferation,
promote insulin secretion, and suppress cell apoptosis via
the TP53 regulated inhibitor of apoptosis 1 (TRIAP1)/
apoptotic peptidase activating factor 1 (APAF1) pathway;
hence, the miRNA plays a protective role in GDM.[160]

miR-96 also contributes to b-cell proliferation and
function by targeting and downregulating p21-activated
kinase 1.[161] The downregulation of miR-29b may be
partially related to the development of GDMby increasing
the expression of hypoxia-inducible factor 3A, promoting
trophoblast cell activity.[162] Serum aberrant expression of
miR-132 in GDM is observed prior to glucose abnormali-
ty,[157] and miR-132 may exert a protective role against
GDM through abrogating the inhibiting effects of high
glucose on trophoblast cell proliferation.[163] The dys-
function of vascular endothelial cells could account for the
high risk of cardiovascular diseases in patients with GDM
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and their offspring.TheoverexpressionofmiR-137 induces
human umbilical vein endothelial cell dysfunction under
high glucose conditions by promoting the secretion of CC
chemokine ligand-2 (CCL2)/monocyte chemoattractant
protein-1 (MCP-1), upregulating the levels of IL-6,
intercellular cell adhesion molecule-1, vascular cell adhe-
sion molecule-1, and E-selectin, and downregulating IL-8
and vascular endothelial growth factor.[136] By the inhibi-
tion of the target gene peroxisome proliferator-activated
receptor-a, miR-518dmay disrupt the homeostatic balance
between cellular fatty acid and glucose metabolism and
increase resistance to insulin.[164] These findings clearly
establish the importance of miRNAs in the development of
GDM, suggesting that further investigations of miRNAs
may shed light on the pathophysiology of the disease.

In addition to associations between miRNAs and the risk
of GDM, some investigators have evaluated trimester-
specific miRNA changes in cases and controls. Herrera-
Van Oostdam et al[130] found that in the second trimester,
miR-517-3p and miR-518-5p levels were higher in cases
than in controls, while the opposite pattern was observed
in the third trimester. Lamadrid-Romero et al[137] also
observed that the level of miR-125b-5p increased in the
first trimester and decreased during the second trimester.
Additionally, levels of miR-200b-3p and miR-183-5p,
which were upregulated in the first and second trimester,
respectively, were downregulated in the third trimester.
These findings may be helpful in tracking disease
progression and clarifying the pathophysiology.

Otherstudiesof theriskofdevelopingdiabetesafterdelivery
among women with a history of GDM based on miRNAs
are lacking. However, Hromadnikova et al[165] assessed
the risk of later development of diabetes mellitus and
cardiovascular and cerebrovascular diseases in 111 women
with GDM and 89 age-matched women after normal
pregnancies. They selected a series of miRNAs involved in
the pathogenesis of diabetes mellitus and cardiovascular
and cerebrovascular diseases. The expression levels of
these miRNAs were higher in women with a history of
GDM than in the control group. Among these miRNAs,
miR-1-3p, miR-16-5p, miR-17-5p, miR-20b-5p, miR-21-
5p, miR-23a-3p, miR-26a-5p, miR-29a-3p, miR-103a-3p,
miR-133a-3p, miR-146a-5p, miR-181a-5p, miR-195-5p,
miR-199a-5p, miR-221-3p, and miR-499a-5p showed
good sensitivity at a 10.0% false positive rate and high
accuracy for the identificationofwomenpreviouslyaffected
with GDM at a higher risk of postpartum diabetes mellitus
and cardiovascular and cerebrovascular diseases. These
miRNAswere highly discriminative,with anAUCof0.900,
sensitivity of 77.48%, and specificity of 93.26%.
Proteomics in GDM

Protein biomarkers in women with GDM included
immune molecules, hormones, enzymes, polypeptides,
and glycoproteins. Sex hormone-binding globulin (SHBG)
is a glycoprotein synthesized mainly in the liver that binds
to and regulates sex steroids with high affinity and
specificity.[166] Low concentrations of SHBG are a
biomarker for early GDM.[167,168] Even pre-pregnancy
SHBG levels are a predictor of subsequent GDM; women
1945
with SHBG levels below the median appeared to have a
2.6-fold increased risk for GDM. A greater effect of low
SHBG levels was observed in women who were over-
weight or obese (BMI ≥25.0 kg/m2), with a 5.3-fold
increased risk of GDM compared with that of normal
weight women with high SHBG concentrations.[169]

Despite controversies regarding the inhibitory effects of
insulin on SHBG production,[170-172] there is evidence for
an association between SHBG levels and the development
of insulin resistance.[173,174] Some studies have attempted
to explain the inverse association. For instance, Wang
et al[175] speculated that SHBG may exert its biological
effects by inhibiting the extra-cellular signal-regulated
kinase (ERK) pathway, thus influencing insulin secretion
and participating in the onset of insulin resistance and
GDM. Disruption of the ERK isoform ERK1 in mice
resulted in resistance to high-fat diet-induced obesity and
improved insulin sensitivity.[176] Activation of the ERK
pathway by IL-1b could decrease insulin-induced glucose
transport mainly by inhibiting insulin receptor substrate 1
expression at the transcriptional level.[177] In addition,
Chi et al[178] found that SHBG in the placenta may
regulate the expression of GLUT1 via the activation of the
cAMP/protein kinase A (PKA)/cAMP responsive element
binding protein 1 (CREB1) pathway, thereby affecting
glucose metabolism and improving insulin resistance.

In addition to differences in protein expression levels
between patients with GDM and healthy women,
longitudinal changes in differentially expressed proteins
have been investigated. In a prospective cohort study,
serum proteins were screened in the early stage (12–16
weeks) and middle stage (24–28 weeks) of pregnancy in
60 participants (30 GDM cases and 30 healthy controls).
In total, 31 and 27 proteins were differentially expressed
between GDM cases and controls in the early and middle
stages, respectively. When compared with the early stage,
38 and 28 proteins were altered in the middle stage in
healthy controls and patients with GDM, respectively, and
these proteins may be associated with the progression of
normal pregnancy and GDM.[179] Among these proteins,
beta-ala-his dipeptidase was highly discriminative
(AUC= 0.98),[180] whereas Apo E was less discriminative
(AUC= 0.965). The combination of Apo E, coagulation
factor IX, fibrinogen alpha chain, and insulin-like growth
factor-binding protein 5 increased the AUC to 0.985, with
80% sensitivity and 95% specificity.[181]

An increasing number of studies have focused on the
clinical value of HbA1c levels in predicting the develop-
ment of postpartum diabetes among patients with GDM.
A logistic regression analysis indicated that HbA1c ≥
5.4% was associated with a 5.5-fold increased risk of
postpartum diabetes.[182] In another study, at the optimal
HbA1c cutoff value of 5.55%, the AUC was 0.846, with
78.6% sensitivity and 72.5% specificity.[183] Coetzee
et al[184] investigated the value of HbA1c levels at the time
of GDM diagnosis (t1) and in the 4 weeks preceding
delivery (t2) for the prediction of postpartum diabetes.
The receiver operating characteristic curve analysis
indicated that HbA1c at GDM diagnosis performed well
(AUC= 0.90). At a cutoff of 6.2%, the sensitivity and
specificity were 95% and 62%, respectively. The optimal
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cutoff value for HbA1c in the 4 weeks preceding delivery
was 6.2%, with an AUC value of 0.81, and patients with
GDM and HbA1c ≥6.2% had a four-fold (at t1) or five-
fold (at t2) increased risk of diabetes, respectively. Thus,
HbA1c could be used as a tool to predict postpartum
diabetes in women with GDM.

Insulin-like growth factors and their binding proteins are
correlated with the development of T2D. Lappas et al[185]

further showed that postpartum insulin-like growth
factor-binding protein-2 levels were significantly and
negatively associated with the development of T2D among
women with previous GDM, even after adjusting for age
and BMI. In contrast, insulin-like growth factor I levels
were positively associated with postpartum T2D. When
the above two factors were added to a base model
(including age, BMI, fasting glucose, and postnatal fasting
glucose), the predictive model identified individuals with
postpartum diabetes with an AUC of 0.892. Similarly, in
2019, Lappas et al[185] explored the relationship between
postpartum diabetes and Apo species based on their roles
in T2D. Apo CIII levels as well as the Apo CIII/Apo AI,
Apo CIII/Apo AII, Apo CIII/Apo CII, Apo CIII/Apo E, and
Apo E/Apo CIII ratios were positively associated with the
development of diabetes; when these parameters were
added to the base model, the accuracy (83.2% to 86.3%),
sensitivity (30% to 40%), and AUC values (0.782–0.824)
were improved.[186] Thus, these variables were identified
as risk factors for the prediction of T2D in women with
prior GDM.
Challenges and Future Directions

Several biomolecules have recently emerged as biomarkers
for GDM and postpartum diabetes and can offer a basis
for early diagnosis and targeted treatment. Biomarkers,
including metabolites, SNPs, miRNAs, and proteins, are
involved in glucolipid metabolism, insulin resistance, and
inflammation. Thus, a complex network linking these
factors should exist to integrate the biological informa-
tion. However, the results of someGDM studies are highly
inconsistent and difficult to replicate. Sample size and
demographic factors are major bottlenecks in identifying
credible diagnostic and prognostic biomarkers of GDM.
In addition, most studies are case-control studies; these
retrospective analyses do not provide insight into preva-
lence or incidence. Therefore, prospective studies are
needed to explore the associations between biomarkers
and GDM in a more powerful way. More importantly,
while most biological samples are collected in the second
trimester, at the time of GDMdiagnosis, samples collected
prior to the existence of GDM or at its onset are more
critical for early prediction and diagnosis. The widely
accepted approach for GDM diagnosis is 75 g OGTT
performed during 24–28 gestational weeks, which seems a
little late for intervention and prevention. In this sense,
biomarkers released in the first trimester or ahead of
glucose abnormality may help identify women at high risk
of GDM and early GDM. However, relatively few studies
target this area and no single molecule currently performs
sufficiently well to be an established screening tool for
early prediction and diagnosis of GDM. Though women
with GDM are recommended to screen for T2D after
1946
pregnancy,[187] the compliance among this group is
relatively low probably due to lack of awareness of the
need for screening and the time-consuming nature of the
tests.[188] Since some pathophysiological changes occur
long before the elevation of blood glucose, it is possible to
build up a more accurate and acceptable test based on
biomolecules for the prediction of T2D following GDM
pregnancy. However, existing studies are mostly limited to
certain racial groups and short-term follow-up.

Hence, biological samples obtained at different stages of
pregnancy would be of great use in exploring the etiology
and prognosis of GDM. Biomolecules, especially those
released in the early stage, need to be tested on larger and
more diverse populations to assess their predictive value.
Further researchwith amuch longer follow-up periodmay
help explore their potential utility as screening tools,
considering sensitivity, specificity, cost, and patient
acceptability. Since the mechanism underlying the patho-
logical progression of GDM is not entirely clear, the
integration of data from various omics-based approaches
is crucial, although numerous challenges remain.
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