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RBMMMDA: predicting multiple 
types of disease-microRNA 
associations
Xing Chen1,2,*, Chenggang Clarence Yan3,*, Xiaotian Zhang4, Zhaohui Li5,6, Lixi Deng7,8, 
Yongdong Zhang9 & Qionghai Dai3

Accumulating evidences have shown that plenty of miRNAs play fundamental and important roles 
in various biological processes and the deregulations of miRNAs are associated with a broad range 
of human diseases. However, the mechanisms underlying the dysregulations of miRNAs still have 
not been fully understood yet. All the previous computational approaches can only predict binary 
associations between diseases and miRNAs. Predicting multiple types of disease-miRNA associations 
can further broaden our understanding about the molecular basis of diseases in the level of miRNAs. 
In this study, the model of Restricted Boltzmann machine for multiple types of miRNA-disease 
association prediction (RBMMMDA) was developed to predict four different types of miRNA-disease 
associations. Based on this model, we could obtain not only new miRNA-disease associations, but 
also corresponding association types. To our knowledge, RBMMMDA is the first model which could 
computationally infer association types of miRNA-disease pairs. Leave-one-out cross validation 
was implemented for RBMMMDA and the AUC of 0.8606 demonstrated the reliable and effective 
performance of RBMMMDA. In the case studies about lung cancer, breast cancer, and global 
prediction for all the diseases simultaneously, 50, 42, and 45 out of top 100 predicted miRNA-disease 
association types were confirmed by recent biological experimental literatures, respectively.

MicroRNAs (miRNAs) are a highly abundant class of small (~22 nt), endogenous and evolutionarily con-
served single-stranded non-coding RNAs that regulate the gene expression normally at post-transcriptional 
level by base pairing with their target mRNAs at 3′  untranslated regions (UTRs), causing mRNAs deg-
radation or translational repression1–6. As is shown in many studies, the mature miRNAs are released 
from a much longer RNA molecule through mainly three steps, including cropping of pri-miRNA Q1 
the Drosha/DGCR8 heterodimer and producing a miRNA precursor called pre-miRNA7,8, exporting and 
producing a mature miRNA duplex9, dicing and degraded resulting in a fully functioning miRNA2,10,11. In 
1993, lin-4, as the first miRNA, was discovered when Victor Ambros and colleagues performed a genetic 
screen to investigate defects in the temporal control of Caenorhabditis elegans (C. elegans) develop-
ment12. Then, some years later, the second miRNA (let-7) was discovered13. After the discovery of these 
two well-known miRNAs, many laboratories have focused their research on these small non-coding 
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RNAs (ncRNAs)14–19 and many miRNAs have been found in plants, green algae, viruses, and animals20. 
According to the miRNA database (miRBase) released in 2014, there has been more than 2588 mature 
miRNAs in humans.

In the past few years, increasing evidences suggest that miRNAs play significant roles in a variety of 
essential biological processes, such as cell cycle regulation, differentiation, development, metabolism, 
neuronal patterning, aging and so on3. MiRNAs often play main regulator roles by binding to their 
target messenger RNAs (mRNAs) based on complete or partial sequence complementarity to induce 
transcript degradation or translational repression, respectively21. It has been demonstrated that a sin-
gle miRNA can bind to multiple mRNAs and a target gene can be targeted by multiple miRNAs22. In 
addition to the complex base pairing between the miRNA and the mRNA, multiple miRNAs can also 
synergistically regulate one or more pathways23–25. It has been observed that miRNA-related regulations 
are complicated and evolutionarily conserved26–28. Therefore, it is no surprise that accumulating evi-
dences show that the deregulations of miRNAs are associated with a broad range of human diseases, 
such as cancer, neurological disorders, cardiovascular disorders and so on29. For example, miR-17–92 
cluster is shown to be oncogenic and responsible for malignant lymphoma30,31. MiR-206 can slow down 
the progression of ALS by sensing motor neuron injury and the miR-206 deficiency in ALS mouse 
model accelerate disease progression32. The miR-1 is involved in heart development and deletion of 
miRNA-1–2 interrupts the regulation of cardiogenesis33,34. Especially, the alterations of miRNA expres-
sion are involved in the initiation, progression and metastasis of various types of human cancers35, such 
as breast cancer36, lung cancer37, prostate cancer38, colon cancer39 and ovarian cancer40. Meanwhile, new 
disease related-miRNAs evidenced by several lines of experimental literatures are constantly emerging. 
Moreover, miRNAs have become a class of potential biomarkers for detection, diagnosis, prognosis and 
therapy in various human complex diseases41–43. Therefore, the disease-related miRNAs identifications 
are critical for not only understanding the molecular mechanisms of diverse diseases, but also providing 
potential biomarkers in disease diagnosis, treatment, and prognosis, and potential drug targets in drug 
discovery and clinical treatment.

Although many researchers have devoted their efforts on miRNA-disease interactions identification, 
the mechanisms underlying the dysregulations of miRNAs still have not been fully understood yet. 
Especially, the dysregulations of miRNAs cause disease through various kinds of mechanism. In the 
Human MicroRNA Disease Database (HMDD)44, miRNA-disease associations were divided into four 
types according to the different supporting evidences, including miRNA-disease association data from 
the evidence of genetics, epigenetics, circulating miRNAs and miRNA-target interactions, respectively. 
Genetic alterations (for example, SNP or deletion) and epigenetic changes (such as CpG methylation 
at the promoter, and abnormal histone modification) may affect the transcription of the pri-miRNAs, 
causing aberrant expression level of the miRNAs and leading to diseases. For example, chronic lympho-
cytic leukemia resulted from the deletion and subsequent down-regulation of the miR-15 and miR-16 
at 13q14 locus45, and methylation of the miR-200b promoter reduced its expression and was associ-
ated with metastasis or hormone receptor status in advanced breast cancer46. Nowadays, the circulating 
miRNAs are considered to be diagnostic biomarkers47. For example, let-7a and miR-16 were associated 
with the progression-free survival and overall survival of myelodysplastic syndrome (MDS) patients and 
could serve as noninvasive prognostic makers48. MiRNAs can bind to the UTR region of the mRNA and 
induce its degradation or repress its translation49. The dysregulations of the miRNA-target interactions 
leads to many kinds of disease, such as lung cancer induced by misregulation of miR-let-7 and its tar-
get KRAS50, Alzheimer’s disease associated with miR-103, miR-107 and their elevated target cofilin51. 
Furthermore, the same miRNA could be associated with the same disease based on different association 
types. For example, miR-137 inhibited the proliferation of lung cancer cells by targeting Cdc42 and 
Cdk6. Meanwhile, miR-137 was downregulated in lung cancer cells by DNA methylation52. Therefore, 
lung cancer-miR-137 association was classified into both epigenetic and miRNA-target interaction types.

In the recent years, based on the assumption that miRNAs which have similar functions are often associ-
ated with similar disease and vice versa, many approaches have been proposed to predict miRNA-disease 
associations. For example, Jiang et al.53 developed a computational model based on hypergeometric dis-
tribution to infer potential miRNA-diseases associations by integrating the miRNA functional interac-
tions network, disease phenotype similarity network and the known phenome-microRNAome network. 
Only local similarity measure has been adopted, so the prediction accuracy is not satisfactory. Shi et al.54 
predict miRNA-disease associations by taking advantage of the functional links between miRNA targets 
and disease genes in the protein-protein interaction network. Mørk et al.21 presented a miRPD method 
in which not only the disease-associated miRNAs but also the underlying related proteins were predicted 
by combining known and predicted miRNA-protein interactions with text mined protein-disease asso-
ciations. However, above three methods both strongly rely on the predicted miRNA-target interactions 
with a high rate of false-positive and high false-negative results. Chen et al.55 developed the first global 
network-based method, RWRMDA, to predict novel miRNA-disease associations by implementing ran-
dom walk on the miRNA functional similarity network, which doesn’t rely on predicted miRNA-target 
interactions. Then, Xuan et al.56 proposed a new method named HDMP to predict potential miRNAs 
associated with human disease based on weighted k most similar neighbors. In that study, the previous 
miRNA functional similarity calculation methods were improved by incorporating the information con-
tent of disease terms, disease phenotype similarity, and the information of miRNA family and cluster. 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:13877 | DOi: 10.1038/srep13877

RWRMDA and HDMP obtained a reliable performance for miRNA-disease association prediction, but 
they can’t be applied to the diseases without known related miRNAs. Furthermore, HDMP strongly rely 
on the selection of the number of neighbors considered in the model and it didn’t set different values 
of this parameter when different diseases were investigated. Based on the assumption that if miRNAs 
implicated in a specific tumor phenotype, their target genes will be aberrantly regulated, Xu et al.4 con-
structed a miRNA-target dysregulated network (MTDN) by integrating target prediction results and 
expression profiles data of miRNA and mRNA that in tumor and non-tumor tissues. Furthermore, fea-
ture vectors were extracted and support vector machine classifier was adopted to distinguish positive 
disease miRNAs from negative ones, respectively. However, this method needs the information of known 
negative disease-related miRNAs. By integrating the information of known miRNA-disease associations, 
disease-disease semantic similarity, and miRNA functional similarity, Chen et al.57 further developed a 
semi-supervised prediction method (RLSMDA) based on the assumption that functional similar miR-
NAs tend to be associated with similar diseases and the framework of regularized least squares. RLSMDA 
achieved excellent performance in the both cross validation and case studies about several important 
diseases. Specially, RLSMDA is a semi-supervised method, so it does not need negative samples. More 
importantly, RLSMDA demonstrated excellent predictive ability for diseases without any known related 
miRNAs.

However, all of these previous approaches can only predict binary associations between diseases and 
miRNAs. On the one hand, current rich information about different types of miRNA-disease associations 
has not been well exploited for disease-related miRNA prediction. On the other hand, no previous com-
putational methods could predict the types of disease-miRNA associations. Predicting the different types 
of disease-miRNA associations can further broaden our understanding about the molecular basis of 
diseases in the level of miRNAs. In this paper, we developed the model of Restricted Boltzmann machine 
for multiple types of miRNA-disease association prediction (RBMMMDA) to predict different types of 
miRNA-disease associations. Based on this model, we could obtain not only new miRNA-disease asso-
ciations, but also corresponding association types. Restricted Boltzmann machine (RBM) has become 
the core of deep learning and successfully applied to solve various problems. Based on the following 
considerations, we chose RBM to predict multiple miRNA-disease associations in this work. Firstly, 
compared to previous work in predicting miRNA-disease associations outlined in the introduction sec-
tion, RBM model could be used to predict multi-type associations and has shown its powerful perfor-
mance in multi-type drug-target interaction prediction58 and neuroimaging data analysis59. Secondly, 
RBM provides a self-contained framework to obtain competitive classifiers directly and does not need 
to collect biological features and implement feature selection when classical methods such as SVM are 
adopted60. Thirdly, RBM could capture strong high-order non-linear correlations between the activities 
of features in the layer and therefore has demonstrated a good predict performance58,60,61. To our knowl-
edge, RBMMMDA is the first model which could infer association types of miRNA-disease pairs on a 
large scale.

Leave-one-out cross validation (LOOCV) was implemented for RBMMMDA based on the known 
experimentally verified multiple types of miRNA-disease associations obtained from HMDD. As a result, 
the AUC of 0.8606 demonstrated the reliable and effective performance of RBMMMDA. Furthermore, 
RBMMMDA was evaluated by the case studies of lung cancer and breast cancer. Fifty and forty-two out 
of top 100 predicted miRNA-disease association types were confirmed by recent biological experimental 
literatures, respectively. Especially, RBMMMDA is a global approach, which can predict miRNA-disease 
association types for all the diseases simultaneously. Therefore, we applied RBMMMDA to all the dis-
eases investigated in this study simultaneously and confirmed 45 out of top 100 predicted miRNA-disease 
association types. These confirmed associations were involved with as many as 10 important human 
complex diseases, such as breast cancer, hepatocellular cancer, non-small-cell lung cancer, and colorectal 
cancer. The excellent performance in the LOOCV and case studies fully demonstrated the potential value 
of RBMMMDA for the identification of miRNA-disease association types and the detection of human 
disease biomarkers.

Results
Performance evaluation. In this paper, we implemented LOOCV on the known multiple types 
of miRNA-disease associations obtained from HMDD to evaluate the predictive performance of 
RBMMMDA. Here, we considered all the diseases simultaneously to implement the global LOOCV. 
As for the parameters, we chose the learning rate as 0.01 and iterative number as 100 according to 
previous successful study of applying the idea of Restricted Boltzmann machine (RBM) into drug-tar-
get interactions prediction58. Specifically, each known miRNA-disease association was left out in turn 
as test association and other known multiple types of miRNA-disease associations were taken as seed 
associations. After that, RBMMMDA model was trained and predictive results were provided. Then this 
test miRNA-disease association was ranked relative to candidate associations which include all the miR-
NA-disease pairs that don’t have known experimental evidences. If the rank of the test miRNA-disease 
association exceeds the given threshold, the RBM model was considered to predict this miRNA-disease 
association correctly.

Finally, Receiver-Operating Characteristics (ROC) curve which plots true positive rate (TPR, sensi-
tivity) versus false positive rate (FPR, 1-specificity) was drawn. Sensitivity refers to the percentage of the 
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test miRNA-disease associations which are ranked higher than the given threshold. And specificity refers 
to the percentage of miRNA-disease associations that are below the threshold. Then the area under ROC 
curve (AUC) was calculated to evaluate the performance of RBMMMDA method. If AUC =  1, it means 
that the RBMMMDA method has perfect performance. And AUC =  0.5 indicates random performance. 
As a result, RBMMMDA achieved a reliable AUC of 0.8606 (See Fig.  1). Considering RBMMMDA is 
the first method to predict the multiple types of miRNA-disease associations, therefore there is no other 
method to implement performance comparisons. However, excellent predictive ability of RBMMMDA 
has been demonstrated based on the above LOOCV.

Case studies. Researchers in the field of computational biology and machine learning are much con-
cerned about overfit, which means the training error would keep decreasing steadily and the generali-
zation error would start increasing instead of decreasing. In order to see whether RBM tends to overfit, 
case studies have been implemented to validate the multiple types of miRNA-disease associations in the 
prediction list. All the known multiple types of miRNA-disease associations in the gold standard dataset 
were used as training samples to predict potential miRNA-disease associations and their association 
types for several important diseases based on the model of RBMMMDA. Prediction results were verified 
based on recent biological experimental results to demonstrate the prediction ability of RBMMMDA.

Breast cancer is currently regarded as the most leading type of invasive cancer in women worldwide 
and it is estimated that there will be approximately 231,840 new cases of invasive breast cancer and 
40,290 breast cancer deaths happen among US women in 201562. The number of the affected people 
is still increasing, which has been predicted to reach nearly 3.2 million new cases per year by 205063. 
Invasive breast cancer would occur in about one eighth of the women from the United States in her life-
time. Breast cancer can also be diagnosed in men, but with a much lower ratio than that in women64. The 
majority deaths of the breast cancer come from the developing countries, where most of the women are 
diagnosed in late stages65. Recently, growing evidence shows that several miRNAs are highly correlated 
with breast cancer and play important roles in the tumorigenesis of breast cancer. There are 176 miR-
NAs known to be related to the breast cancer in the golden standard dataset, and the associations of the 
breast cancer with related miRNA are categorized into four different subtypes according to the different 
supporting evidences. For example, mir-10b, which is up-regulated in metastatic breast carcinomas com-
pared with the benign breast lesions, targets E-cadherin to promote tumor cell invasion, while mir-122 
is down-regulated in breast cancer cells and functions to inhibit tumorigenesis of the cancer by targeting 
IGF1R66,67. This kind of miRNA and disease association is classified to be evidences from miRNA-target 
interaction. We implemented RBMMMDA to prioritize candidate miRNAs without the known relevance 
to breast cancer. As a result, among the top 10, 20 and 100 potential breast cancer-related miRNAs, 7, 
13 and 42 miRNA-disease associations and their association type predications are supported by various 
biological experimental literatures, respectively (See Table  1 and Supplementary Table 1). It has been 
well-known that let-7 family mainly functions as tumor suppressors to inhibit breast cancer develop-
ment and migration. Seven miRNAs from let-7 family has been ranked in top 10 predict list and five 
out of them has been confirmed by experimental literatures. For example, it has been confirmed that 
let-7i and let-7b can both inhibit the invasion of the breast cancer by targeting the oncogenes and tumor 
migration-related genes and induce tamoxifen sensitivity of the breast cancer by repressing the estro-
gen receptor α68–72; Down-regulation of let-7 g promotes breast cancer invasion by stimulating GAB2 
and FN1 expression73; Androgen induced let-7a expression contributes to ER-, PR-, AR+  breast cancer 

Figure 1. Performance evaluation of RBMMMDA in term of ROC curve and AUC based on LOOCV. 
As a result, RBMMMDA achieved a reliable AUC of 0.8606, demonstrating the reliable predictive ability of 
RBMMMDA. More importantly, RBMMMDA is the first method which could computationally predict the 
multiple types of miRNA-disease associations.
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pathogenesis74; Let-7f is a tumor-suppressor miRNA in breast cancer, which is induced by Aromatase 
inhibitors(Als) treatment to inhibit the aromatase gene and is also involved in low-dose metronomic 
(LDM) paclitaxel therapy by targeting Thrombospondin-175,76. Both mir-193b and mir-221 has been 
ranked in the top 10 prediction list for breast cancer and confirmed by literatures. Mir-193b decreases in 
breast cancer cells, which allows the expression of its target genes DNAJC13 and RAB22A, and promotes 
breast cancer progression77. The plasma mir-221 is accumulated in breast cancer patients78, and may be 
a predictive biomarker for sensitivity to Neoadjuvant chemotherapy in patients with breast cancer79.

According to the American Cancer Society, the lung cancer is the most common cause of cancer 
deaths worldwide in both man and woman, which account for about 13% of all new cancers and 27% all 
cancer deaths, greater than the combination of colon, breast, and prostate cancer80. There are estimated 
1.4 million deaths of lung cancer each year80–83. The most affected people come from North American, 
Europe and East Asia. Especially, lung cancer has become the first cause of death among people with 
malignant tumors in China and the registered lung cancer mortality rate has increased by 464.84%84. 
The five-year survival rate of lung cancer is much lower than many other leading cancers, such as breast 
cancer and prostate cancer, due to the fact that most lung cases are diagnosed at late stage80,81,85–87. So 
it’s important and urgent to study the mechanism of the tumorigenesis of lung cancer and screen for 
new biomarkers for early detection80,81,88–90. Recently, many miRNAs have been shown to play criti-
cal roles in lung cancer development and progression91–93. In our golden standard dataset, there are 
52 lung cancer related microRNAs with various association types. For example, mir-101 is reduced in 
non-small cell lung cancer (NSCLC) and can suppress NSCLC development by targeting enhancer of 
Zeste Homolog294, in contrast, the plasma miR-29c is significantly increased in NSCLC95. We further 
prioritize candidate miRNAs based on the scored calculated based on RBMMMDA. Half of top 100 
potential lung cancer-related miRNAs and their association types are confirmed by several literatures. 
Especially, among the top 10 and top 20 prediction list, 90% of them have literature evidences (See 
Table 2 and Supplementary Table 2). In the top 10 potential related miRNAs, mir-34 family (a and b), 
which functions as tumor-suppressive miRNAs to induce apoptosis and inhibit proliferation in lung can-
cer cells by directly targeting TGFβ R2 and Met, are inactivated by CpG methylation at their promoter 
region96–103; Also, mir-218, 133a and 143 are tumor-suppressors that play roles in inhibiting tumor cell 
invasion by targeting the tumorigenesis-related genes in lung cancer, such as N-cadherin, oncogenic 
receptors and so on104–113. There is also confirmed lung cancer-related miRNAs with the third association 

miRNA Type Evidence (PMID)

hsa-let-7i 1 24662829; 21826373

hsa-let-7d 1

hsa-let-7b 1 21826373;24264599;23339187;227
61738

hsa-let-7g 1 21868760

hsa-let-7a 1 24172884

hsa-let-7e 1

hsa-mir-183 2

hsa-let-7f 1 22407818;25552929

hsa-mir-193b 1 25550792;25213330;19701247;215120
34;19684618

hsa-mir-221 2 25009660;22156446

hsa-mir-92a 4

hsa-mir-18a 2 24694649;23705859

hsa-mir-216a 2

hsa-mir-138 1 25339353;20332227

hsa-let-7c 1 25388283

hsa-mir-187 1 20332227

hsa-mir-502 1 23291132;19789321;24677135

hsa-mir-376c 1

hsa-mir-361 2

hsa-mir-452 2 22353773

Table 1.  We implemented RBMMMDA to prioritize candidate miRNAs without the known relevance 
to breast cancer. As a result, among the top 20 potential breast cancer-related miRNAs, 13 miRNA-disease 
associations and their association type predications are supported by various biological experimental 
literatures, respectively.
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type. For example, sequence variants of mir-146a are associated with increased risk of NSCLC. Only mir-
16 in the top 10 list currently has no supporting evidence.

RBMMMDA is a global ranking method, which could predict potential multiple association types 
of miRNA-disease pair for all the diseases simultaneously. Therefore, RBMMMDA was further applied 
to simultaneously rank all the candidate miRNA-disease associations. As a result, 45 of top 100 poten-
tial associations have experimental evidences (See Table  3 and Supplementary Table 3). Except for the 
breast and lung cancer, there are many other diseases involved in the top 100 list, such as Hepatocellular 
carcinoma, Stomach neoplasms, Melanoma, and so on. In the top 10 prediction list, except for 7 breast 
cancer-related miRNAs, the regulatory mechanism of which are mentioned above, other 3 miRNAs in 
the top 10 list all belong to mir-34 family. MiR-34a is shown to inhibit the growth and the metastasis of 
gastric cancer by directly targeting Met and PDGFR114. The CpG island methylation frequency of miR-
34b in hepatocellular carcinoma cancer (HCC) is significantly higher in the tumor cells compared with 
that in adjacent non-tumor tissues, which may correlate to the inactivation of miR-34b in HCC115. MiR-
34c is predicted to be related to prostatic Neoplasms, which currently has no experimental evidence. In 
the top 100 association, we can further observer that one miRNA may be related to one disease based 
on different association types, while it may also be associated with different diseases based on the same 
association type. For example, miR-34a, the methylation frequency of which is significantly higher in 
hepatocellular carcinoma than that in the non-tumor tissues, inhibits the invasion of both stomach neo-
plasms and hepatocellular carcinoma by targeting Met114–117.

In conclusions, fifty, forty-two, and forty-five out of top 100 predicted miRNA-disease association 
types for breast cancer, lung cancer, and global prediction have been confirmed by recent biological 
experimental literatures, respectively. All of these validation results demonstrate that RBMMMDA 
doesn’t have a tendency of overfit.

Predicting novel multiple types of miRNA-disease associations. Here, after confirming the 
reliable performance of RBMMMDA in the framework of LOOCV and case studies, we further applied 
RBMMMDA to predict potential human miRNA-disease associations under the four different asso-
ciation types for all the diseases investigated in this paper. All the known multi-type miRNA-disease 
associations obtained from HMDD were used as training data. For all the 174 diseases, we publicly 
released the top 100 potential related miRNAs under four association types for each disease to facilitate 
experimental validation of human miRNA-disease associations. In the above case studies about breast 

miRNA Type Evidence (PMID)

hsa-mir-34a 3 21383543;18719384

hsa-mir-218 1 21159652;24247270;24705471;

hsa-mir-34b 3 24130071;22047961;21383543

hsa-mir-127 3 24665010

hsa-mir-133a 1 25518741;24816813;22089643

hsa-mir-146a 4 25524943;25154761;24144839;219
02575

hsa-mir-16 4

hsa-mir-34a 1 25501507;25038915;24983493;

hsa-mir-143 1 25322940;25003638;24070896

hsa-mir-34b 1 23314612

hsa-mir-34c 3 24130071;22047961;21383543

hsa-mir-221 1 18246122;21042732;19962668;251
51966

hsa-mir-182 1 25012722;24600991;23877371;215
03569

hsa-mir-15a 1 25442346;24500260

hsa-mir-27a 1 25128483

hsa-mir-200a 1 23938385; 23708087

hsa-mir-9 3 24356455;24649145;22282464

hsa-mir-17 4

hsa-mir-34c 1 23805317;22370637

hsa-mir-16 1 25435430;23954293

Table 2.  We further prioritize candidate miRNAs based on the scored calculated based on RBMMMDA 
for lung cancer. Among the top 20 prediction list, 90% of them have literature evidences.
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cancer and lung cancer, most of the top 100 multiple types of miRNA-disease associations have been con-
firmed. Therefore it is anticipated that other potential multi-type miRNA-disease associations predicted 
by RBMMMDA could be validated by further biological experiments.

Discussions
Identifying novel miRNA-disease associations and their corresponding association types is vitally impor-
tant goal for biological development, which plays a critical role in the understanding of disease patho-
genesis at the miRNA level. In this paper, we proposed the first computational method, RBMMMDA, to 
predict different types of miRNA-disease associations on a large scale based on known multiple types of 
miRNA-disease associations derived from HMDD. RBMMMDA approach can effectively encode mul-
tiple types of miRNA-disease associations by constructing an RBM model and can effectively predict 
different types of miRNA-disease associations, including genetics, epigenetics, circulating miRNAs and 
miRNA-target interactions, respectively. The performance of RBMMMDA was evaluated by implement-
ing LOOCV on the known experimentally verified multiple types of miRNA-disease associations. The 
AUC score of 0.8606 demonstrated the reliable and effective performance of RBMMMDA. Moreover, 
we implemented case studies of breast cancer and lung cancer for further evaluations, in which fifty and 
forty-two out of top 100 predicted miRNA-disease association types were confirmed by recent biological 
experimental literatures, respectively. More importantly, RBMMMDA was applied to predict multiple 
types of miRNA-disease associations for all the disease simultaneously and forty-five out of top 100 
results were confirmed. All of these show the reliable performance of RBMMMDA. It is anticipated that 
RBMMMDA could be an important and valuable computational tool for miRNA-disease association 
prediction and miRNA biomarker identification for human disease diagnosis, treatment, prognosis and 
prevention.

The reliable performance of RBMMMDA can largely be attributed to the combination of the follow-
ing several factors. Firstly, RBMMMDA takes full advantage of known multiple types of miRNA-disease 
associations obtained from HMDD to implement predictions, which can further help us to under-
standing the molecular basis of diseases in the level of miRNAs under four different association types. 
Secondly, as far as we know, compared with previous methods that could only predict the binary asso-
ciations between miRNAs and diseases, RBMMMDA is the first computational approach for multiple 
types of miRNA-disease association prediction, which can not only predict potential miRNA-disease 

Disease miRNA Type Evidence (PMID)

Breast Neoplasms hsa-let-7i 1 24662829;21826373

Breast Neoplasms hsa-let-7d 1

Prostatic Neoplasms hsa-mir-34c 3

Breast Neoplasms hsa-let-7b 1 21826373;23339187;24264599;22761738

Breast Neoplasms hsa-let-7g 1 21868760

Breast Neoplasms hsa-let-7a 1 24172884

Breast Neoplasms hsa-let-7e 1

Carcinoma, Hepatocellular hsa-mir-34b 3 24704024

Breast Neoplasms hsa-mir-183 2

Stomach Neoplasms hsa-mir-34a 1 24837198

Carcinoma, Hepatocellular hsa-mir-34c 3

Neoplasms hsa-mir-145 1 24999188;24801908; 24690171;24642628

Breast Neoplasms hsa-let-7f 1 22407818;25552929

Breast Neoplasms hsa-mir-193b 1 25550792;25213330;19701247;21512034;1
9684618

Breast Neoplasms hsa-mir-221 2 25009660;22156446

Breast Neoplasms hsa-mir-92a 4

Breast Neoplasms hsa-mir-18a 2 24694649;23705859

Breast Neoplasms hsa-mir-216a 2

Carcinoma, Hepatocellular hsa-mir-34a 3 24704024

Breast Neoplasms hsa-mir-138 1 25339353;20332227;

Table 3.  RBMMMDA is a global ranking method, which could predict potential multiple association 
types of miRNA-disease pairs for all the diseases simultaneously. Therefore, RBMMMDA was further 
applied to simultaneously rank all the candidate miRNA-disease associations. As a result, 13 of top 20 
potential associations have experimental evidences.
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associations, but also their corresponding association types. Finally, RBMMMDA could be applied to 
predict miRNA-disease association types for all diseases simultaneously.

Of course, some limitations also exist in the current version of RBMMMDA. Firstly, how to choose 
the appropriate parameter values in RBMMMDA is not still solved well. Secondly, the current version of 
RBMMMDA only takes advantage of the information of known multiple types of miRNA-disease associ-
ations. In the future, new biological information, such as the disease similarity information and miRNA 
functional similarity, could be also incorporated into our predictive model to further improve the per-
formance of RBMMMDA. Currently, the RBM model only considered the connections between visible 
layer and hidden layer, the connections within the same layers is not allowed, thus how to integrate the 
data of disease similarity and miRNA similarity still require careful consideration. Thirdly, RBMMMDA 
is not applicable to the diseases without any known miRNA-disease association information. Finally, 
RBMMMDA may cause bias to miRNAs with more known associated diseases. In the future, with the 
existence of more available experimental verified multiple types of human miRNA-disease associations, 
the performance of RBMMMDA will further be improved.

Methods
Multiple types of miRNA-disease associations. In this paper, we downloaded the data of miR-
NA-disease associations from HMDD V2.0 (http://www.cuilab.cn/hmdd) constructed by Li et al.44, 
which provide a comprehensive resource of experimentally verified miRNA-disease associations and lays 
an important data fundamental for further miRNA-related computational research. The new version of 
database annotates miRNA-disease associations in more details, including miRNA-disease association 
data from miRNA-target interactions, circulation, epigenetics, and genetics. After getting rid of dupli-
cate associations with the different evidences, we obtained 1680 distinct high-quality experimentally 
confirmed multi-type miRNA-disease associations about 174 diseases, 322 miRNAs and 4 different types 
of associations and used these miRNA-disease associations as training samples. Specifically, the data 
contains 682 miRNA-target interactions, 443 circulation, 199 epigenetics, and 356 genetics, respectively 
(see Supplementary Table 4). To our knowledge, the multiple types of miRNA-disease training samples 
used in this study have been the largest dataset until now. Considering training samples are incomplete 
and no previous computational models have been developed to solve this important problem, predicting 
multiple types of miRNA-disease associations is a difficult challenge. However, it is worth noting that 
RBMMMDA still obtained the reliable predictive performance in both LOOCV (AUC of 0.8606) and 
case studies about lung cancer, breast cancer, and global prediction for all the diseases simultaneously. 
More available associations obtained in the future would further improve the predictive performance of 
RBMMMDA.

RBMMMDA. In this study, we developed the model of Restricted Boltzmann machine for multiple 
types of miRNA-disease association prediction (RBMMMDA) to predict different types of miRNA-disease 
associations (See Fig.  2, motivated by literature by Wang and Zeng58). Based on this model, we could 
obtain not only new miRNA-disease associations, but also their corresponding association types. RBM 
has been successfully applied to many important research fields58,118,119.

As shown in Fig.  2, RBM is a two-layer undirected graphical model consisting of layers of visible 
units and hidden units, respectively. In our RBM model, a visible unit is used to represent a disease. 
Hidden units represent unknown features describing miRNA-disease associations. In visible or hidden 
layer, there is no intra-layer connection. Furthermore, each visible unit is connected to all hidden units.

In the first step in Fig. 2, a simple example is provided to demonstrate how to construct RBMs from a 
multidimensional miRNA-disease interaction network. There are two miRNAs and three diseases which 
are included in this simple miRNA-disease network. Firstly, each miRNA-disease pair is associated with 
four binary variables, which indicates whether this miRNA-disease pair corresponds to this association 
type (i.e. the miRNA-disease associations from the evidences of miRNA-target interactions, circulation, 
epigenetics and genetics, respectively). Then, a particular RBM is constructed for each single miRNA. 
Here, two RBMs are constructed, and each RBM contains three visible units representing three diseases. 
The binary numbers inside rectangles represent the states of visible units to indicate whether a disease 
and a miRNA have a connection under each specific type. RBM model captures the existed multi-type 
connections between disease and miRNA pair in the multidimensional miRNA-disease interaction net-
work to implement further prediction. In this example, we have known miRNA-disease associations for 
miRNA 1. Therefore, three diseases send messages to hidden units and update their states, and then 
the states of hidden units for miRNA 1 are obtained. After that, hidden units send messages again to 
visible units and update their states. Based on this idea, RBM is trained and potential multiple types of 
miRNA-disease associations are obtained.

Training RBM. In an RBM, suppose that in total there are n visible units, m hidden units and t types 
of miRNA-disease associations encoded in a visible unit. v =  (v1, …, vn) and h =  (h1, …, hm) denotes the 
configuration of visible layer and hidden layer, respectively. Then (v, h) is a joint configuration of an 
RBM. In visible layer, the binary indicator vector = ( , …, , …, ), = , …,v v vv i 1 ni i

k
i
t

i
1 , denotes the 

state of i-th visible unit. In hidden layer, hj, j =  1, …, m denotes the state of j-th hidden unit. Let Wij
k be 

http://www.cuilab.cn/hmdd
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the weight between visible variable vi
k and hidden variable hj, and ai

k, bj denote bias weights of visible 
units and hidden units, respectively. To further formulate our RBM model, a binary indicator vector 
r =  (r1, …, rm) is adopted, in which rj =  1 if there exists a known disease-miRNA interaction between the 
input miRNA and the j-th disease, and rj = 0 otherwise. And Dij is a parameter describing the effect of r 
on h.

Then the energy of a joint configuration (v, h) can be defined by

∑∑ ∑ ∑∑∑( , ) = − − −
( )= = = = = =

E a v b h W h vv h
1i

n

k

n

i
k

i
k

j

m

j j
i

n

j

m

k

t

ij
k

j i
k

1 1 1 1 1 1

Then the probability of a joint configuration can be defined by

( , ) = (− ( , )) ( )Z
Ev h v hPr 1 exp 2

where = ∑ (− ( , )),Z E v hv h  is called the normalizing constant or partition function. Then we can get 
the marginal distribution over all visible data v by summing all possible configurations of h.

∑( ) = (− ( , ))
( )Z

Ev v hPr 1 exp
3h

According to equation (3), we can get the probability distribution over input data. In visible layer or 
hidden layer, there is no intra-layer connection, so we can define the following conditional probabilities:

∑( = ) = σ





+





 ( )=

v a W hhPr 1
4

i
k

i
k

j

m

ij
k

j
1

( ) ∑ ∑ ∑= , = σ




+ +




 ( )= = =

h b W v D rv rPr 1
5

j j
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n

k

t

ij
k

i
k

i

m

ij
1 1 1

where σ(x) =  1/(1 +  e−x) is the logistic function.
However, we do not know the values of many parameters, such as Wij

k, ai
k, bj, Dij. Therefore, a 

mean-field version of the Contrastive Divergence (CD) algorithm is adopted here to train RBM and 
obtain the values of various parameters. In the CD algorithm, we use the following procedure in each 

Figure 2. Flowchart of RBMMMDA, demonstrating the basic ideas of predicting multiple types of 
disease-miRNA association in the framework of RBM, which includes the basic there steps: constructing 
RBMs from a disease-miRNA interaction network; training RBM by CD algorithm; implementing 
prediction by computing conditional probabilities. 
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training pass to incrementally adjust the weights and bias to maximize the likelihood of visible data with 
respect to the parameters Wij

k, ai
k, bj and Dij.

∆ = (〈 〉 − 〈 〉 ) ( )W v h v h 6ij
k

i
k

j data i
k

j T

∆ = ( − ) ( )a v v 7i
k

i
k

data i
k

T

∆ = (〈 〉 − 〈 〉 ) ( )b h h 8j j data j T

∆ = (〈 〉 − 〈 〉 ) ( )D h h r 9ij j data j T i

where ε is the learning rate, . data
 denotes an average value over all input data for each update and . T

 
denotes the average value over T mean-field iteration. Based on CD algorithm, the parameters of RBM 
model are obtained. Therefore, we can use this RBM model to implement prediction.

Prediction and Implementation. We can compute the following conditional probabilities after one 
mean-field iteration to predict the unknown interactions between disease and miRNA pair.
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+ +
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Because there is no intra-layer connection between any pair of visible or hidden units, once given the 
input data, we can get the state of hidden units according to equation (10). Then, use equation (11), we 
can get the probability distribution of visible units as our final prediction.

We implemented the whole algorithm in Java, and used the jaRBM package. In order to implement 
the algorithm, we need to initialize some variables. In this study, according to previous successful study 
of applying RBM to potential drug-target interactions prediction58, we set the number of hidden units 
m =  100, learning rate ε =  0.01, and chose Gaussian distribution with standard derivation of 0.1 to ini-
tialize Wij

k, hj, ai
k and Dij. As for other parameters, we used the default values defined in jaRBM 

package.

Webserver of RBMMMDA. In addition, we built a web server which can implements the prediction 
function of RBMMMDA. This web server is freely available at http://42.120.43.172/RBMMMDA/. This 
web server enables the prediction of multiple types of miRNA-disease associations based on RBMMMDA 
method. When visitors choose a specific disease, potential miRNA associated with this disease based on 
various association types would be provided. The final prediction results would be shown in a table, 
where the miRNA name, association type, and potential association probability would be included.
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