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a b s t r a c t

Protein mutations can lead to structural changes that affect protein function and result in disease occur-
rence. In protein engineering, drug design or and optimization industries, mutations are often used to
improve protein stability or to change protein properties while maintaining stability. To provide possible
candidates for novel protein design, several computational tools for predicting protein stability changes
have been developed. Although many prediction tools are available, each tool employs different algo-
rithms and features. This can produce conflicting prediction results that make it difficult for users to
decide upon the correct protein design. Therefore, this study proposes an integrated prediction tool,
iStable 2.0, which integrates 11 sequence-based and structure-based prediction tools by machine learn-
ing and adds protein sequence information as features. Three coding modules are designed for the sys-
tem, an Online Server Module, a Stand-alone Module and a Sequence Coding Module, to improve the
prediction performance of the previous version of the system. The final integrated structure-based clas-
sification model has a higher Matthews correlation coefficient than that of the single prediction tool
(0.708 vs 0.547, respectively), and the Pearson correlation coefficient of the regression model likewise
improves from 0.669 to 0.714. The sequence-based model not only successfully integrates off-the-shelf
predictors but also improves the Matthews correlation coefficient of the best single prediction tool by
at least 0.161, which is better than the individual structure-based prediction tools. In addition, both
the Sequence Coding Module and the Stand-alone Module maintain performance with only a 5% decrease
of the Matthews correlation coefficient when the integrated online tools are unavailable. iStable 2.0 is
available at http://ncblab.nchu.edu.tw/iStable2.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When the amino acid of a protein is changed, it may affect the
structural stability, hydrogen bonding, activity, etc., of the protein
and then may affect protein function and may even cause disease
[1–3]. In protein engineering, drug design, and the optimization
of industrial processes, mutations are often used to increase pro-
tein stability or maintain its stability while altering protein proper-
ties [4–6]. Single amino acid mutation could change the structural
stability of a protein by making a smaller free energy change (DG,
or dG) after folding, while the difference in folding free energy
change between wild type and mutant protein (DDG, or ddG) is
often considered as an impact factor of protein stability changes
[7–9]. Many studies use computer science, mathematics, statistics
and other methods to make predictions [10]. The main methods
are divided into four categories: (a) physical potential, which
investigates molecular dynamics to simulate protein folding trajec-
tories and obtain accurate structures and relative free energy levels
[11,12]; (b) statistical potential, where statistical analysis is per-
formed on the substitutions, occurrences and pairing frequencies
of the 20 amino acid to make predictions from the database of
known protein structures [13–16]; (c) empirical potential, which
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uses physical energy terms, statistical energy terms and structural
descriptors for the difference of free energy [17–19]; and (d)
machine learning methods, such as support vector machine
(SVM), neural network (NN), decision tree, and random forest
(RF) and which are currently used to solve bioinformatics prob-
lems, could be used to make predictions by extensive training of
relevant data in the field [20–23]. The features used with machine
learning in different research fields will be different, but are not
restricted by knowledge of any one particular research field.

Many studies have used machine learning to construct predic-
tion models for the effects of single point mutations on protein sta-
bility. The features used can be mainly divided into two types
based on the prediction methods that employ them: (i)
Sequence-based methods consider point mutations and upstream
and downstream amino acids. Then, the features and physiochem-
ical properties of amino acids, the position-specific scoring matrix
(PSSM) and other features are extracted to construct prediction
models. This type of tool usually takes a protein sequence as input
and include examples such as I-Mutant2.0 [24], MUpro [21],
iPTREE-STAB [25], INPS [26] and EASE-MM [27]; (ii) Structure-
based methods use 3D protein-structure information to extract
features such as secondary structures, chemical composition, and
interatomic interactions. These tools usually take a 3D protein
structure (PDB) as input and include examples such as I-
Mutant2.0, CUPSAT [28], PoPMuSiC [29–31], SDM [32,33], mCSM
[34], MAESTRO [35] and AUTO-MUTE2.0 [36,37]. However, predic-
tion models that use structure-based methods typically perform
better than sequence-based methods.

Each tool performs its predictions with different characteristics
and algorithms, and consequently the respective performances are
also different. The same input may have conflicting results across
different tools, so it would be difficult for the user to decide upon
the correct protein design. If the outputs of the prediction tools are
integrated through machine learning methods, the user is provided
with a higher accuracy prediction than through the use of a single
tool, which may alleviate the user’s potential concerns. Integrated
methods have been successfully applied in other fields, such as in
predicting miRNA binding sites with mirMeta, which integrates
five different tools [38], as well as in predicting protein-protein
interactions [39] and phosphorylation sites [40]. However, there
are only a few integrated tools for predicting protein stability
changes, such as DUET [41], which integrates the prediction tools
mCSM and SDM developed by their own team and only makes
integrated predictions for structural information. iStable [9] can
use sequence or structure information as inputs for prediction
and integrates the results from five prediction tools.

iStable integrates tools developed by different teams to com-
bine a greater number of diverse predicting and feature coding
methods. However, it is difficult to integrate tools from different
sources. The inputs and outputs of the tools don’t have uniform
formats, execution time of prediction tools and operating system
of stand-alone functionality are different. In addition, if the inte-
grated predicting tool provides services through a web server,
our system may encounter unpredictable situations. For example,
if the website interface changes or the web server or Internet
experiences connectivity issues, the prediction results from
Internet-connected tools cannot be obtained, which would affect
the performance of iStable. In terms of the predictive model, it
can be seen from the literature that iStable focuses on training
and testing classification models and comparing the results with
other tools [9]. For regression models, the prediction of ddG is
weak, even without the integration of sequence-based tools. To
improve the above shortcomings, we propose a new system
architecture and classification and regression model; the improved
system is named iStable 2.0.
In this study, we selected 11 prediction tools based on execu-
tion time for integration: the sequence-based tools I-Mutant2.0,
MUpro and iPTREE-STAB and the structure-based tools I-
Mutant2.0, CUPSAT, PoPMuSiC, AUTO-MUTE2.0, SDM, DUET,
mCSM, MAESTRO and SDM2 [33]. The results of the prediction
tools are integrated through a machine learning approach, which
constructs classification and regression models with structure-
based and sequence-based inputs. The system is divided into three
modules: Online Server Module (OSM), Stand-alone Module (SAM),
and Sequence Coding Module (SCM). The Online Server Module is
responsible for obtaining the results of the prediction tools from
a web server. The Stand-alone Module is responsible for sending
commands and obtaining the results from stand-alone prediction
tools. The Sequence Coding Module is responsible for extracting
features from protein sequences and performing encoding. With
three module integration, iStable 2.0 can improve the MCC (Mat-
thews correlation coefficient) of single structure-based prediction
tools from 0.547 to 0.708, and the PCC (Pearson correlation coeffi-
cient) of the regression model can be increased from 0.669 to
0.714. The MCC of the sequence-based classification model was
0.652, and the regression model PCC was 0.695, which are better
than those of the individual structure-based prediction tools.
Without the Internet-dependent OSM, the MCC calculated from
use of only the SAM and SCM models drops to only 5% of that from
the operation of the three modules. From the feature analysis, it is
found that the importance of SCM is increased without OSM.
Therefore, iStable 2.0 provides predictions with stable perfor-
mance. The iStable 2.0 web server is freely available at http://
ncblab.nchu.edu.tw/iStable2.

2. Materials and methods

We propose the system architecture shown in Fig. 1. These fea-
tures were obtained from the predicted results of the integrated
tools when they were input the information about the protein
mutation point. The system provides two types of models, one that
uses protein structure as the input and the other that uses protein
sequences, constructs binary classification models that predict sta-
bility and instability after mutation, and uses regression models to
predict ddG after mutation.

2.1. Compilation of single-mutation datasets

The training data set was obtained from I-Mutant [24] and PoP-
MuSiC [30]; I-Mutant contained 1948 mutation sites in 58 pro-
teins, and PoPMuSiC contained 2648 mutation sites in 131
proteins. The combined dataset contained a total of 4596 single
point mutations, which had been obtained as experimental results
in protein stability change experiments with environmental condi-
tions such as pH and temperature. To evaluate the performance of
the prediction model and compare it with other methods, we pre-
pared an independent test set from data obtained from ProTherm
(thermodynamic database for proteins and mutants, last updated
in 2013) [42], containing 2869 single point mutations in 81 pro-
teins. Each single point mutation from I-Mutant, PoPMuSiC, and
ProTherm has five types of information: 1) protein data bank
(PDB) ID, which contains 3D structure information for proteins,
2) the site of the mutation position and residue with the native
and mutant proteins, 3) the temperature used in the experiment,
4) the pH used in the experiment, and 5) the free energy change
between the wild-type and mutant protein (DDG, or ddG). All
the data with the same information from type 1 to type 5 is defined
redundancy, and which is defined contradiction with the same
information from type 1 to type4. However, the training and inde-
pendent test data had redundant and contradictory data that could
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Fig. 1. System architecture.
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have led to biases in training and evaluation. After removing the
contradictory and redundant data, the training data set contained
3568 mutations and was named S3568. The independent test data
set ultimately contained 1372 mutations. To prevent the model
from learning with the independent test samples in the training
stage, we removed data from the independent test set that was
found in the training test set. Finally, 630 mutations remained,
and the resulting independent test set was named S630.
2.1.1. Definitions of positive and negative data
To construct the classification model, we defined stabilizing

data with a ddG value �0 as positive (+) and destabilizing data
with a ddG value less than 0 as negative (�). Because PopMuSiC’s
data used the opposite definition to the above, we inverted the
signs of the ddG values for its 2648 mutation sites.
2.1.2. Correction of sequence information
Because the position of the mutation point is derived from the

absolute position of the PDB, the prediction tools that use the
sequence as input will produce errors. Therefore, we corrected
the position of the mutation site with the relative position such
that the first amino acid of the sequence obtained from PDB was
defined as position 1.
2.2. Selection strategy for integration of prediction tools

We chose single mutation-point protein predicting tools and an
execution time of less than 5 min for integration. If the tool has
web server and stand-alone functionality, we may prioritize inte-
gration of the stand-alone functionality. Table S1 lists the predic-
tion tools published between 2005 and 2018. This study
integrated I-Mutant2.0, MUpro, and iPTREE-STAB to construct the
protein sequence-based prediction model, and the additional9 pre-
diction tools, including I-Mutant2.0, CUPSAT, PoPMuSiC, AUTO-
MUTE2.0, SDM, DUET, mCSM, MAESTRO and SDM2, were used to
construct the structure-based prediction model. INPS, EASE-MM,
ELASPIC [43], TopologyNet [44], TML [45], and DynaMut [46] were
also investigated, but each required between five minutes and sev-
eral hours of execution time, so they were not included in the
integration.
2.3. Feature encoding

This study divides feature encoding into two types: prediction
tool results and protein sequence information. The prediction tool
results refer to the encoding of the output of the 11 prediction tools
as a vector of features. The protein sequence information contains
the amino acid composition surrounding the mutation site and the
physicochemical properties and secondary structure of the protein.
The integrated prediction tools already contain the relevant fea-
tures for using protein sequence information; however, to main-
tain our prediction tool reliability when the integrated online
tools are not available, the protein sequence information would
still be needed in order to ensure prediction performance.

2.3.1. Predictor result features
We encoded the results of the prediction tools that were inte-

grated into the system. The encoding method for nondigital values
is shown below. A decrease of free energy change (ddG) in the
value is encoded as 0, and an increase of free energy change
(ddG) is encoded as 1. Other numerical values, such as ddG, predic-
tive confidence score and RSA (relative surface accessibility), are
used directly. The details of the features for each prediction tool
are shown in Tables S2 and S3.

2.3.2. Sequence coding features
Four types of features were extracted from the protein

sequence, including concerning the mutation point and the 9
amino acids up- and downstream of the site. Because no direct
structural information for the protein sequences were available,
we obtained the predicted surface accessibility and secondary
structure through NetSurfP [47].

2.3.2.1. Amino acid coding (AAC). We use one-hot encoding to rep-
resent the 20 amino acids as one 20-dimensional vector each,
and gaps are represented as a 20-zero value vector. The encoding
is shown in Table S4. We encoded the mutant and wild-type amino
acids and the 9 upstream and downstream amino acids in this
manner.

2.3.2.2. Physicochemical and biochemical properties (PBP). We
encoded the physicochemical and biochemical properties of the
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amino acids using the scheme proposed by William et al. [48] and
Mathura et al. [49] for a total of 10 properties: Polarity, Secondary
structure, Molecular size or volume, Codon diversity, Electrostatic
charge, Hydrophobicity, Side chain length, a-helix propensity,
Number of codons, and b-strand propensity. The detailed values
of this encoding are shown in Tables S5 and S6. An amino acid is
represented by 10 values, and we encoded the mutant and wild-
type amino acids and the 9 upstream and downstream amino acids
in this manner. We also calculated the numerical differences
between the attributes of the wild-type and mutant amino acids.

2.3.2.3. Surface accessibility (SA). Solvent accessibility is related to
the spatial arrangement of the amino acids during the process of
protein folding [50]. It has proven useful for protein–protein inter-
actions, fold recognition [51], intrinsic disorder [52], DNA-binding
protein prediction [53], protein-ligand binding sites prediction
[54,55] and so on. We encoded Buried as 00001 and Exposed as
00100; we also encoded the values of the relative surface
accessibility (RSA), the absolute surface accessibility (ASA), and
the Z-score for the elative surface accessibility and calculated the
frequencies of Buried and Exposed in the protein sequence.
Information on the wild-type amino acids and the 9 upstream
and downstream amino acids was encoded in this manner.

2.3.2.4. Secondary structure (SS). From NetSurfP, the probability of
the amino acid being in an a-helix, b-strand or Coil were obtained.
We used the one-hot encoding method to encode the highest value
among the three to the structure: H (a-helix) was encoded to 010,
S (b-strand) was encoded to 100, and C (Coil) was encoded to 001.
Next, we calculated the frequency of the three secondary struc-
tures in the entire protein. The wild-type amino acids and the 9
amino acids up- and downstream were encoded in manner.

2.4. Model generation

According to the input protein information, we divided the pre-
diction model into a structure-based model and a sequence-based
model and constructed classification and regression models for
each. The structure-based model only integrates the tools that
use protein sequences and structures as input. The sequence-
based model only integrates the tools that use protein sequences
as input. Both models use our prepared sequence features. We
used Weka [56] and XGBoost [57] to construct the classification
and regression models and the training S3568 data with 10-fold
cross-validation to determine the best parameters for the training
model. Finally, we used the independent test data S630 to compare
the results with the different tools.

2.5. Model evaluation

Correct predictions of positive and negative data have different
meanings because the effects of mutations are not always detri-
mental to protein function. One of the purposes of predicting pro-
tein stability changes is to identify the mechanisms of structural
stability change upon single amino acid mutation; another goal is
to apply this knowledge to protein design to modify proteins into
more stable and thermal-tolerant forms. Since it is equally impor-
tant to understand the mechanisms underlying stabilizing and
destabilizing mutations, we expect an integrated predictor to
make correct predictions in both cases. Since the minority result
could be the right answer, we want to prove that iStable 2.0, with
training, would know right from wrong and not just pick the
majority answer. Accuracy (Acc), sensitivity (Sn), specificity (Sp),
and the Matthews correlation coefficient (MCC) were used to
evaluate the predictive ability of each system, calculated as
follows:
Acc ¼ TP þ TN
TP þ FP þ TN þ FN

Sp ¼ TN
TP þ FN

Sn ¼ TP
TP þ FN

and

MCC ¼ TP � TNð Þ � FN � FPð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

where TP, FP, FN and TN are the true positives, false positives, false
negatives, and true negatives, respectively. Sn and Sp represent the
ratio of true positives to the number of all correctly classified items
and of true negatives to the number of all incorrectly classified
items, respectively. Acc is the overall accuracy of prediction, and
the MCC is a measure of the quality of the classifications, whose
value may range between �1 (an inverse prediction) and +1 (a per-
fect prediction), with 0 denoting a random prediction [9].

2.6. Description of system modules

As shown in Fig. 1, the process of transferring the input infor-
mation to the structure-based model and sequence-based model
is divided among three modules: Online Server Module (OSM),
Sequence Coding Module (SCM), and Stand-alone Module (SAM).
Online Server Module (OSM): This module handles prediction
tools that operate using web server functionality and have an exe-
cution time of no >5 min. The prediction tools CUPSAT, PoPMuSiC,
SDM, DUET, mCSM, SDM2, MUpro and iPTREE-STAB are classified
into this module. Stand-alone Module (SAM): This module han-
dles stand-alone prediction tools, that is, those that do not require
web access. The prediction tools in this group are AUTO-MUTE2.0,
MAESTRO and I-Mutant2.0. Sequence Coding Module (SCM): This
module handles protein sequence coding, including one-hot
encoding of the amino acids and the physicochemical and
biochemical properties of the amino acids and of the secondary
structure and solvent accessibility information from NetSurfP.
Stand-alone Module & Sequence Coding Module: The Online
Server Module depends on the Internet; the servers linked to the
tools in the OSM are required for their operation. If the OSM
module fails due to a lack of Internet access, the system’s perfor-
mance will be affected. This study solves this problem through
the SAM and the SCM. The two modules will work on if the OSM
module is not functioning.
3. Results and discussion

3.1. Performance of machine learning algorithms in the training set

To select the appropriate algorithm for predicting sequence and
structure point mutations, we used the S3568 training data to eval-
uate the performance of 85 classifiers and 39 regression methods
with 10-fold cross-validation. Tables S8 and S9 show the top 10
methods sorted by performance. XGBoost is the best performing
method in the structure-based classification model, with an Sn of
0.758, an Sp of 0.964, an Acc of 0.908 and anMCC of 0.758. XGBoost
is also the best performing method in the sequence-based classifi-
cation model, with an Sn of 0.670, an Sp of 0.953, an Acc of 0.877,
and an MCC of 0.672, which. The PCC of XGBoost reached 0.864 and
0.818, having the best performance in the structure-based and
sequence-based regression models, respectively. Finally, we con-
structed four prediction models with the XGBoost algorithm.
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3.2. Training set performance

3.2.1. Evaluation of the structure-based classification model
Table 1 shows the performance of iStable2.0_PDB and the inte-

grated structure-based tools in training data S3568. iStable2.0_PDB
has an MCC of 0.758 on training set S3568, outperforming all other
integrated prediction tools. A ranking of feature importance
(Table S9) shows that AUTO-TUTE2.0_RF/TR, which have the best
performance with S3568, rank third and fourth. The performance
of MAESTRO in the S3568 data set ranks 11th among the 14 meth-
ods; however, it is ranked first and second in terms of feature
importance. Therefore, we nevertheless chose to integrate tools
that had low performance because the performance could be com-
plemented through machine learning. The three sequence-based
tools, I-Mutant2.0_SEQ, iPTREE-STAB and MUpro, are also no less
important than the structure-based tools.

3.2.2. Evaluation of the sequence-based classification model
Table 1 shows the performance of iStable2.0_SEQ and the inte-

grated sequence-based tools in training data S3568. The integra-
tion of iStable2.0_SEQ results in greater values of Sn and Sp
compared to those obtained from integrating iPTREE-STAB, I-
Mutant2.0_SEQ and MUpro. From the feature importance rankings
shown in Table S10, it can be seen that the importance of ddG from
tools I-Mutant2.0_SEQ and iPTREE-STAB rank third and fourth,
respectively. It is worth mentioning that ddG has a higher impor-
tance in the classification model, and the difference in the physic-
ochemical properties of the wild-type and mutant amino acids is of
great importance.

3.2.3. Evaluation of structure-based regression model
Table 1 also shows the performance of the structure-based

regression models in training data S3568. The maximum PCC of
AUTO-MUTE2.0_TR is 0.725 with S3568, while integration of iSta-
ble2.0_PDB in the regression model results in a PCC of 0.864, a dif-
ference of 0.139. The ddG from tools iPTREE-STAB, MAESTRO, DUET
and mCSM is shown in Table S11 to be of high importance when
iStable2.0_PDB is integrated in the regression model; these tools
were not integrated in the previous version of iStable and may
be used to improve prediction performance.

3.2.4. Evaluation of the sequence-based regression model
As shown in Table 1, iStable2.0_SEQ_Regression has a PCC of

0.820 with S3568, which is better than the PCC of 0.625 with I-
Mutant2.0_SEQ. In Table S12, I-Mutant2.0_SEQ and the ddG of
iPTREE-STAB rank first and second in terms of feature importance.
Table 1
Performance of the classifier and regression models with structure-based and sequence-b

Model Method Classification

Sn

Structure-based iStable2.0_PDB 0.758
DUET 0.499
SDM 0.566
SDM2 0.562
mCSM 0.298
CUPSAT 0.513
I-Mutant2.0_PDB 0.650
PoPMuSiC 0.333
AUTO-MUTE2.0_SVM 0.802
AUTO-MUTE2.0_RF/TR 0.604
MAESTRO 0.457

Sequence-based iStable2.0_SEQ 0.670
iPTREE-STAB 0.537
I-Mutant2.0_SEQ 0.565
MUpro_SVM 0.599
MUpro_NN 0.536
In addition, the difference in the hydrophobicity property of the
wild-type and mutant amino acids is also an important feature.

3.3. Performance of the classification model with and without the OSM
module

The performance of the prediction models with and
without the features of the OSM module is shown in Table 2.
iStable2.0_PBD_SASC’s MCC is 0.747 with the training data set,
which is higher than the MCC of the best integrated tool,
AUTO-TUTE2.0_RF (0.676). The difference in the MCCs of
iStable2.0_PBD_SASC and iStable2.0_PBD was 0.011 when the
model was trained in S3568 and 0.019 when the model was tested
with S630. iStable2.0_PBD_SASC’s MCC is 0.689 with independence
test set. The sequence classification model, iStable2.0_SEQ_SASC,
has an MCC of 0.625 with training set S3568 and 0.603 with
independent test set S630. The difference in the MCCs between
iStable2.0_SEQ_SASC and iStable2.0_SEQ with training set S3568
is 0.047, and the MCC of iStable2.0_SEQ_SASC is reduced by
0.049 with independent test S630. In Figs. S1 and S2, the SCMmod-
ule with iStable2.0_PBD uses 400 of the 883 features, and the SCM
module iStable2.0_PBD_SASC uses 442. The feature with the great-
est increase is AAC feature, while the MCC is only reduced by 0.011.
From Table S17, there are 883 features in the SCM module with
iStable2.0_SEQ. iStable2.0_SEQ uses 508 features, and the number
of features used in iStable2.0_SEQ_SASC is increased to 638, most
of which are AAC features. In addition, iStable2.0_SEQ only
integrates i-Mutant2.0_SEQ, but it can nevertheless maintain
accuracy. Table S15 shows the feature importance ranking for fea-
tures with an f-score >100. The number of important features of
iStable2.0_SEQ_SASC is greater than that of iStable2.0_SEQ.

3.4. Performance of the regression model with and without the OSM
module

As shown in Table 3, the PCC of iStable2.0_PDB_Regression_SA
SC is only reduced by 0.05 (the PCC of iStable2.0_PDB_Regression
is 0.714) when only integrating AUTO-MUTE2.0, I-Mutant2.0 and
MAESTRO with S630. The PCC of iStable2.0_SEQ_Regression_SASC
decreased by 0.044 (the PCC of iStable2.0_SEQ_Regression is
0.695) without iPTREE-STAB and MUpro. Tables S15 and S16 show
that predicting ddG based on sequence or structure is a more dif-
ficult problem, so the number of important features required will
been increasing when OSM module does not work. In addition,
Figs. S3 and S4 shows that iStable2.0_PDB_Regression uses 461 of
the 883 features in the SCM module, while iStable2.0_PDB_Regres
ased tools with S3568.

Regression

Sp Acc MCC PCC

0.964 0.908 0.758 0.864
0.891 0.787 0.421 0.655
0.748 0.700 0.293 0.474
0.744 0.696 0.286 0.485
0.955 0.781 0.354 0.638
0.798 0.723 0.305 0.188
0.922 0.850 0.601 0.689
0.936 0.776 0.347 0.626
0.848 0.840 0.560 0.716
0.979 0.879 0.676 0.725
0.850 0.746 0.322 0.566
0.953 0.877 0.672 0.820
0.945 0.837 0.550 0.484
0.919 0.825 0.525 0.625
0.906 0.825 0.531 –
0.924 0.821 0.509 –



Table 2
Impact evaluation of OSM for prediction performance from the classification model.

Model Method S3568 S630

Sn Sp Acc MCC Sn Sp Acc MCC

Structure-based iStable2.0_PDB 0.758 0.964 0.908 0.758 0.718 0.953 0.892 0.708
iStable2.0_PBD_SASC* 0.740 0.964 0.904 0.747 0.687 0.955 0.886 0.689

Sequence-based iStable2.0_SEQ 0.670 0.953 0.877 0.672 0.644 0.953 0.873 0.652
iStable2.0_SEQ_SASC* 0.640 0.941 0.861 0.625 0.620 0.938 0.856 0.603

* SASC: indicate the models used SAM and SCM only.

Table 3
Impact evaluation of OSM for prediction performance from the regression model.

Model Method S3568 S630
PCC PCC

Structure-based iStable2.0_PDB_Regression 0.864 0.714
iStable2.0_PDB_Regression_SASC* 0.861 0.709

Sequence-based iStable2.0_SEQ_Regression 0.820 0.695
iStable2.0_SEQ_Regression_SASC* 0.821 0.651

* SASC: indicate the models used SAM and SCM only.
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sion_SASC uses 647. Table S17 shows that iStable2.0_SEQ_Regres-
sion uses 452 of the 883 features in the SCM, while the number of
features used by iStable2.0_SEQ_Regression_SASC has increased to
618.

3.5. Independent test performance

Table 4 shows the comparison of the performance of the iStable
2.0 classification model with that of the individual methods with
independent test S630. The performance of iStable based on each
integration tool has prediction results if some of the tools absent
could decrease iStable performance. The results for SDM and
mCSMwere obtained from DUET. The highest Sn for predicting sta-
bility after a mutation is obtained with SDM (0.620) among the
individual integrated tools, which can be improved to 0.718
through integration. S630 is an imbalanced data set containing
143 stable and 467 unstable data, so we used the MCC since it
could objectively evaluate performance, unlike the ACC. The accu-
racy of iStable 2.0 based on the integrated strategy is better than
that of I-Mutant2.0_PDB, which has the highest accuracy among
Table 4
Performance of classifiers and regression with structure-based and sequence-based mode

Model Tool Classification

Sn

Structure-based iStable2.0_PDB 0.718
iStable_PDB 0.744
DUET 0.405
SDM 0.620
SDM2 0.497
mCSM 0.239
CUPSAT 0.442
I-Mutant2.0_PDB 0.571
PoPMuSiC 0.344
AUTO-MUTE2.0_SVM 0.245
AUTO-MUTE2.0_RF/TR 0.350
MAESTRO 0.417

Sequence-based iStable2.0_SEQ 0.644
iStable_SEQ 0.702
iPTREE-STAB 0.350
I-Mutant2.0_SEQ 0.509
MUpro_SVM 0.264
MUpro_NN 0.245
EASE-MM 0.693
INPS 0.472
the single method tools. The MCC of the former and latter are
0.708 and 0.547, respectively; meanwhile, if the number of positive
and negative voting meets even, then the prediction result is set to
stable, Majority Voting only can reach a MCC of 0.493 (Table S18).
In addition, we compared the performance of the previous version
with that of the current version and the MCC increased by 0.068.
Among the sequence-based tools, the best MCC is obtained with
I-Mutant2.0_SEQ (0.491). After integration in iStable 2.0, the MCC
increases to 0.652, which is also superior to the performances of
the unconsolidated tools, such as EASE-MM and INPS.

The best PCC for predicting ddG among the structure-based
regression models is 0.669 for I-Mutant2.0_PDB. The PCC of iStable
2.0 increased by 0.045 to 0.714, which was also 0.049 higher than
the previous version. Among the sequence-based tools, the best
PCC is obtained with I-Mutant2.0_SEQ (0.546). After integration
in iStable 2.0, the PCC increases to 0.695, which is also superior
to those of the unconsolidated tools, such as EASE-MM and INPS.
3.6. Performance of different thresholds

To explore the feasibility of the regression prediction, which is
replaced by the classification model, we converted the predicted
ddG value into a binary classification of stable or unstable and
compared the resulting accuracy with the results from the classifi-
cation model. The conversion rules are as follows. We defined the
prediction result as stable when ddGpred = threshold and as unsta-
ble when ddGpred < threshold, where threshold = {�0.5, �0.1, 0, 0.1,
0.5}. Table 5 shows the performance of the regression model con-
version and that of the classification for the five thresholds. Using
the threshold converts the structure-based and sequence-based
ls with S630.

Regression

Sp Acc MCC PCC

0.953 0.892 0.708 0.714
0.901 0.860 0.640 0.665
0.906 0.776 0.358 0.458
0.392 0.451 0.010 0.349
0.771 0.700 0.256 0.352
0.953 0.768 0.285 0.447
0.82 0.722 0.266 0.274
0.929 0.837 0.547 0.669
0.901 0.757 0.291 0.424
0.981 0.790 0.370 0.520
0.981 0.817 0.473 0.534
0.807 0.706 0.227 0.329
0.953 0.873 0.652 0.695
0.903 0.849 0.611 –
0.970 0.810 0.443 0.496
0.927 0.819 0.491 0.546
0.923 0.752 0.247 –
0.934 0.756 0.248 –
0.732 0.722 0.384 0.541
0.857 0.757 0.343 0.449



Table 6
Evaluation of prediction results with data from pH-temperature ranges by accuracy.

pH 56 6 ~ 8 >8

Temperature (�C) 537 37 ~ 65 >65 537 37 ~ 65 >65 537 37 ~ 65 >65

iStable2.0_PDB 0.857 0.870 1.000 0.936 0.837 0.929 0.556 1.000 1.000
iStable_PDB 0.898 0.844 1.000 0.900 0.741 0.571 0.722 0.800 1.000
DUET 0.755 0.766 1.000 0.829 0.660 0.714 0.667 0.900 0.000
SDM 0.367 0.636 0.969 0.819 0.558 0.500 0.500 0.800 1.000
SDM2 0.673 0.662 0.938 0.758 0.605 0.500 0.500 0.800 0.500
mCSM 0.694 0.779 1.000 0.833 0.626 0.786 0.722 0.800 0.000
CUPSAT 0.796 0.857 0.969 0.740 0.619 0.571 0.278 0.700 0.000
I-Mutant2.0_PDB 0.837 0.909 1.000 0.890 0.748 0.714 0.278 0.900 0.000
PoPMuSiC 0.694 0.740 1.000 0.822 0.653 0.643 0.611 0.700 0.000
AUTO-MUTE2.0_SVM 0.714 0.818 1.000 0.904 0.639 0.643 0.278 0.600 0.000
AUTO-MUTE2.0_RF 0.878 0.870 1.000 0.911 0.653 0.714 0.278 0.600 0.000
MAESTRO 0.714 0.753 1.000 0.694 0.694 0.643 0.278 0.800 0.500
iStable2.0_SEQ 0.878 0.844 1.000 0.911 0.830 0.857 0.500 0.900 1.000
iStable_SEQ 0.878 0.857 1.000 0.922 0.769 0.500 0.722 0.900 1.000
iPTREE-STAB 0.755 0.844 1.000 0.872 0.667 0.786 0.722 0.900 0.000
I-Mutant2.0_SEQ 0.796 0.896 1.000 0.865 0.741 0.571 0.333 1.000 0.000
MUpro_SVM 0.714 0.727 0.969 0.883 0.585 0.571 0.278 0.500 0.000
MUpro_NN 0.714 0.753 0.969 0.883 0.585 0.500 0.278 0.600 0.000
EASE-MM 0.816 0.766 1.000 0.687 0.701 0.571 0.556 0.900 0.500
INPS 0.776 0.597 0.844 0.808 0.755 0.643 0.500 0.800 1.000

Table 5
Comparison of the performance of models with different thresholds tested with S630.

Model Method Sn Sp Acc MCC

Structure-based iStable2.0_PDB 0.718 0.953 0.892 0.708
Threshold: 0.5 0.451 0.960 0.894 0.475
Threshold: 0.1 0.601 0.953 0.876 0.613
Threshold: 0 0.577 0.949 0.852 0.590
Threshold:�0.1 0.608 0.932 0.841 0.585
Threshold: �0.5 0.684 0.887 0.802 0.590

Sequence-based iStable2.0_PDB 0.644 0.953 0.873 0.652
Threshold: 0.5 0.476 0.951 0.889 0.468
Threshold: 0.1 0.601 0.945 0.870 0.595
Threshold: 0 0.613 0.942 0.857 0.607
Threshold: �0.1 0.593 0.929 0.832 0.569
Threshold:�0.5 0.609 0.898 0.776 0.539
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regression models to classification models, which biases the per-
formance for the prediction results. The Sp is highest when the
threshold value is set to 0.5, and the highest Sn is obtained with
the threshold set to �0.5. The balanced performance with
structure-based and sequence-based regression model at threshold
of zero, but their MCC of regression model with thresholds at zero
are not superior to the classification model. Therefore, the classifier
model is more accurate than the regression model in solving clas-
sification problem, and so the final classification model is used in
our prediction system, and the performance of ROC curve was
shown in Fig. S5.

3.7. Performance under different experimental conditions

Most of the prediction tools do not allow input for temperature
and pH. To objectively evaluate the performance of the tools, we
observed their accuracies at various temperatures and pH ranges
with the S630 independent test set. Table 6 shows the performance
of all the tools for nine evaluation items [9], where most of the
mutation data in the training set are in the range of pH 6 ~ 8 and
temperature 5 37 �C. The structural classification model of iStable
2.0 has higher accuracy than the individual tools for the three tem-
perature intervals at pH 6 ~ 8. In addition, the performance of
iStable 2.0 is greatly improved compared to the previous version
of iStable in the 37 ~ 65 and >65 temperature intervals at pH 6 ~ 8.
4. Conclusion

iStable 2.0 successfully integrates sequence- and structure-
based tools to improve the predictive performance of protein sta-
bility changes, which compare to various machine learning meth-
ods and prediction tools. In the evaluations of the training and
test sets, it was found that these tools provide predicted results
of protein stability using predicted ddG values and have high PCC
and low MCC performance. According to our experimental results
obtained from converting regression to classification, we found
that training of both regression and classification models was nec-
essary. In addition, there are some issues which should be consid-
ered when we adopt an integrated approach: 1) different input and
output formats from different tools, 2) how to determine which
tools should be integrated, 3) how to improve the performance
of the integrated system, and 4) how to maintain system perfor-
mance when the integration system fails. Majority Voting is a sim-
ple and intuitive integration method; this strategy is often used by
biologists for many prediction tools. However, the predicted per-
formance of iStable 2.0 using machine learning integration is better
than the Majority Voting method because majority vote cannot
consider the confidence score in the prediction results from differ-
ent prediction tools. Our integration strategy only considers the
execution time of the integrated tools but not the performance in
order to complete the prediction of the integration calculation
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within a limited time, and from the feature analysis, the integra-
tion tools with low performance also provide contribution to the
model. We additionally trained models that relied on the Stand-
alone Module (SAM) and Sequence Coding Module (SCM). The inte-
grated tools that cannot grasp the computing status are divided
into an Online Server Module (OSM) so when access cannot be
obtained by the integrated tools, the system performance will
depend on SAM and SCM. iStable 2.0 is more effective at predicting
point mutations between pH 6 ~ 8 than any integrated tools. How-
ever, each tool has its own advantages, such as a certain tempera-
ture, pH range, or protein type. Determining how to integrate the
strengths of each tool into a model to enhance the performance
will be a further improvement.
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