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Introduction

Musculoskeletal disorders are one of the most 
common human health problems, which greatly 
affect patients’ quality of life.1 Due to the increase 
in global aging, musculoskeletal disorders have 
attracted much attention. As one of the most 
commonly-used medical devices for treatment 
of bone-related diseases, biomaterials play an 
irreplaceable role in their treatment. To date, 
metal implants, represented by titanium and 
stainless steel, have been widely used in the clinic.2 
These implants have good biocompatibility and 
mechanical properties and meet the clinical 
needs, but they still have certain limitations 
such as stress shielding, which can impair the 
bone repair process, especially in patients with 
osteoporosis.3 In addition, due to the non-

biodegradable nature of these implants, a second 
operation is often required to remove them in 
order to avoid adverse effects caused by the long-
term presence of the implants, which creates an 
unnecessary burden on patients. Therefore, the 
development of new biodegradable implants that 
can overcome the above problems is a promising 
direction in the field of bone tissue engineering.

As a newly-developed orthopaedic material, 
biodegradable polymers have received a lot of 
attention. For example, implants made from 
polylactide, polyglycolide and co-polymers are 
degradable and have mechanical properties close 
to those of cancellous bone. Some biodegradable 
polymers have been approved by the U.S. Food 
and Drug Administration for use in orthopaedic 
applications.4, 5 However, due to their inadequate 
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As a new generation of medical metal materials, degradable magnesium-

based materials have excellent mechanical properties and osteogenic 

promoting ability, making them promising materials for the treatment 

of refractory bone diseases. Animal models can be used to understand 

and evaluate the performance of materials in complex physiological 

environments, providing relevant data for preclinical evaluation of implants 

and laying the foundation for subsequent clinical studies. To date, many 

researchers have studied the biocompatibility, degradability and osteogenesis 

of magnesium-based materials, but there is a lack of review regarding the 

effects of magnesium-based materials in vivo. In view of the growing interest 

in these materials, this review briefly describes the properties of magnesium-

based materials and focuses on the safety and efficacy of magnesium-based 

materials in vivo. Various animal models including rats, rabbits, dogs and 

pigs are covered to better understand and evaluate the progress and future 

of magnesium-based materials. This literature analysis reveals that the 

magnesium-based materials have good biocompatibility and osteogenic 

activity, thus causing no adverse reaction around the implants in vivo, and 

that they exhibit a beneficial effect in the process of bone repair. In addition, 

the degradation rate in vivo can also be improved by means of alloying and 

coating. These encouraging results show a promising future for the use of 

magnesium-based materials in musculoskeletal disorders.
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mechanical properties, polymer products have the risk of 
surgical failure and are limited to non-weight-bearing parts.4, 6  
By-products produced during the degradation process can 
affect the local microenvironment and induce inflammatory 
responses, which can restrict the resulting bone regeneration.7 
According to a previous report, complete degradation of 
polymer products does not promote bone ingrowth.8

Although biodegradable polymers have been widely used in 
orthopaedics, their deficiencies limit their use in refractory 
diseases such as osteoporotic fractures, atypical femoral 
fractures, and other fractures. Therefore, there is still a need 
to find biodegradable implants that can overcome these 
problems.9, 10 Magnesium (Mg) is one of the common elements 

found in nature and is abundant in the human body. At present, 
the development of biomaterials based on Mg has attracted the 
attention of researchers (Figure 1).11-21 Mg-based implants are 
biodegradable materials with good biocompatibility which are 
far less likely to induce adverse reactions after implantation.22 
Mg has an excellent Young’s modulus, which is close to that 
of natural cortical bone, thus avoiding stress-shielding.23 
Evidence has shown that Mg released during the degradation 
process promotes bone repair and accelerates bone healing in a 
number of ways, so it has a greater advantage in the treatment 
of refractory bone diseases compared to other degradable 
implants.24, 25 Mg-based implants may be able to address the 
shortcomings of current commercially-available orthopaedic 
implants.

1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; 
2Department of Clinical Medicine, Hubei Enshi College, Enshi, Hubei Province, China

Figure 1. Some representative magnesium-based implants. Adapted from Farraro et al.11-21 

Although Mg-based implants have shown great potential 
in the treatment of musculoskeletal diseases, there are still 
problems that need to be addressed. After implantation, Mg-
based implants exhibit high corrosion sensitivity and non-
uniform corrosion behaviour due to the presence of stress 
and a large number of chloride ions in the physiological 
environment.26 Excessive degradation of the materials will 
release too many ions and excess hydrogen, which will affect 
the local microenvironment of the implants and cause gas cavity 
formation.27, 28 In addition, degradation after implantation can 
also impair the mechanical properties, increasing the risk of 
losing fixation before fracture healing.29 Therefore, in order to 
study the effects of Mg-based implants in vivo, it is necessary 

to investigate the safety and efficacy of these implants in small 
and large animal models.

Animal studies of Mg-based implants can provide relevant 
data for preclinical evaluation of the implants and lay the 
foundation for subsequent clinical studies. To date, many 
studies have evaluated the biocompatibility, degradability 
and osteogenic properties of Mg-based implants in vivo.30-35 A 
number of factors need to be considered in selecting a specific 
animal as an experimental model, including animal availability; 
selection of an animal model that exhibits pathophysiological 
characteristics similar to humans; the size of the implants, 
the number of implants in each animal, and the time for 
observation; the operability of the surgery and the difficulty 
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of obtaining the observation indices.36, 37 The purpose of this 
article is to review the current published studies on Mg-
based implants in vivo to evaluate the safety and efficacy of 
Mg-based implants. We searched the Web of Science® and 
PubMed® databases using the following keywords: bone; bone 
regeneration; magnesium; magnesium alloy; pure magnesium; 
in vivo; animal model; cardiovascular diseases. Searches were 
performed with different combinations of keywords to obtain 
more results. Some of the results were excluded based on the 
title, and then the articles were further screened by reading 
the abstract, and the articles that did not meet the inclusion 
criterion (animal models used for Mg-based materials research) 
were removed. All these searches were performed on PubMed, 
and Web of Science databases prior to August, 2021.

Magnesium Homeostasis and Its Effects In Vivo

Mg, an essential ion in the human body, is the second most 
abundant cation in mammalian cells, second only to potassium.38 
Mg plays an important role in supporting and maintaining 
health and life and is essential in many physiological processes, 
including enzymatic reactions, cell signal transduction, ion 

channel function, cell metabolism and biomolecular stability.39, 40  
Mg homeostasis is a basic requirement for cell growth, 
differentiation, energy metabolism and cell death, especially 
in the brain, heart and skeletal muscle.41 In addition, Mg 
supplements have been shown to be beneficial for bone repair, 
coronary heart disease and asthma. Maintaining Mg ion 
concentrations within an optimal range is therefore critical for 
normal cell function and disease prevention.41

Magnesium homeostasis in vivo

The total Mg content in a healthy adult weighing 70 kg is 
about 24 g, and 99% of the body’s Mg is found in bone, muscle 
and soft tissue.42, 43 Most of the Mg in bone is in the form of 
hydroxyapatite surface substituents. To maintain health, 
the recommended daily intake of Mg for adults is 300–400 
mg (Figure 2).42, 44, 45 Mg can be absorbed from the intestine 
and excess Mg is removed from the body in faeces and urine. 
Therefore, high concentrations of Mg due to degradation 
of Mg-based implants are permissible as the excess can be 
transported through the circulatory system to the urinary 
system and excreted without other adverse effects.44

Figure 2. Magnesium metabolism of the human body. Reprinted from Yamanaka et al.45

The role of magnesium in bone

Hydroxyapatite is one of the main components of bone, and 
most of the Mg ions in bone are bound to the surface of 
crystalline hydroxyapatite. A lack of Mg in hydroxyapatite 
crystals makes them larger, making bones brittle and more 
prone to fracture. Moreover, Mg can promote bone formation 
in more than one way. The ion is beneficial to the proliferation 
and differentiation of mesenchymal stem cells, and promotes 
the secretion of vascular endothelial growth factor, a factor 
associated with angiogenesis, thus speeding up the process of 
bone regeneration.46 Mg deficiency increases the number of 

osteoclasts, and Mg supplementation attenuates this effect, as 
a result of which Mg supplementation increases the number 
of osteoclast precursors.47, 48 Osteoclast precursor cells are 
the source of platelet-derived growth factor-BB, which is 
conducive to the formation of type H vessels in the process 
of osteogenesis.49, 50 Mg has an osteoimmunomodulatory 
effect, promoting the polarisation of macrophages to M2 
stage and inhibiting the transformation to M1 stage.51, 52 M2 
macrophages are associated with mineralisation, and increased 
M2 macrophages are conducive to bone regeneration, while 
a decrease in M1 macrophages is indicative of the anti-
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inflammatory effect of Mg.53, 54 The periosteum contains a 
large number of nerves. In the early stage of fracture repair, 
nerves are the first tissue to regenerate and participate in the 
fracture repair process.55 The degradation of Mg implants in 

vivo releases Mg ions, which migrate to the surface of bone 
where they are picked up by axons. Mg ions entering the axons 
encourage the axons to release more calcitonin gene-related 
peptide, which acts on periosteum stem cells to facilitate bone 
repair.56

The role of magnesium in other tissues

Mg ions are necessary for the heart to function properly, playing 
an important role in the second and third stages of cardiac 
action potential by affecting potassium channels and calcium 
channels.41 As a natural calcium antagonist, Mg participates 
in cardiac activation–contraction coupling by competing with 
calcium to bind proteins and calcium transporters.57 In addition, 
Mg has been reported to have a substantial vasodilation effect, 
the possible mechanism of which is through regulation of 
nitric oxide synthesis, although its induction of vasodilation 
has also been reported independent of nitric oxide.58, 59

The lack of research on Mg in the lung has led to a poor 
understanding of the mechanisms by which Mg plays a role 
in lung function, and most hypotheses are based on other 
tissues and cells. Like most vasodilators, Mg induces bronchial 
dilation, possibly by inhibiting the release of acetylcholine 
and histamine.60, 61 Declines in Mg levels have been reported 
in asthmatic patients, suggesting a possible link between Mg 
level and asthma.62, 63 In addition, low Mg is associated with 
inflammation, and due to its anti-inflammatory effects, Mg 
supplementation may reduce the inflammatory response in 

some lung diseases, such as chronic obstructive pulmonary 
disease.64, 65

Properties of Magnesium-Based Materials

Metal implants such as stainless steel, titanium alloy, and 
cobalt chromium alloy are widely used in the biomedical 
field.66, 67 These metal implants have been recognised in the 
field of orthopaedics for their excellent mechanical strength 
and good biocompatibility. However, these implants still have 
disadvantages, including: 1) traditional metal implants are 
non-degradable and often require a second surgical removal; 
and 2) stress shielding, which affects bone repair, especially in 
osteoporotic fractures.3 Mg and its alloys have been highlighted 
for their ability to overcome these problems due to their 
degradability and excellent mechanical properties.

Mechanical properties

Mg is one of the lightest metals and its alloys (weighing 
1.7–1.9 g/cm3) have a mechanical strength similar to cortical 
bone.68, 69 Although their degradability is similar, degradable 
biopolymers often have poor mechanical properties, and 
Mg-based implants have better mechanical strength than 
biodegradable biopolymers.2 Compared with other metal 
implants, Mg-based implants have a similar elastic modulus 
to cortical bone, thus minimising stress blocking.69, 70 In the 
process of bone regeneration, the mechanical properties of the 
healing bone gradually improve as the repair process proceeds, 
thus the mechanical strength of an ideal bone implant material 
should gradually reduce in parallel with the healing process22 
(Table 1). The use of Mg-based implants provides a great 
opportunity to meet this requirement.71

Table 1. Mechanical properties of various metallic implants compared with natural bone.

Property Natural bone Magnesium alloys Titanium alloys Stainless steels

Density (g/cm3) 1.8–2.1 1.74–2.0 4.4–4.5 7.9–8.1

Elastic modulus (GPa) 3–20 41–45 110–117 189–205

Yield strength (MPa) 130–180 85–190 758–1117 170–310

Note: Data are sourced from Chakraborty Banerjee et al.22

Degradation properties

The biodegradability of Mg-based implants is one of the reasons 
they have attracted the attention of researchers. Corrosion of 
Mg in aqueous solution is an electrochemical phenomenon 
which occurs by reaction with water to produce Mg hydroxide 
and hydrogen gas.72 Hydrogen is an antioxidant and the 
hydrogen produced by the degradation of Mg implants can 
reduce cell damage caused by oxidative stress.73 Meanwhile Mg 
hydroxide produced by the degradation of Mg-based implants 
can cover the surface of the implants, forming a protective 
layer and reducing the corrosion of Mg.74 In the physiological 
environment, due to the presence of high concentrations of 
chloride, magnesium hydroxide is converted to magnesium 
chloride, which is highly soluble and accelerates the corrosion 
of Mg-based implants, resulting in a local increase in the pH 
value.28 Other components of the physiological environment 
also have different effects on Mg implants, including calcium 
ions, phosphate ions, and proteins.75, 76

Compared with biodegradable biopolymers and biodegradable 
bioceramics, Mg and its alloys have better mechanical 
properties.2 During the degradation process, the mechanical 
properties of Mg alloy implants will decrease, rapid corrosion 
will damage the mechanical integrity of the Mg implants and 
release a large amount of hydrogen and hydroxide ions in a 
short time, although these products can be exchanged rapidly 
through local tissues.77 However, too fast degradation will 
still damage the stability of the local microenvironment.35, 78  
Methods including purification, surface modification and 
alloying have been adopted to improve the spatio-temporal 
complementarity between bone regeneration and implant 
degradation.79

Methods and Evaluation of Common Animal 

Models for Magnesium-Based Implants 

The bone defect model is a commonly-used model to evaluate the 
osteogenic effect of implants in musculoskeletal diseases (Figure 
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3).80 Currently, many animal models have been developed for 
evaluating bone implants, among which skull defects, long bone 
defects, partial cortical defects and cancellous defects are the most 
commonly used.81 Whichever model is chosen, consideration 

should be given to the size of the defect and the type of material 
to be implanted. We summarise the common bone defect models 
used at present, and briefly describe the modelling methods and 
points for attention of different animal models.

Figure 3. Common animal models used for bone regeneration. Reprinted from Taguchi and Lopez.80

Skull defect model

The skull defect model is one of the most commonly-used 
models of bone defect, and the rabbit and rat are usually the 
first choice for the skull defect model.81, 82 This model has been 
well studied and widely accepted and has several advantages, 
including: 1) The skull is a plate-like structure in which a 
uniform circular defect can be surgically created for radiological 
and histological purposes. 2) The skull defect model is easy to 
prepare and the specimen is easy to obtain. 3) The model has 
been fully studied. 4) It is a relatively economical model.83 Due 
to the inability to assess the performance of implants under 
physiological mechanical loads, the applicability of skull defect 
models to some implants may be limited. Nevertheless the 
critical size defect model of the skull is simple to create: an 
anteroposterior midline skin incision is made at the top of the 
skull (rabbit: 4–5 cm long, Sprague-Dawley rat: 1–2 cm long), 
and the soft tissue and periosteum are separated layer by layer 
to expose the skull. In general, for Sprague-Dawley rats, two 5 
mm diameter defects are created using a trephine on either side 
of the midline, between the transverse bone sutures, or an 8 
mm diameter defect is produced on the midline.83-85 During the 
process of drilling, the defect should be continuously irrigated 
with saline to avoid causing damage to the surrounding tissues 
due to the high temperature, and the osteotomy depth should 

be periodically examined to avoid puncturing the dura mater. 
If the full thickness of the bone plate is found to be penetrated, 
the dura mater is often already involved, which may cause an 
intracranial hematoma. After the implant is placed into the 
defect, the periosteum and subcutaneous tissue are closed. If a 
hematoma appears after surgery, drainage can be achieved by 
cutting several skin sutures.83, 86

To create a rat model of infected cranial defects, 3 or 4 mm 
full-thickness skin defects are usually created in Sprague-
Dawley rats.87 After that, a resorbable collagen plug which 
has been pre-soaked with pathogenic bacteria is placed in the 
defect. Staphylococcus aureus or methicillin-resistant S. aureus (1 
× 107 colony-forming units suspended in 100 μL sterile normal 
saline) are usually used, and after the material is placed in 
position, the periosteum and skin are closed.87 Debridement is 
then performed one week after the first operation, involving 
re-exposure of the skull from the original incision, removal of 
all nonviable tissue, exposure of the bone defect, implantation 
of the material, and suturing of the incision layer by layer88 
(Figure 4). Postoperatively, by paying close attention to basic 
physical signs in the experimental animals, systemic infections 
can be detected in a timely manner, such as by changes in body 
temperature and weight, and swelling which is likely to be seen 
at the top of the skull.
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Long bone defect models

Long bone defect models can be used to evaluate material 
performance under physiological loading, which is closer to 
clinical conditions, although the weight on the limbs in animals 
is still not the same as in humans since it gets distributed over 
a larger number of limbs. This model has been established in 
a number of species, including mice, dogs, sheep, goats, pigs, 
etc.89, 90 (Figure 5). Dogs have been the traditional model used 
in orthopaedic research, but their use has declined due to public 
concerns; pigs require careful handling which discourages 
their use; consequently sheep are the most commonly-used 
model for long-bone segmental defects. Mature sheep have 
similar body weight to adult humans and also have similar 
metabolic and bone remodelling rates to humans, and so are 

more relevant to clinical practice.91 Many segmental defects of 
long bones have been reported; taking sheep mid-diaphyseal 
segmental tibial defects as an example, skin and soft tissue 
are cut open to expose the tibia and a dynamic compression 
plate is temporarily fixed with two screws. After drilling the 
screw holes, the defect and osteotomy line are exposed. The 
osteotomy is then performed to remove the bone segment 
and then plates and screws are used for fixation. An implant is 
placed and sutures are used to close the wound. The tibia is the 
most commonly-used anatomical site in sheep models, other 
sites used for segmental long bone defects include the proximal 
third of the tibia, the femoral neck and the metatarsus.92 
Typically, critical-sized defects of the tibia are 2 to 2.5 times 
the diameter of the bone.93

Figure 4. Creation of infected cranial defects. Adapted from Dong et al.88 Copyright 2017, with permission from Elsevier.
RT-PCR: real-time polymerase chain reaction.

Figure 5. Illustration of bone healing models in the femoral diaphysis. Reprinted from Gunderson et al.90 Copyright 
2020, with permission from Elsevier.

The type of internal fixation used for segmental bone defects 
affects the quality of bone healing.94, 95 Bone plates and 
intramedullary nails are commonly used to stabilise long 
bone defects and simulate the clinical environment (Figure 

6). However, if the fixation is too rigid, the repair may be 
compromised.95, 96 External fixation combined with mesh 
implants is a possible alternative to internal fixation, as it 
reduces the biological response at the defect site.93 The model 

of bone tissue infection has laid a stable foundation for the 
pathogenesis and prevention of osteomyelitis. Long bone 
osteomyelitis can be modelled by intramedullary injection of 
pathogenic bacteria or by preconditioning the implant with 
pathogenic bacteria97, 98 (Figure 7). The local soft tissue and 
the activity of the animal should be observed regularly after 
operation, and the body temperature and weight of the animal 
should be measured.
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Craniofacial bone defect model

Unlike most bones in the body that are derived from the 
mesoderm, the maxillofacial bones develop from neural crest 
tissue.99, 100 Moreover, due to the differences in mechanical load 
and blood supply, models of skull defects and long bone defects 
are not suitable for evaluating bone repair of a maxillofacial 
bone defect.101 To address this problem a rat model of a 
maxillofacial borehole bone defect has been introduced.101 
The skin and the lower soft tissue are cut in parallel at 0.5 
mm above the lower margin of the mandible to expose the 
bone tissue. A flat-end cylinder diamond burr is then used to 
construct burr hole defects on the surface of the bone tissue. 
After that, the subcutaneous tissue is repositioned and the skin 
is sutured. Intraoperative injury to the parotid gland, parotid 
duct, masseter muscle and facial nerve should be avoided.

Common carotid artery lateral aneurysm model

The use of Mg alloy scaffolds is a promising method for the 

treatment of aneurysms.15, 102 The lateral aneurysm model can 
be used to evaluate the efficacy of implants in the treatment of 
aneurysm occlusion, and a lateral aneurysm model has been 
established in rabbits.103 One month before surgery, the left 
common carotid artery is ligated to thicken the right common 
carotid artery, which is then conducive to the generation of 
aneurysms. Rabbits are anaesthetised and fixed in the supine 
position. After full disinfection, a horizontal skin incision 
is made below the thyroid cartilage and slightly to the right 
of the midline. Then, the subcutaneous tissue is separated 
layer by layer to expose the right external jugular vein. The 
venous proximal and distal parts are ligated and a venous 
pouch is clipped. The right anterior cervical muscle group is 
then dissected to reveal the right common carotid artery, and 
haemostatic forceps are used to temporarily clamp the proximal 
and distal sides. An incision is made between the haemostatic 
forceps, and the right common carotid artery is anastomosed 
with the venous pouch. Finally the clamp is loosened to allow 

Figure 6. Fixation types for a segmental femoral defect. Reprinted from Gunderson et al.90 Copyright 2020, with 
permission from Elsevier.

Figure 7. Methods used to induce osteomyelitis in animal models. Reprinted from Roux et al.98
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the venous pouch to fill while keeping a close watch on blood 
flow.

Evaluation of animal models for bone defects

Radiological assessment is one of the most commonly-used 
methods for the assessment of orthopaedic diseases.104, 105 

Dual energy X-ray absorptiometry is the gold standard for 
the diagnosis of osteopenia and osteoporosis and a medium 
predictor of fracture risk, which can be used for the overall 
evaluation of bone healing.106-108 Micro-computed tomography 
(CT), which uses X-ray attenuation data collected from 
multiple perspectives to reconstruct three-dimensional images 
of samples representing the spatial distribution of material 
density, has become the gold standard for evaluating bone 
morphology and microstructure in animal models in vitro.109 

Micro-CT has many advantages for evaluating the bone mass 
and morphology of specimens, for example, it allows direct 
three-dimensional measurement of trabecular morphology, 
such as trabecular thickness and separation. Bone morphology 
can be evaluated in a non-destructive manner by a micro-CT 
scan, and the sample can then be used for other tests.110, 111

Staining histological slides for orthopaedic studies provides 
the possibility of visualising inflammatory responses and 
healing responses at the defect site.112 Stains commonly used 
in orthopaedics include haematoxylin and eosin, Masson’s 
trichrome, Safranin O-fast green, and toluidine blue.113-116  
Classical haematoxylin and eosin staining is a routine 
pathological stain, which can be used to judge biocompatibility by 
evaluating the inflammatory response; however haematoxylin 
and eosin stains all bone in a purple-pink colour, so it does not 
allow for obvious identification of new bone and pre-existing 
bone within the defect site.117 In order to identify the formation 
of new bone at the defect site, other supplementary stains are 
often needed. For example, Masson’s trichrome stains osteoid 
orange-red or red, and mineralised bone blue. Other special 
stains include terminal deoxynucleotidyl transferase-mediated 
dUTP nick-end labelling staining, which can be used to assess 
apoptosis, and tartrate-resistant acid phosphatase, which is 
used to label osteoclasts.118

Animal Models for Research into 

Magnesium-Based Materials

Animal models for research into the use of 

magnesium-based materials in orthopaedics

Rat model studies

As one of the methods to improve the corrosion performance 
of implants, the use of high-purity Mg as the implant material 
shows promise. Pure Mg implants have been extensively 
studied in rat models. Hamushan et al.119 created a distraction 
osteogenesis model in Sprague-Dawley rats to evaluate the 
effect and mechanism of high-purity Mg (Hp Mg) pins on 
osteogenesis. Mg implantation significantly improved the 
quantity and quality of healed bone tissue, and showed a 
faster consolidation speed during the repair process. The 
consolidation process was almost completed at 9 weeks and had 
a higher ultimate load and energy to failure in the mechanical 
test. Due to its high purity, the Mg implants showed stable 

degradability in experiments, providing continuous guidance. 
Using RNA-sequencing analysis and other methods, the 
authors found that Mg promotes osteogenesis by regulating 
patched 1 protein, thus activating Hedgehog-alternative Wnt 
signalling.

Zhang et al.56 implanted a 99.99%-pure Mg rod in a Sprague-
Dawley rat nonfractured femur model. Two weeks after 
surgery, a significant increase in Mg concentration was found 
in the cortical bone and the bone-periosteum junction of the 
femur implanted with Mg, revealing a remarkably higher 
Mg concentration in the cortical bone and bone-periosteum 
junction of the Mg-implanted femora and a great deal of new 
bone formation in cortical bone. A high concentration of 
calcitonin gene-related peptide was observed in the peripheral 
cortical bone implanted with Mg by immunofluorescence 
staining. When the periosteum was removed pre-implantation, 
the formation of new bone in this area was significantly 
reduced. The authors suggest that Mg promotes the secretion 
of calcitonin gene-related peptide by axons on the bone 
surface to induce new bone formation, which is eliminated by 
periosteum removal.

Periprosthetic infections are one of the most common 
complications in orthopaedics. Prolonged antimicrobial 
treatment, implant removal, and surgical revision is the 
conventional way to treat periprosthetic infections, but this 
often places an unnecessary burden on patients.120 Robinson et 
al.121 reported that Mg has antibacterial activity in vitro, which 
may be due to the local alkaline environment caused by Mg 
degradation. To evaluate the antibacterial activity of pure Mg 
in vivo, Li et al.122 implanted pure Mg intramedullary nails in 
5-month-old Sprague-Dawley rats. Mg implantation reduced 
the bone destruction caused by infection and effectively 
protected bone and surrounding tissues from methicillin-
resistant S. aureus infection. The bone around the implant 
was evaluated by micro-CT, and the Mg implant group had 
higher bone mineral density, bone mineral content, and bone 
volume/tissue volume, as well as lower total porosity and 
number of pores than the control group. This suggested that 
pure Mg intramedullary nails could prevent the destruction of 
infected bone and promote the formation of bone around the 
implant.

Compared with long bones, craniofacial bone has a different 
embryonic origin and growth process, and the biological 
characteristics of the periosteum of craniofacial bone are 
also different from those of long bone. In order to identify 
the osteogenic effect of Mg on mandibular alveolar bone, 
He et al.123 implanted pure Mg in the sockets after extraction 
of rat mandibular incisors. At 2 weeks postoperatively, the 
concentration of Mg around the alveolar bone was significantly 
higher than that in the control group, and the Mg appeared 
beneficial for the repair of cortical and trabecular bone in 
the alveolar bone, but this effect did not last up to 6 weeks. 
Histological analysis showed that Mg implantation promoted 
more angiogenesis in the second week after surgery, and 
gas bubbles caused by Mg degradation were observed in the 
sockets (Figure 8).
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In order to investigate the biodegradability of Mg-calcium 
(Ca)–strontium (Sr) alloy and its effects on surrounding 
tissues, Berglund et al.124 implanted Mg-1.0wt.% Ca-0.5wt.% 
Sr alloy pins into the tibiae of rats. All rats tolerated the implant 
well and only mild swelling was observed within 4 days after 
surgery. No signs of infection were found. According to 
three-dimensional reconstructions, the implant was almost 
completely decomposed by 6 weeks after surgery, retaining 
only 10% of its original volume. As the implant degraded, it 
continued to be replaced by new bone, and excellent bone 

repair was achieved at 6 weeks postoperatively. According 
to the histological results, gas from implant degradation was 
observed at 1 and 3 weeks and the voids disappeared at 6 
weeks, possibly because the gas had been absorbed. Although 
there was local gas accumulation, no microfractures were 
seen in the bone. Quantification of the number of osteoclasts 
showed that the number reached a peak at 3 weeks but 
had decreased significantly at 6 weeks, demonstrating that 
the implant was well tolerated by the surrounding tissues 
(Figure 9).

Figure 8. Mg rod for mandibular repair in rats. Mg: magnesium; Ti: titanium. Reprinted from He et al.123 Copyright 
2020, with permission from American Academy of Periodontology.

Figure 9. Bone morphology around magnesium (Mg) alloy implants at different time points. Scale bar: 1 mm. Reprinted 
from Berglund et al.124

Mouse model studies

Mg alloy containing 2% silver (Mg2Ag), which was cast and 
treated by a cooling process, has satisfactory mechanical 
properties and degradation rate and has demonstrated 
good biocompatibility in vitro.125 To investigate the in vivo  

degradation and fracture healing of Mg2Ag, Jähn et al.126 
implanted Mg2Ag intramedullary nails into mice with and 
without femoral shaft fractures. The intramedullary nail 
showed a faster rate of degradation in vivo than in vitro, but 
no health abnormalities due to degradation were observed. 
The authors found that the Mg2Ag alloy inhibited osteoclast 
function in vitro, similarly to its effect in vivo, while implantation 
of the Mg2Ag intramedullary nail improved bone formation 
during bone remodelling and reduced bone resorption.

Yoshizawa et al.127 constructed a stem cell implantation model 
in immunocompromised mice in order to investigate the 
long-term biological role of Mg alloy in vivo and its effect on 
human bone marrow stromal cells. The authors inserted pure 
Mg or Mg alloy AZ31 into collagen sponge scaffolds seeded 

with human bone marrow stromal cells and implanted the 
scaffolds subcutaneously in mice. Eight weeks after surgery, 
the degradation and biological effects of the implants were 
investigated. The results showed that pure magnesium 
degraded faster than AZ31, but both had good biocompatibility. 
Immunohistochemistry showed that matrix protein 1 and 
osteopontin were expressed around the implants, and the 
authors found a thin mineral layer around the implants.

Rabbit model studies

Han et al.128 fabricated a bone screw for fixation of bone 
fractures in the distal femur of rabbits. The screws were 
created using Hp Mg materials that went through a rolling 
process in advance. Because of the mechanical stress at the 
implant site, the corrosion rate of the screw at 4 weeks post-
operation was higher than that after 4 weeks immersion, and 
the corrosion rate showed a significant linear correlation with 
time up to 24 weeks post-operation. Hp Mg screws showed 
ideal degradation performance throughout the experiment. 

2 weeks 6 weeks

Ti Mg Ti Mg

Mg-1 week Mg-3 week Mg-6 week

1 mm
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Compared with a poly-L-lactic acid group, the Hp MG group 
had better osteogenic performance, and irregular woven 
bone was observed in the fourth week without any apparent 
biosafety problems (Figure 10).

Hung et al.129 investigated the bone marrow space in fractured 
rabbit ulnae fixated using Mg-based plates and screws. Micro-
CT analysis of rabbit ulna samples showed the presence of 
radiopaque mineralised tissues in the medullary cavity at 8 

weeks postoperatively, while intensive bone remodelling 
and more mineralised deposition were found at 16 weeks 
after surgery. Based on the result in vitro, the authors suggest 
that the osteogenic effect of Mg is mediated by activating the 
canonical Wnt signalling pathway (Figure 11). In addition, Mg-
based interference screws are considered to have satisfactory 
repair capabilities in the rabbit anterior cruciate ligament 
reconstruction model.130

Figure 10. Magnesium screws for repair of distal femoral fractures in rabbits. Reprinted from Han et al.128 Copyright 
2015, with permission from Elsevier.

Figure 11. Magnesium-based plates and screws for the treatment of ulnar fractures in rabbits. Scale bars: 1 mm. Reprinted 
from Hung et al.129 Copyright 2019, with permission from Elsevier Ltd. on behalf of Acta Materialia Inc.

Li et al.131 studied the therapeutic effect of Mg-copper (Cu) 
alloy on osteomyelitis in rabbits. The alloys are made of high 
purity Mg and pure Cu powder, and designated Mg0Cu, 
Mg0.05Cu, Mg0.1Cu and Mg0.25Cu according to the content 
proportion of Cu in the alloy. Mg0.25Cu alloy has an obvious 
antibacterial effect in vitro. The authors constructed a rabbit 
model of chronic osteomyelitis in the tibia which was induced 
by methicillin-resistant S. aureus and then implanted the 
Mg0.25Cu alloy into the model. Haematoxylin and eosin 
staining of the heart, liver, spleen, lung, and kidney, blood 
biochemical tests and the stable body temperatures and weights 
of the animals demonstrated the good biocompatibility of 
the alloy. Histological evaluation at 4 weeks postoperatively 
demonstrated that Mg0.25Cu nails inhibited bone infection, 
with only a slight inflammatory response around the implant 
and almost no inflammatory cells in the tibial marrow cavity. 
Digital X-ray and magnetic resonance images revealed that the 
Mg0.25Cu nails were partially degraded, small amounts of gas 
were released and a slight periosteal reaction was induced. The 
bone defect caused by infection was repaired and regeneration 

of thin cortical bone was observed.

The alloy thus appears effective in controlling the corrosion 
rate of Mg-based implants when applied as a coating on the 
surface of the implants. 

Jiang et al.132 prepared a novel coating on the surface of AZ31 
Mg alloy through poly dopamine (PDA)-mediated assembly 
of hydroxyapatite (HA) nanoparticles and added the growth 
factor bone morphogenetic protein-2 (BMP-2); the materials 
were named PDA@HA and PDA@HA&BMP-2 according 
to whether or not they contained BMP-2. The coating 
improved the biocompatibility and corrosion rate of the 
Mg-based implants and provided sustained release of BMP-
2 in vitro. A rabbit critical-sized femoral defect model was 
constructed and implanted with PDA@HA-coated AZ31 and 
PDA@HA&BMP-2-coated AZ31. During the experiment, 
the rabbits showed no abnormal behaviour or instances of 
wound infection. The implants were removed 12 weeks after 
surgery and gross observation showed that they were still 
firmly attached to the femur. Histological analysis showed 

Ctrl 8 weeks 16 weeks
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that no polymorphonuclear cells were present in any of the 
groups, suggesting that the coating and the exposed AZ31 
after degradation of the coating did not cause adverse effects 
on surrounding tissues. Better bone repair was observed in 
the PDA@HA&BMP-2 group compared to the PDA@HA 

group and small empty cavities were observed around the 
new bone and implants, possibly due to hydrogen generated 
during the degradation process. The cavities in the PDA@
HA&BMP-2 group were smaller than those in the other 
groups (Figure 12).

Figure 12. Schematic diagram showing the surgical process in the rabbit femoral defect model. Reprinted from Jiang et 
al.132 Copyright 2017 Wiley Periodicals, Inc. Reproduced with permission.

Other animal model studies

Absorbable implants that can avoid the need for a secondary 
surgery are of great importance in paediatric orthopaedics. 
However, due to differences in bone metabolism between 
adults and children, it is not sufficient to validate biodegradable 
implants only in adult animal models. Grün et al.133 developed 
a lean Mg–Zn–Ca alloy (MgZnCa; < 0.5 wt% Zn and < 0.5 wt% 
Ca; ZX00) for children and investigated its degradation and 
bone formation properties in a small rodent and a large ovine 

model. The alloy was implanted into the femur of Sprague-
Dawley rats and the right proximal tibiae of 1-month-old 
female lambs. After surgery, gas release occurred in both large 
and small animal models, but did not affect bone formation, 
although gas release accelerated at 12 weeks in rats and 6 
weeks in the ovine model. There was no significant difference 
in implant degradation rate between the two models, and 
osseointegration was observed according to micro-CT and 
histological results in both models (Figure 13).

Figure 13. The use of magnesium alloy implants in large and small animal models. Scale bars: 2 mm. Reprinted with 
permission from Grün et al.133 Copyright 2018, Acta Materialia Inc.

Marukawa et al.134 assessed anodised WE43 (containing 
Mg, yttrium, rare earth elements and zirconium; Elektron 
SynerMag®) Mg alloy, monolithic WE43 Mg alloy and poly-
L-lactic acid in 1-year-old beagle dogs. Bone osteotomy was 
performed in the tibiae of the dogs, then screws fabricated 
from the test materials were used to fix the osteotomy. At 4 
and 12 weeks after surgery, loosening and breakage in the 

anodised WE43 group and the monolithic WE43 group were 
both better than in the poly-L-lactic acid group. At 4 weeks 
postoperatively, bone resorption and gas formation were 
observed around the monolithic WE43 implants, while in the 
anodised WE43 group, no bone resorption was observed, gas 
production was less and new bone formation was better. At 
12 weeks postoperatively, bone maturation had progressed in 
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0.21 ± 0.46 μm/day

0.12 ± 1.07 μm/day

<S>Δt

ΔV
Rv

2 mm

2 mm



Review

208

Guo, X.; et al.

www.biomat-trans.com

all groups, but gas cavities remained in the monolithic WE43 
group .

The miniature pig is a useful large-animal model for dental 
and orofacial research. The advantage of this model is that the 
size of the plates/screws available and the soft tissue properties 
in the midface and the skull bone are similar to those of 
humans.135 Schaller et al.17 used the Mg alloy WE43 as an 
implant which was tested in the frontal bone of adult miniature 
pigs. Half of the Mg implants received a plasma electrolytic 
coating. No complications due to the implant were observed 
during the experiment. Subcutaneous gas pocket formation 
of uncoated Mg implants due to implant degradation was 
observed one week after surgery. This did not occur in the 
coated Mg implant group. At 12 and 24 weeks after surgery, 
no complete corrosion was observed in any of the implants, 
and the implanted group had better bone formation than the 
uncoated implant group. Histological analysis showed that no 
inflammatory cells or increases in the number of osteoclasts 
were observed around the implants.

Animal models for research into the use of 

magnesium-based materials in other tissues

Metal stents can be used for the treatment of cardiovascular 
diseases, such as arterial stenoses, but long-term implantation 
of nondegradable metal implants may induce a restenosis-like 
reaction and impair tissue function.136 The use of biodegradable 
implants to avoid this problem is a promising option. Mg-
based implants are attracting attention as a new biodegradable 
metal implant in the treatment of cardiovascular diseases.137-139 
Bowen et al.140 implanted pure Mg wires in the abdominal 
aortae of rats to investigate degradation correlations in vivo 
and in vitro. The results showed that the in vitro penetration 
rate was higher than the in vivo degradation rate by a factor 
of 1.2−1.9× (±0.2×). Waksman et al.141 deployed Mg alloy 
stents in coronary arteries of pigs, and found that the Mg alloy 
caused no obvious discomfort in the pigs and was associated 
with less neointima formation. Mg alloy vascular implants 
have been extensively studied, but the control of their high 
reactivity and degradability in physiological environment is 
still a concern.142-145

Summary and Outlook

A lot of research has been carried out on animal models that are 
used in bone tissue engineering, and the use of small rodents 
accounts for more than half of them.146, 147 Because of their low 
cost and clear genetic background, rodent models are often 
used for basic research questions, and translational research 
often uses large animal models to simulate the biomechanical 
requirements of human patients.148 For translational research, 
the devices and materials should also be as close to clinical 
specifications as possible, such as nails, plates, and retainers.149 
In order to maximise the translational potential of such studies, 
it is necessary to carefully select appropriate age, sex, animal 
species, and clinically-relevant outcome indicators, and ensure 
that there is sufficient statistical capacity to address research 
questions.

As a new generation of bone implant materials, Mg-based 
materials have received extensive attention due to their 

excellent biocompatibility, degradability and osteogenic 
activity. Currently, various strategies have been developed to 
improve the degradation and mechanical properties of Mg-
based implants, include alloying and surface Mg; these methods 
may broaden the use of Mg-based materials.2 Numerous 
studies conducted on the effects of Mg-based materials in vivo 
have demonstrated a beneficial effect on bone tissue repair, 
and these encouraging results show the revolutionary promise 
of Mg-based materials in the treatment of refractory bone 
diseases, including osteoporotic fractures and osteomyelitis. 
According to published reports, Mg-based materials have 
been successfully used in patients with non-load-bearing site 
fractures, which shows the broad clinical application prospect 
of Mg-based materials.2, 150 Based on a full understanding of 
the physical, chemical and biological properties of Mg and its 
alloys, the wider use of Mg-based materials in the clinic will 
be possible.
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